MA 584 HW 4 DUE OCTOBER 16TH

If K is a field with nonarchimedean valuation $| |_v$ then define

$$\mathcal{O}_{(v)} = \{ x \in K | \ |x|_v \le 1 \}$$

and

$$\mathfrak{P}_{(v)} = \{ x \in K | \ |x|_v < 1 \}.$$

- (1) (a) Show that $\mathcal{O}_{(v)}$ is integrally closed.
 - (b) We have shown that $(\mathcal{O}_{(v)}, \mathfrak{P}_{(v)})$ is a local ring. Furthermore, in many cases (e.g., K is a number field), $(\mathcal{O}_{(v)}, \mathfrak{P}_{(v)})$ is just a DVR. Is this always true in general?
 - (c) Let K_v denote the completion under the valuation $| |_v$. Define

$$\mathcal{O}_v = \{ x \in K_v | \ |x|_v \le 1 \}$$

and

$$\mathfrak{P}_v = \{ x \in K | \ |x|_v < 1 \}.$$

show that \mathcal{O}_v is the completion of $\mathcal{O}_{(v)}$, \mathfrak{P}_v is the completion of $\mathfrak{P}_{(v)}$ and $\mathcal{O}_v/\mathfrak{P}_v \simeq \mathcal{O}_{(v)}/\mathfrak{P}_{(v)}$.

- (d) Further assume that K is a number field. Write $\mathcal{O} = \mathcal{O}_K$ the ring of algebraic integers. Show that \mathcal{O}_v is the completion of \mathcal{O} .
- (2) Let us discuss valuation of function field. Let K be field over $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.
 - (a) Prove if K admits a valuation then it is must be nonarchimdean.
 - (b) Determine all valuation of k where k is a finite extension of \mathbb{F}_p .
 - (c) Determine all valuation $| |_v$ of $K = \operatorname{Frac}(k[u])$ so that $|u|_v \leq 1$.
 - (d) Let $k = \overline{\mathbb{F}}_p$ and $| |_v$ is a valuation of $K = \operatorname{Frac}(k[u])$ so that $|u|_v \leq 1$. Show that $\mathcal{O}_v \simeq k[t]$.
- (3) It is important to realize *p*-adic number as projective limit: Recall there exists a natural projection $\mathbb{Z}/p^{n+1}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ induced by modulo p^n . Show that

$$\mathbb{Z}_p \simeq \varprojlim_1 \mathbb{Z}/p^n \mathbb{Z}$$

as topological rings. Recall that the topology of right side uses finite index subgroups as a basis of open sets. Indeed, this is valid for \mathcal{O}_K and $\mathfrak{P} \in \operatorname{Spec}(\mathcal{O}_K)$ for K being a number field. We have

$$\mathcal{O}_{K,v}\simeq arprojlim \mathcal{O}_K/\mathfrak{P}^n$$

where $| |_v$ the valuation induced by \mathfrak{P} .