Lecture 12

Sets of finite perimeter

If E is a set with C^1-boundary, the following Gauss–Green theorem is proved in Chapter 9 of the textbook:

Theorem 1: (Gauss–Green theorem) If E is an open set with C^1-boundary, then:

$$
\int_E \nabla \psi(x) \, dx = \int_{\partial E} \psi \nu_E \, d\mathcal{H}^{n-1}, \quad \forall \psi \in C_c^1(\mathbb{R}^n)
$$

where ν_E is the exterior unit normal to E.

Equivalently, the divergence theorem holds true:

$$
\int_E \text{div} \mathbf{T}(x) \, dx = \int_{\partial E} \mathbf{T} \cdot \nu_E \, d\mathcal{H}^{n-1}, \quad \forall \mathbf{T} \in C_c^1(\mathbb{R}^n; \mathbb{R}^n)
$$

This theorem is the starting motivation to study sets of finite perimeter. Indeed, we say that a Lebesgue measurable set $E \subseteq \mathbb{R}^n$ is a set of locally finite perimeter if $E \in \mathcal{P}$, a Radon measure on \mathbb{R}^n such that:

$$
\int_E \nabla \psi(x) \, dx = \int_{\mathbb{R}^n} \psi \, d\mu_E, \quad \forall \psi \in C_c^1(\mathbb{R}^n)
$$
The total variation measure $|\mu_E|$ of μ_E induces the notion of relative perimeter $P(E; F)$ of E with respect to a set $F \subset \mathbb{R}^n$, and of total perimeter $P(E)$ of E, as:

$$P(E; F) = |\mu_E|(F) \quad P(E) = |\mu_E|(\mathbb{R}^n),$$

In particular, E is a set of finite perimeter if and only if $P(E) < \infty$.

For example, if E is an open set with C^1 boundary with outer unit normal $n_E \in C(\partial E, S^{n-1})$ then from the Gauss-Green formula in Theorem 4 it follows that E is a set of locally finite perimeter with:

$$\mu_E = n_E \mathcal{H}^{n-1}\partial E, \quad |\mu_E| = \mathcal{H}^{n-1}\partial E,$$

$$P(E; F) = \mathcal{H}^{n-1}(F \cap \partial E), \quad P(E) = \mathcal{H}^{n-1}(\partial E).$$

Therefore, in the next six or seven lectures we will show that these definitions lead to a geometrically meaningful generalization of the notion of open set with C^1-boundary, with natural and powerful applications to the study of geometric variational problems.
Since, given $\mathbb{E} \subset \mathbb{R}^n$ Lebesgue measurable, we want to produce a measure μ_E such that the Gauss-Green theorem holds, then it is natural to think of the Riesz representation theorem as the main analytical tool to produce μ_E. Thus, with the Riesz theorem in mind, we can now define:

Definition: Let $\mathbb{E} \subset \mathbb{R}^n$ Lebesgue measurable. We say that \mathbb{E} is a set of locally finite perimeter in \mathbb{R}^n if for every compact set $K \subset \mathbb{R}^n$ we have:

$$\sup \left\{ \int_{\mathbb{E}} \text{div} T(x) \, dx : T \in C_c^1(\mathbb{R}^n; \mathbb{R}^n), \text{spt} T \cap K, \sup_{\mathbb{R}^n} |T| \leq 1, \right\} < \infty$$

If this quantity is bounded independently of K, then we say that \mathbb{E} is a set of finite perimeter in \mathbb{R}^n.

With this definition and using the Riesz representation theorem, we can prove the Gauss-Green formula for \mathbb{E}.

Theorem 2: Let $\mathbb{E} \subset \mathbb{R}^n$ Lebesgue measurable. Then \mathbb{E} is a set of locally finite perimeter $\iff \exists \mu_E$, a \mathbb{R}^n-valued Radon measure on \mathbb{R}^n such that:

$$\int_{\mathbb{E}} \text{div} T = \int_{\mathbb{R}^n} T \cdot d\mu_E \quad \forall T \in C_c^1(\mathbb{R}^n; \mathbb{R}^n)$$

Moreover, \mathbb{E} is a set of finite perimeter $\iff |\mu_E(\mathbb{R}^n)| < \infty$.
Remark 1: Note that:
\[\int_E \text{div} \mathbf{T} = \int_{\mathbb{R}^n} \mathbf{T} \cdot d\mu_E \]
is equivalent to
\[\int_E \nabla \psi = \int_{\mathbb{R}^n} \psi d\mu_E, \quad \psi \in C_c^1(\mathbb{R}^n) \]
Indeed:
Let \(\psi \in C_c^1(\mathbb{R}^n) \). Let \(\mathbf{T}_i = (0, \ldots, \psi_i, \ldots, 0) \) in position.
\[\Rightarrow \int_E \text{div} \mathbf{T}_i = \int_{\mathbb{R}^n} \mathbf{T}_i \cdot d\mu_E \]
\[\therefore \int_E \psi x_i = \int_{\mathbb{R}^n} \psi (d\mu_E)_i, \quad i = 1, 2, \ldots, n \]
since \(\nabla \psi = (\psi x_1, \ldots, \psi x_n) \Rightarrow \)
\[\int_E \nabla \psi = \int_{\mathbb{R}^n} \psi d\mu_E \]
on the other hand:
Let \(\mathbf{T} \in C_c^1(\mathbb{R}^n, \mathbb{R}^n) \), \(\mathbf{T} = (\psi_1, \ldots, \psi_n) \). Since:
\[\int_E \nabla \mathbf{T}_i = \int_{\mathbb{R}^n} \mathbf{T}_i \cdot d\mu_E \Rightarrow \int_E (\psi_i)_i = \int_{\mathbb{R}^n} \psi_i (d\mu_E)_i, \]
for \(i = 1, 2, \ldots, n \). Hence:
\[\sum_{i=1}^{n} \int_E (\psi_i)_i x_i = \sum_{i=1}^{n} \int_{\mathbb{R}^n} \psi_i (d\mu_E)_i \]
\[\therefore \int_E \text{div} \mathbf{T} = \int_{\mathbb{R}^n} \mathbf{T} \cdot d\mu_E \]
Definition: We call μ_E the Gauss-Green measure of E, and define the relative perimeter of E in $FCIR^n$, and the perimeter of E, as:

$$P(E; F) = \mathcal{W}_E(F), \quad P(E) = |\mu_E|(\mathbb{R}^n).$$

Proof of Theorem 2:

Let E be a set of locally finite perimeter. Define:

$$L: C_c^1(\mathbb{R}^n; \mathbb{R}^m) \to \mathbb{R}$$

$$\langle L, T \rangle = \int_E \text{div}_E T(x) \, dx.$$

Let $K \subset \mathbb{R}^n$ compact,

$$\sup \{ |\langle L, T \rangle| : T \in C_c^1(\mathbb{R}^n; \mathbb{R}^m), \text{sp}(T) \subset K, |T| \leq 1 \} < \infty$$

because, by definition of set of finite perimeter:

$$|\langle L, T \rangle| = \left| \int_E \text{div}_E T(x) \, dx \right| \leq C(K), \quad \forall T \in C_c^1(\mathbb{R}^n; \mathbb{R}^m)$$

$$|T| \leq 1.$$

Hence, L is continuous in $C_c^1(\mathbb{R}^n; \mathbb{R}^m)$, with respect to the topology in $C_c(\mathbb{R}^n; \mathbb{R}^n)$ introduced in Lecture 4. Hence, L can be extended by density to a bounded continuous linear functional on $C_c(\mathbb{R}^n; \mathbb{R}^n)$. By Riesz's theorem $\exists \mu_E$ such that:

$$\langle L, T \rangle = \int_{\mathbb{R}^n} T : d\mu_E \Rightarrow \int_E \text{div}_E T(x) \, dx = \int_{\mathbb{R}^n} T : d\mu_E$$

The converse implication is trivial. \blacksquare
Remark 2: Let E be a set of locally finite perimeter in \mathbb{R}^n. If $|E \Delta F| = 0$, then:

$$\int_E \text{div} T = \int_F \text{div} T, \quad \int_E \text{div} T = \int_{\mathbb{R}^n} T \cdot d\mu_E \quad \forall T \in C_0^1(\mathbb{R}^n; \mathbb{R}^n)$$

Thus, $\int_{\mathbb{R}^n} T \cdot d\mu_E \quad \forall T \in C_0^1(\mathbb{R}^n; \mathbb{R}^n) \Rightarrow F$ is of locally finite perimeter.

Hence, there exists F such that

$$\int_{\mathbb{R}^n} T \cdot d\mu_E \quad \forall T \in C_0^1(\mathbb{R}^n; \mathbb{R}^n)$$

In view of Remark 1, and since $C_0^1(\mathbb{R}^n)$ is dense in $C_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} T \cdot d\mu_E \quad \forall T \in C_c(\mathbb{R}^n) \Rightarrow \mu_E = \mu_F$$

(See Lecture 4, page 4.5).

We can actually modify E in such a way that the new set F has a "huge" topological boundary but still $\mu_F = \mu_E$. For example, let $E \subset \mathbb{R}^2$ be the unit disk and $F = E \cup Q^2$. Thus, $|E \Delta F| = 0$, but $\mu_F = \mu_E + 2\mu_{\mathbb{R}^2 \setminus E}$. Or F can be as follows:

$$E = \text{disk} \ E \ \text{minus all the curves in the picture} \ \ \ |E \Delta F| = 0$$

Actually, by the Gauss-Green theorem, note that if $E \subset \mathbb{R}^n$ is open (not necessarily bounded) with C^1 boundary, then E is a set of locally finite perimeter with $\mu_E = \mu_{E \Delta \mathbb{R}^n \setminus \mathbb{R}^n}$, $\mathbb{R}_E = \mathbb{R}^{n-1}(\mathbb{R}^n \setminus \mathbb{R}^n)$, and $P(E, F) = \chi^{n-1}(\partial E \setminus \partial F) \forall F \subset \mathbb{R}^n$.
In chapter 9 of the textbook, the Gauss-Green formula is proved to be true also for sets \(E \) with Lipschitz boundary or polyhedral boundary. Hence such sets \(E \) are of locally finite perimeter, with \(P(E; F) = \mathcal{H}^{n-1}(F \cap \partial E) \) whenever \(E \subset \mathbb{R}^n \).

Moreover, if \(E \) is bounded, then \(E \) is of finite perimeter.

Since convex sets have locally Lipschitz boundary, it follows that convex sets are of locally finite perimeter, while bounded convex sets are of finite perimeter.

Remark 3: Recall from the theory of distributions that if \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), then \(f \) induces a distribution \(T_f \) defined as \(\langle T_f, \psi \rangle = \int_{\mathbb{R}^n} f \psi \, dx \).

Moreover, the derivative of the distribution \(T_f \) is:

\[
\langle DT_f, \psi \rangle = -\int_{\mathbb{R}^n} f \nabla \psi \, dx, \quad \forall \psi \in C_0^\infty(\mathbb{R}^n).
\]

Then, if \(E \subset \mathbb{R}^n \) is Lebesgue measurable \(\Rightarrow X_E \in L^1_{\text{loc}}(\mathbb{R}^n) \)

Hence:

\(E \subset \mathbb{R}^n \) is a set of locally finite perimeter \(\iff \) the distributional gradient \(DX_E \) can be represented as the integration with respect to \(-\mu_E \).
Lower semicontinuity of perimeter

We say that E_i locally converges to E ($E_i \to E$) if

$$\chi_{E_i} \to \chi_E \quad \text{in} \quad L^1_{\text{loc}}(\mathbb{R}^n)$$

That is,

$$\lim_{i \to \infty} \int \chi_{K \cap (E_i \Delta E)} \, dx = 0, \quad \forall K \subset \mathbb{R}^n \text{ compact}$$

We simply say that E_i converges to E, $E_i \to E$, if $\chi_{E_i} \to \chi_E$ in $L^1(\mathbb{R}^n)$; that is:

$$\lim_{i \to \infty} \int |E \Delta E_i| = 0$$

Remark 4: Let E be a set of locally finite perimeter. Then, Theorem 2 implies $\mathcal{M} \subsetneq \mathcal{M}_E$ Radon s.t.

$$\int_E \text{div} T(x) \, dx = \int_{\mathbb{R}^n} T \cdot d\mathcal{M}_E \quad \forall T \in C_c^1(\mathbb{R}^n; \mathbb{R}^n),$$

and by our study of the Riesz's theorem in Lecture 4 (See page 4.3) we have; for A open:

$$\mathcal{P}(E, A) = |M_E|(A) = \sup \{ \int_A \text{div} T(x) \, dx : T \in C_c^\infty(A; \mathbb{R}^n), \|T\|_L^\infty \leq 1 \}$$

Note: C_c^∞, C_c^1 are both dense in C_c
Theorem 3 (Lower semicontinuity of perimeter):

Let \(\{E_i\} \) sequence of sets of locally finite perimeter in \(\mathbb{R}^n \), with

\[
E_i \xrightarrow{loc} E ; \quad \limsup_{i \to \infty} P(E_i ; K) < \infty \quad \forall K \subset \mathbb{R}^n \text{ compact.}
\]

Then:

(a) \(E \) is a set of locally finite perimeter in \(\mathbb{R}^n \)
(b) \(ME_i \xrightarrow{*} ME \)
(c) \(P(E; A) \leq \liminf_{i \to \infty} P(E_i; A) \), \(\forall A \subset \mathbb{R}^n \) open.

Proof:

By Remark 4; for \(T \in \mathcal{C}_c^0 (A; \mathbb{R}^n) \), \(|T| \leq 1 \), \(A \) open:

\[
\int_E \nabla T(x) \cdot dx = \lim_{i \to \infty} \int_{E_i} \nabla T(x) \cdot dx = \lim_{i \to \infty} \int_{\mathbb{R}^n} T \cdot dME_i \leq \liminf_{i \to \infty} |ME_i| (A)
\]

\[\therefore \text{ } E \text{ is a set of locally finite perimeter (using } A=K \text{ and hypothesis)}\]

\[\therefore \text{ Per } (E; A) \leq \liminf_{i \to \infty} P(E_i; A) \; \text{ even for } A \text{ unbounded.}\]

Now, since \(E_i \xrightarrow{loc} E \), we have:

\[
\int_{E_i} \nabla \varphi \cdot dx \to \int_{E} \nabla \varphi \cdot dx \;
\]

\[
: \int_{\mathbb{R}^n} \varphi \cdot dE_i \to \int_{\mathbb{R}^n} \varphi \cdot dE, \quad \forall \varphi \in \mathcal{C}_c^0 (\mathbb{R}^n)
\]

Since \(\mathcal{C}_c (\mathbb{R}^n) \) is dense in \(\mathcal{C}_c (\mathbb{R}^n) \) we have

\[
\int_{\mathbb{R}^n} \varphi \cdot dE_i \to \int_{\mathbb{R}^n} \varphi \cdot dE, \quad \forall \varphi \in \mathcal{C}_c (\mathbb{R}^n) ; \text{ i.e. } ME_i \xrightarrow{*} ME.
\]
As explained in Remark 2, we can modify a set of locally finite perimeter E by a set of L^n-measure zero without changing its Gauss–Green measure, and, as a consequence, its perimeter. Such modifications may largely increase the topological boundary. The following lemma shows how to modify E to “minimize” the size of the topological boundary.

Lemma 1: If E is a set of locally finite perimeter in \mathbb{R}^n, then:

\[
\text{spt } M_E = \{ x \in \mathbb{R}^n : 0 < |E \cap B(x,r)| < w_n r^n, \forall r > 0 \} \cap E
\]

Moreover, there exists a Borel set F such that:

\[|E \Delta F| = 0, \quad \text{spt } M_F = \partial F \]

Proof: If $x \in \mathbb{R}^n$, $|E \Delta B(x,r)| = 0$, for some $r > 0$, then

\[
\int_E \Psi \, d\nu = \int_{\mathbb{R}^n} \Psi \, d\nu_E, \quad \forall \Psi \in C^\infty_c (B(x,r))
\]

\[
\int_{E \cap B(x,r)} \Psi \, d\nu = 0
\]

\[
\therefore \int_{\mathbb{R}^n} \Psi \, d\nu_E = 0 \quad \forall \Psi \in C^\infty_c (B(x,r)) \quad \Rightarrow \quad |M_E| (B(x,r)) = 0 \quad \Rightarrow \quad x \notin \text{spt } M_E
\]
If \(x \in \mathbb{R}^n \) and \(1E \cap B(x,r) \cap E \) for some \(r > 0 \), then \(j \) for \(\psi \in C_0^\infty (B(x,r)) \):

\[
\int_E \nabla \psi = \int_{\mathbb{R}^n} \psi \, dm_E
\]

\[
\int_{E \cap B(x,r)} \nabla \psi
\]

\[
\int_{B(x,r)} \nabla \psi = 0
\]

\[
\int_{\mathbb{R}^n} \psi \, dm_E = 0, \quad \forall \psi \in C_0^\infty (B(x,r)) \Rightarrow |E| \leq (B(x,r)) = 0
\]

\[
\Rightarrow x \notin \text{Spt} \, m_E
\]

Also, if \(x \notin \text{Spt} \, m_E \Rightarrow |E| \leq (B(x,r)) = 0 \), some \(r > 0 \), and, for \(\psi \in C_0^\infty (B(x,r)) \):

\[
0 = \int_{\mathbb{R}^n} \psi \, dm_E = \int_E \nabla \psi = \int_{\mathbb{R}^n} \chi_E \nabla \psi.
\]

By Lemma 7.5 in textbook \((u \in L_1^1 \text{ loc} (\mathbb{R}^n), A \) open connected, \(\int u \nabla \psi = 0, \forall \psi \in C_c^\infty (A) \Rightarrow u = c \in \mathbb{R} \) a.e. in \(A \)) it follows that:

\[
\chi_E = c \quad \text{a.e. on } B(x,r)
\]

\[
\Rightarrow |E \cap B(x,r)| \leq |E|, \quad \omega_n r^n.
\]

\[
\Rightarrow \text{Spt} \, m_E = \{ x \in \mathbb{R}^n : 0 < |E \cap B(x,r)| < \omega_n r^n \quad \forall r > 0 \cap E \}
\]
To find F, WLOG E is Borel (by regularity of \mathbb{L}^n). Define:

$A_0 := \{ x \in \mathbb{R}^n : \exists r > 0 \text{ s.t. } |E \cap B(x, r)| = 0 \}$

$A_1 := \{ x \in \mathbb{R}^n : \exists r > 0 \text{ s.t. } |E \cap B(x, r)| = \omega n r^n \}$

Let $\{ x_i \} \subset A_0$, $A_0 \subset \bigcup_{i=1}^{\infty} B(x_i, r_i)$, $r_i > 0$, $|E \cap B(x_i, r_i)| = 0$.

$\Rightarrow |E \cap A_0| = 0$

$\Rightarrow |A_1 \cap E| = 0$; since $\mu_{\mathbb{R}^n \setminus E} = -\mu_E$.

A_1 for E is A_0 for $\mathbb{R}^n \setminus E$.

Exercise 12.09 in textbook.

Define Borel set:

$F := (A_1 \cup E) \setminus A_0$

With:

$|F \setminus E| \leq |A_1 \setminus E| = 0$, $|E \setminus F| \leq |E \cap A_0| = 0$

$\therefore |E \Delta F| = 0$.

By (\star):

$spt \mu_F = spt \mu_E = \mathbb{R}^n \setminus (A_0 \cup A_1) \subset \partial F$

On the other hand, $\partial F \subset spt \mu_F$ because:

$A_1 \subset \partial F$ (by construction), $F \subset \mathbb{R}^n \setminus A_0$.

We conclude:

$spt \mu_F = \partial F$.

\[\]