Lecture 2

Problem: \(\mathcal{M}(\mu) \) could be "too small" to work with, which leads us to introduce:

Def: \(\mathcal{B}(\mathbb{R}^n) = \text{Borel sets} = \text{smallest \(\sigma \)-algebra containing the open sets} \)

Def: \(\mu \) is a Borel measure if \(\mu \) is an outer measure \(\mu \) on \(\mathbb{R}^n \) such that \(\mathcal{B}(\mathbb{R}^n) \subseteq \mathcal{M}(\mu) \).

Carathéodory criterion: If \(\mu \) is an outer measure on \(\mathbb{R}^n \), then \(\mu \) is Borel if and only if
\[
\mu(E_1 \cup E_2) = \mu(E_1) + \mu(E_2),
\]
for every \(E_1, E_2 \subset \mathbb{R}^n \), \(\text{dist}(E_1, E_2) > 0 \).

Proof: It suffices to show that:

\(\forall \) \(C \) closed, \(\mu(A) \geq \mu(A \cap C) + \mu(A \setminus C), \forall A \).

- \(\mu(A) = \infty \)
- Assume \(\mu(A) < \infty \), \(C_k := \{ x : d(x, C) \leq \frac{1}{k} \} \)
- \(R_k = (C_k \setminus C_{k+1}) \cap A \)

\[d(C \setminus A, A \setminus C_k) > 0 \implies \mu(A \cap C) + \mu(A \setminus C_k) = \mu(A \setminus C_k \cup (A \setminus C_k)) \leq \mu(A) \]
\[\mu(A \cap C) + \mu(A \setminus C) \leq \mu(A) + \sum_{j=k+1}^{\infty} \mu(R_j) \]

\[\leq \mu(A) + \sum_{j=k+1}^{\infty} \mu(R_j) \]

\[\sum_{j=1}^{N} \mu(R_j) = \sum_{j=1}^{N} \mu(R_{2j}) + \sum_{j=1}^{N} \mu(R_{2j-1}) \quad \text{dist}(R_{2j}, R_{2k}) > 0 \]

\[= \mu(\bigcup_{j=1}^{N} R_{2j}) + \mu(\bigcup_{j=1}^{N} R_{2j-1}) \]

\[\leq 2\mu(A) < \infty. \]

So \[\sum_{j=1}^{N} \mu(R_j) < \infty \] and hence \[\lim_{k \to \infty} \sum_{j=k}^{\infty} \mu(R_j) = 0. \]

Ex: \(\mathcal{H}^S \) is Borel, \(0 \leq S \leq n \) is Borel on \(\mathbb{R}^n \).

Show first \(\mathcal{H}^S(E_1 \cup E_2) = \mathcal{H}^S(E_1) + \mathcal{H}^S(E_2) \) if \(\text{dist}(E_1, E_2) > 0 \). Then, let \(S \to 0 \).

Ex: \(L^n \) is Borel on \(\mathbb{R}^n \) (Recall that \(L^n = \mathcal{H}^n \)).

Def: \(\mu \) is a Borel regular measure if for every \(F \subset \mathbb{R}^n \) there exists a Borel set \(E \) such that:

\[F \subset E, \quad \mu(E) = \mu(F). \]

Thm: \(\mathcal{H}^S \) is Borel regular on \(\mathbb{R}^n \). (\(L^n \) is also Borel regular with similar proof).

Proof: Use closed sets in the definition of \(\mathcal{H}^S \).
\[\forall K \in \mathbb{N}, \exists \{F_i^K\}_{i=1}^{\infty} \text{ such that} \]
\[
\text{covering of } E \text{ such that:}
\]
\[
\text{diam} (F_i^K) \leq \frac{1}{K}, \quad \sum_{i=1}^{\infty} w_5 \left(\frac{\text{diam} F_i^K}{2} \right)^s \leq \mathcal{H}^s_{\chi K} (E) + \frac{1}{K}
\]
\[
E \subset \bigcup_{i=1}^{\infty} F_i^K.
\]

Let \(F = \bigcap_{k=1}^{\infty} \bigcup_{i=1}^{\infty} F_i^K \supseteq E \). Clearly, \(\mathcal{H}^s (E) \leq \mathcal{H}^s (F) \)

We only need \(\mathcal{H}^s (F) \leq \mathcal{H}^s (E) \):

\[
\mathcal{H}^s_{\chi K} (F) \leq \sum_{i=1}^{\infty} w_5 \left(\frac{\text{diam} F_i^K}{2} \right)^s \leq \mathcal{H}^s_{\chi K} (E) + \frac{1}{K}
\]

↑ def. of \(\mathcal{H}^s \)

Let \(K \to \infty \), \(\Rightarrow \mathcal{H}^s (F) \leq \mathcal{H}^s (E) \). □

Ex: Let \(\mu = \sum_{i=1}^{\infty} \delta_{y_i} \) on \(\mathbb{R} \), \(\mu \) is Borel. Let \(E=(0,1) \), then \(\mu (E) = \infty \). Note that \(\mu (E \cap K) = \infty \), \(\forall K \subset E \) compact. Thus, \(E \) cannot be approximated by compact sets.

However we have:

Theorem 4: \(\mu \) Borel measure on \(\mathbb{R}^n \), \(E \) Borel set, \(\mu (E) < \infty \). Then:

\(\forall \epsilon > 0 \) \(\exists K \subset E \), compact \(\mu (E \cap K) < \epsilon \), In particular:

\[\mu (E) = \sup \{ \mu (K) : K \subset E, K \text{ compact} \} \]

The previous example shows that \(\mu (E) < \infty \) is needed in Theorem 4.
A locally finite Borel measure \(\mu \) on \(\mathbb{R}^n \) (i.e. \(\mu(K) < \infty \) \(\forall K \subseteq \mathbb{R}^n \) compact) admits outer approximation by open sets.

Example: Let \(\mu = \mathcal{H}^1 \) (Borel but not locally finite), measure on \(\mathbb{R}^2 \).

\[
\overline{E} \quad \mu(E) = \mathcal{H}^1(E) < \infty, \quad \text{but} \quad \mathcal{H}^1(A) = \infty \quad \forall A \subseteq \mathbb{R}^2 \text{ open}
\]

However, we have:

Theorem 2: \(\mu \) locally finite Borel measure on \(\mathbb{R}^n \), \(E \) Borel set. Then

\[
\mu(E) = \inf \{ \mu(A) : E \subseteq A, A \text{ open} \} = \sup \{ \mu(K) : K \subseteq E, K \text{ compact} \}.
\]

Radon measure: A Radon measure \(\mu \) on \(\mathbb{R}^n \) is a Borel regular measure such that \(\mu(K) < \infty \), \(\forall K \subseteq \mathbb{R}^n \), compact. By Theorem 2:

\[
\mu(E) = \inf \{ \mu(A) : E \subseteq A, A \text{ open} \} = \sup \{ \mu(K) : K \subseteq E, K \text{ compact} \},
\]

for every Borel set \(E \).

Remark: By Borel regularity, a Radon measure \(\mu \) is characterized on \(M(\mu) \) by its value on compact (or open sets).
Ex: Fix n, $0 \leq s \leq n$
- \mathcal{L}^n is Radon measure
- \mathcal{H}^s is not Radon measure (Ex. $\mathcal{H}^1([0,1]^2) = \infty$)
- If E Borel, $\mathcal{H}^s(E) < \infty$, then $\mu = \mathcal{H}^s_{|E}$ is Radon (if μ is Borel regular on \mathbb{R}^n, $E \in \mathcal{M}(\mu)$, $\mu_{|E}$ locally finite $\Rightarrow \mu_{|E}$ is Radon on \mathbb{R}^n).

Ex: $\mu = \mathcal{H}^2_{|S}$ on \mathbb{R}^3 is Radon.

\[\text{Def: } \mu_{|E}(F) = \mu(E \cap F) \text{ restriction of a measure.} \]

By Borel regularity we have:

\textbf{Theorem 3: } μ Radon measure on \mathbb{R}^n:
- For every $E \in \mathcal{B}(\mathbb{R}^n)$: $\mu(E) = \inf \{ \mu(A); E \subset A, \text{ open} \}$
- For every $E \in \mathcal{M}(\mu)$: $\mu(E) = \sup \{ \mu(K); K \subset E \text{, compact} \}$

\textbf{Remark: } μ, ν Radon, $\mu(K) = \nu(K)$ for all compact K \Rightarrow $\mu = \nu$ on $\mathcal{M}(\mu)$.
Push-forward of a measure

Let μ be an outer measure on \mathbb{R}^n.

Let $f : \mathbb{R}^n \to \mathbb{R}^m$.

The push-forward of μ through f is the outer measure $f_# \mu$ on \mathbb{R}^m defined by:

$$f_# \mu (E) = \mu (f^{-1}(E)), \quad E \subset \mathbb{R}^m.$$

Ex: $f_# \delta_x = \delta_{f(x)}$

Recall, $\delta_x (E) = \begin{cases} 1, & x \in E \\ 0, & \text{otherwise} \end{cases}$

Prop: μ Radon, $f : \mathbb{R}^n \to \mathbb{R}^n$ continuous and proper ($f^{-1}(\text{compact})$ is compact).

Then $f_# \mu$ is Radon, $\text{supp } f_# \mu = f(\text{supp } \mu)$ and

$$\int_{\mathbb{R}^m} f \, d(f_# \mu) = \int_{\mathbb{R}^n} (\mu \circ f) \, d\mu,$$

$\forall u : \mathbb{R}^n \to [0, +\infty]$ Borel measurable.

Prop: μ Radon, ECIRn bounded, $\mu(\emptyset) = 0$.

Then, $\forall \epsilon > 0 \exists A$ open, K compact such that $A = E \subset C K$, $\mu(K \setminus A) < \epsilon$.
Proof: Given E, set:

$A_t = \{ x \in E : d(x, \partial E) > t \}$

$K_s = \{ x \in \mathbb{R}^n : d(x, E) \leq s \}$

$\mu(E) = \mu = \bigcup_{t > 0} A_t \Rightarrow \mu(E) = \lim_{t \to 0} \mu(A_t)$ \hspace{1cm} (1)

$E = \bigcap_{s > 0} K_s \Rightarrow \mu(E) = \lim_{s \to 0} \mu(K_s)$ \hspace{1cm} (2)

From (1), for t small enough, set

$A_t = A_t$

Then

$\mu(E \setminus A_t) < \frac{\varepsilon}{2}$, \hspace{0.5cm} for t open, $\bar{A}_t \subset E$

K_s is compact, $E \subset \bar{K}_s$, if we take s small enough, $\mu(K \setminus E) < \frac{\varepsilon}{2}$

Prop. (Foliations by Borel Sets): If $\{ E_t \}_{t \in I}$ is a disjoint family of Borel sets in \mathbb{R}^n, and μ is a Radon measure on \mathbb{R}^n, then:

$\{ t : \mu(E_t) > 0 \}$ is at most countable.

Proof: Let $I_k = \{ t \in I : \mu(E_t \cap B_k) > \frac{1}{k^2} \}$

$\Rightarrow \{ t \in I : \mu(E_t) > 0 \} = \bigcup_{k=1}^{\infty} I_k$
\[\forall J \subset I_k \text{ finite}, \]
\[\mu(B_k(0)) \geq \mu\left(\bigcup_{t \in J} E_t \cap B_k(0) \right) \]
\[= \sum_{t \in J} \mu(E_t \cap B_k(0)) \geq \frac{|J|}{k} \]
\[\therefore \#I_k \leq k \mu(B_k(0)) < \infty \]

Ex. As an application of previous Proposition, a curve of locally finite length can contain at most countably many circular arcs of positive length.

\[\mathcal{H}'(\Gamma \cap E \{x_0, r\}) > 0 \text{ for at most countably many } r > 0. \]