
Exam 2

Work 4 problems for 5 points each.

Problem 0. Define what it means for a sequence (xn) to be Cauchy. For a bounded sequence
(yn), define lim supn→∞ yn. Give a definition of continuity for a function f : E→ R.

A sequence is Cauchy if ∀ε > 0∃N such that |xm − xn| < ε for allm,n ≥ N.

lim supn→∞ yn is the supremum of all limits of all convergent subsequences of (yn).

A function f : E→ R is continuous if for every x ∈ E for every ε > 0, there exists δ > 0 such
that |f(x) − f(y)| < εwhenever |x− y| < δ and y ∈ E.

Problem 1. Prove or give a counterexample to the following. The closure of a set E is the
smallest closed set containing E. Every nonempty closed set contains an isolated point or a
closed interval.

Let F be a closed set containing E. Any limit point of E is also a limit point of F so E ′ ⊂ F,
thus E ⊂ F.

The Cantor ternary set is closed, but contains no isolated points or intervals.

Problem 2. Let {[ai, bi] : i ∈ N} be a sequence of disjoint, closed intervals with |ai − bi| ≥ 1.
Show that

⋃∞
i=1[ai, bi] is closed.

Let x be a limit point. For any ε ∈ (0, 1/2), since |ai−bi| ≥ 1, the set (x−ε, x+ε) can intersect
at most two of the intervals. Thus x is a limit point of the union of those two intervals and so
must belong to one or the other since the union of two closed sets in closed.

Problem 3. Suppose f : R → (0,∞) is continuous and limx→∞ f(x) = 0 = limx→−∞ f(x).
Show that f has a maximum value.

For any N ∈ N, the function f has a (positive) maximum mN on [−N,N] since this set is
closed and bounded. The maxima form an increasing sequence (mN). This sequence cannot be
strictly increasing or else there is a unbounded sequence of points where the function increases
away from zero, contradicting that limx→±∞ f(x) = 0. Thus the sequence (mN) is eventually
constant, so the limit is the maximum value of the function.

Problem 4. What property of an interval is used to prove the Intermediate Value Theorem?
A function f : (a, b) → R is said to be locally constant if for every x ∈ (a, b) there is some
open interval containing x on which the function is constant. Show that every locally constant
function on (a, b) is constant.

The connectedness of an interval is used to prove IVT.

If f is locally constant then if f(x) = c there is a δ > 0 such that f(y) = c for all y ∈ (x−δ, x+δ).
So for any c ∈ R the sets O1 := {x ∈ (a, b) : f(x) = c} and O2 := {x ∈ (a, b) : f(x) 6= c} are both
open since all points are interior. Since f is a function, they are also disjoint and their union is
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(a, b). If f is not constant, then for c in the range of f, both sets are not empty, contradicting
connectedness of (a, b).

Problem 5. Let f : [a, b] → R be a function so that for any (xn) Cauchy sequence in [a, b], the
sequence (f(xn)) is still Cauchy. Show that f is uniformly continuous.

Given x0 ∈ [a, b], let (xn) be a sequence in [a, b] so that xn → x0. The sequence x1, x0, x2, x0, x3, x0, ...
is Cauchy as it converges. Thus f(x1), f(x0), f(x2), f(x0), f(x3), f(x0), ... is still Cauchy so it must
converge to f(x0). Thus limn→∞ f(xn) = f(x0), so f is continuous by the sequential version of
continuity. We know any continuous function on a closed bounded set is uniformly continuous.
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