$Q \text{uiz} \, \textbf{2}$

Problem. Let (x_n) be a sequence converging to x such that $x_n \ge 0$ for all n. Show that $x \ge 0$.

Solution. We will proceed by contradiction.

Suppose that x < 0. Pick $\varepsilon > 0$ small enough that $(x - \varepsilon, x + \varepsilon) \subset (-\infty, 0)$. (Choosing $\varepsilon = |x|/2$ will work, for instance.) By the definition of convergence there exists N such that for all $n \ge N$ we have that $|x_n - x| < \varepsilon$. This implies that $x_N \in (x - \varepsilon, x + \varepsilon)$ so $x_N < 0$, a contradiction.