MATH 351, FALL 2017, EXAM #2

Instructions: Work the first problem and then exactly three of
the remaining four problems. In order to receive full credit be
sure to show all work. Each problem is worth 5 points.

Problem 1. Short answer.
2  (A) Give the precise definition of a vector space having dimension n.
2 (B) Define the rank of a matrix and give a full statement of the Rank-

Nullity Theorem.
| (C) Explain why a maximal linearly independent set of vectors in a vector

space V is a basis for V
Respond to three of the problems below.

Problem 2. Consider the matrix:
1 2 -2 -3 1
0 -2 0 4 -2
2 1 -4 3 4
1 0 -2 1 —1

2 (A) Find a basis for the row space.
Z (B) Find a basis for the column space.
1 (C) Extend the basis of the row space to a basis for R®.

Problem 3. Consider the matrices:
13 3 2
A=l 3 o=
2 (A) Find all eigenvalues of the matrices A and B
z (B) For each eigenvalue of A and B describe the set of eigenvectors.
|

(C) Find an eigenvector for A~ and an eigenvector for B~ 1.

Problem 4. Let A and B be real matrices.
2.7 (A) If {A?),..., At} is a basis for Col(A), find all possible dimensions
of the subspace spanned by #1,...,7,. Be sure to explain.
s (B) If B is a square matrix and B?017 — 0 find all possible eigenvalues.
Be sure to explain.

g— Problem 5. Suppose that A and B are n x n real matrices. If A%B is
invertible, show that A and B are both invertible. Give as precise of a

logical argument as you can.
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