<u>Instructions</u>: Work the first problem and then exactly three of the remaining four problems. In order to receive full credit be sure to show all work. Each problem is worth 5 points.

Problem 1. Short answer.

- **2** (A) Give the precise definition of a vector space having dimension n.
- **2** (B) Define the rank of a matrix and give a full statement of the Rank-Nullity Theorem.
- (C) Explain why a maximal linearly independent set of vectors in a vector space V is a basis for V

Respond to three of the problems below.

Problem 2. Consider the matrix:

$$\begin{bmatrix} 1 & 2 & -2 & -3 & 1 \\ 0 & -2 & 0 & 4 & -2 \\ 2 & 1 & -4 & 3 & 4 \\ 1 & 0 & -2 & 1 & -1 \end{bmatrix}$$

- **2** (A) Find a basis for the row space.
- **7** (B) Find a basis for the column space.
- (C) Extend the basis of the row space to a basis for \mathbb{R}^5 .

Problem 3. Consider the matrices:

$$A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}, B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$

- $\mathbf{7}$ (A) Find all eigenvalues of the matrices A and B
- (B) For each eigenvalue of A and B describe the set of eigenvectors.
- (C) Find an eigenvector for A^{-1} and an eigenvector for B^{-1} .

Problem 4. Let A and B be real matrices.

- 7.5 (A) If $\{A\vec{v}_1,\ldots,A\vec{v}_n\}$ is a basis for $\operatorname{Col}(A)$, find all possible dimensions of the subspace spanned by $\vec{v}_1,\ldots,\vec{v}_n$. Be sure to explain.

 (B) If B is a square matrix and $B^{2017}=0$, find all possible eigenvalues.
- (B) If B is a square matrix and $B^{2017} = 0$, find all possible eigenvalues. Be sure to explain.
- **Problem 5.** Suppose that A and B are $n \times n$ real matrices. If A^2B is invertible, show that A and B are both invertible. Give as precise of a logical argument as you can.

- 1. A. The dimension of a vector space is the least number of elements in a spanning set (besis). So a vector space of has dimension in if the least number of elements in a spanning set is n.
- 1.B. The rank of a matrix is the dimension of its row space.

 Rank-Nullity states that for a matrix $A \in M_{Kn}(R)$ dim Rov(A) + dim Nul(A) = n
- 1. (. If $\{\vec{v}_i, ..., \vec{V}_k\}$ is a makind linearly independent set, Hen for every $\vec{W} \in V$ $\{\vec{V}_i, ..., \vec{V}_k, \vec{w}\}$ is linearly dependent, which implies that $\vec{w} \in Span \{\vec{V}_i, ..., \vec{V}_k\}$ since there is no dependency among to \vec{V}_i 's. Therefore $Span \{\vec{V}_i, ..., \vec{V}_k\} = V$.

2.A.
$$\begin{bmatrix} 1 & 2 & -2 & -3 & 1 \\ 0 & -2 & 0 & 4 & -2 \\ 2 & 1 & -4 & 3 & 4 \\ 1 & 0 & -2 & 1 & -1 \end{bmatrix}$$
 $\begin{bmatrix} 12 & -2 & -3 & 1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ echelon form

Rows 1,2, 23 contain the pivots so

3.A. dut
$$(A - \lambda I) = (I - \lambda)(S - \lambda) + 6 = \lambda^2 - 6\lambda + 11$$

$$\lambda = \frac{6 \pm \sqrt{36 - 4 \cdot 1 \cdot 11}}{2} = 3 \pm i\sqrt{2}$$

$$Let (B - \lambda I) = (3 - \lambda)(4 - \lambda) - 2 = \lambda^2 - 7\lambda + 10$$

$$= (\lambda - \lambda)(\lambda - S)$$

$$\lambda = 2, S$$

3.8.
$$\lambda = 3 + i\sqrt{2}$$

$$\begin{bmatrix}
-2 - i\sqrt{2} & 3 & 0 \\
-2 & 2 - i\sqrt{2} & 0
\end{bmatrix}$$
Appellut rows
$$k_{2} = 1 + i\sqrt{2} = 0$$

$$k_{3} = 1 - i\sqrt{2}$$

$$k_{4} = 1 - i\sqrt{2}$$

$$k_{5} = 1 - i\sqrt{2}$$

$$k_{7} = 1 - i\sqrt{2}$$

3. R. (cont 4)
$$\lambda = 2$$

$$\begin{cases} 1 & 2 & 0 \\ 1 & 2 & 0 \end{cases}$$

$$x_{2} = 1, \quad x_{1} = -2$$

$$x_{2} = 1, \quad x_{1} = -2$$

$$x_{3} = 1, \quad x_{1} = 1$$

$$x_{4} = 1, \quad x_{1} = 1$$

$$x_{2} = 1, \quad x_{1} = 1$$

$$x_{3} = 1, \quad x_{1} = 1$$

$$x_{4} = 1, \quad x_{1} = 1$$

$$x_{5} = 1, \quad x_{1} = 1$$

$$x_{7} = 1, \quad x_{1} = 1$$

$$x_{1} = 1, \quad x_{1} = 1$$

$$x_{2} = 1, \quad x_{3} = 1, \quad x_{4} = 1$$

$$x_{5} = 1, \quad x_{7} = 1, \quad x$$

4. A. If $a_1 \vec{v}_1 + a_2 \vec{v}_2 + ... + a_n \vec{v}_n = \vec{0}$ Hen $A(a_1 \vec{v}_1 + a_2 \vec{v}_2 + ... + a_n \vec{v}_n) = A \vec{0}$ $a_1(A \vec{v}_1) + a_2(A \vec{v}_2) + ... + A a_n(A \vec{v}_n) = \vec{0}$ Thus $a_1 = a_2 = ... = a_n = 0$ since $A \vec{v}_1 \vec{v}_2 = a_n = 0$ independent $\vec{v}_1 \vec{v}_2 = a_n = 0$ Alim span $\{\vec{v}_1, ..., \vec{v}_n\} = n$.

4. B. If $\vec{B} \vec{x} = \lambda \vec{x}$, then $\vec{B}^{2017} \vec{x} = \lambda^{2017} \vec{x}$ $\vec{B}^{2017} \vec{A} = 0$ shows that $\lambda^{2017} \vec{x} = \vec{0}$ which implies that $\lambda = 0$ since $\vec{x} \neq \vec{0}$.

Therefore $\lambda = 0$ is the only possible eigenvalue to \vec{B} .

T. AZB II is invertible

It $B\vec{x} = \vec{o}$ then $A^2B\vec{x} = A^2\vec{o} = \vec{o}$, while implies that $\vec{x} = \vec{o}$ like A^2B invertible

Thus rank B = N-nulling B = N-0 = n so B is swetable.

A2 = A2BB' invertible to apply some reasoning to See that AB invertible.