We obtain bounds on fractional parts of binary forms of the shape

$$
\Psi(x, y)=\alpha_{k} x^{k}+\alpha_{l} x^{l} y^{k-l}+\alpha_{l-1} x^{l-1} y^{k-l+1}+\cdots+\alpha_{0} y^{k}
$$

with $\alpha_{k}, \alpha_{l}, \ldots, \alpha_{0} \in \mathbb{R}$ and $l \leq k-2$. By exploiting a variant of Weyl's inequality and inductive arguments, we derive estimates superior to those obtained hitherto for the best exponent σ, depending on k and l, such that

$$
\min _{\substack{0 \leq x, y \leq X \\(x, y) \neq(0,0)}}\|\Psi(x, y)\| \leq X^{-\sigma+\epsilon} .
$$

