Let $r_{0}(n)$ be the number of representations of n as a sum of two squares, and $r_{1}(n)$ count the number of representations of n as a sum of an integer square and a prime square.

The asymptotic formulas for $r_{0}^{k}(n), k \geq 1$ summed over $n \leq x$ are well-known via a classical complex analytic approach. As for $r_{1}^{k}(n)$, the only cases with known asymptotics are $k=0,1,2$. For $k=2$ the main term comes from both trivial solutions (i.e. those with $a^{2}+p^{2}=b^{2}+q^{2}$ implying $p=q$) and the non-trivial ones. The last ones lie on a very thin set of extremely large values of r_{1} and we are interested in getting a better understanding of this set.

We will show that the number of integers $n \leq x$ such that $r_{1}(n) \geq 1$ equals $\frac{\pi}{2} \cdot \frac{x}{\log x}$ minus a secondary term of size $x /(\log x)^{1+\delta+o(1)}$, where $\delta:=1-\frac{1+\log \log 2}{\log 2}=0.0860713320 \ldots$ is the Erdős-Tenenbaum-Ford constant.

This, in particular, implies that the main contribution to the sum of $r_{1}^{2}(n)$ comes from those integers n with

$$
\omega(n) \sim 2 \log \log x \text { and } r_{1}(n)=(\log x)^{\log 4-1+o(1)} .
$$

This is a joint work with Andrew Granville and Cihan Sabuncu.

