Given a polynomial F in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and some finite set A of real numbers, we are interested in studying how large is the set

$$
F(A, \ldots, A)=\left\{F\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in A\right\}
$$

A classic result in this setting is the Elekes-Rónyai theorem, which classifies all polynomials F satisfying

$$
|F(A, \ldots, A)| \gg|A|^{1+c}
$$

for every finite set A of real numbers, where $c>0$ is some absolute constant. In this talk, we are interested in a sum-product type variation of this result. In particular, we want to categorise all polynomials F such that

$$
|F(A, \ldots, A)| \gg|A|^{n}
$$

for every finite set A of real numbers, which produces few products, that is,

$$
|A \cdot A|=|a \cdot b: a, b \in A| \ll|A| .
$$

This generalises earlier results of Chang, Hanson-Roche-Newton-Zhelezov and Pohoata.

