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Abstract. In 1980, the first and third authors proposed a probabilistic primality test that has
become known as the Baillie-PSW (BPSW) primality test. Its power to distinguish between primes
and composites comes from combining a Fermat probable prime test with a Lucas probable prime
test. No odd composite integers have been reported to pass this combination of primality tests if
the parameters are chosen in an appropriate way. Here, we describe a significant strengthening of
this test that comes at almost no additional computational cost. This is achieved by including in
the test Lucas-V pseudoprimes, of which there are only five less than 1015.

1. Introduction

A (Fermat) base-a pseudoprime, or psp(a), is a composite positive integer n that satisfies the
conclusion of Fermat’s little theorem, that is

an−1 ≡ 1 (mod n) .

For each integer base a > 1, there are infinitely many pseudoprimes, but they are sparser than
primes. In [5], the first and third authors studied analogues of pseudoprimes in which an−1 − 1 is
replaced by a Lucas sequence.

Let D, P and Q be integers with P > 0 and D = P 2 − 4Q 6= 0. Define U0 = 0, U1 = 1, V0 = 2
and V1 = P . The Lucas sequences Uk and Vk with parameters P and Q are defined for k ≥ 2 by

Uk = PUk−1 −QUk−2 and Vk = PVk−1 −QVk−2 .

Let n > 1 be an odd positive integer. Choose D, P , and Q so that the Jacobi symbol (D/n) = −1.
It is well known [5], [8] that if n is prime and (n,Q) = 1, then

Un+1 ≡ 0 (mod n) ,(1)

Vn+1 ≡ 2Q (mod n) .(2)

In [5], we defined a Lucas pseudoprime with parameters P and Q to be a composite integer n
satisfying (1). We proposed a fast probable prime test by combining the Lucas primality criterion
in (1) with a (Fermat) probable prime test.

In this paper, we emphasize the importance of the primality criterion in Congruence (2). We
found that, using a standard method of choosing D, P , and Q, among the composite n under 1015,
there are over two million that satisfy (1), but only five that satisfy (2).
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Layout of this paper.

• Section 2: we give details on Fermat and Lucas pseudoprimes and describe how to efficiently
compute terms in the Lucas sequences;

• Section 3: we define the original Baillie-PSW primality test, we list applications that use
this test, and we summarize calculations that have been performed over the past 40 years;

• Section 4: we summarize the data on pseudoprimes up to 1015;
• Section 5: we discuss whether the scarcity of composite solutions to (2) is due to the par-
ticular method for choosing P and Q;

• Section 6: we propose a strengthened primality test that includes Congruence (2) and offer
a reward for a counterexample;

• Section 7: discusses the importance of choosing Q to be neither +1 nor −1 (mod n);
• Section 8: we reprise Pomerance’s heuristic argument that there are infinitely many coun-
terexamples to the enhanced test;

• Appendix A: we prove that two popular methods for choosing P and Q produce exactly the
same Lucas pseudoprimes.

The authors thank Carl Pomerance for suggesting the proof of Theorem 2 in Section 8.

2. Background

2.1. Fermat probable primes and pseudoprimes. A (Fermat) base-a probable prime, or prp(a),
is a positive integer n that satisfies the conclusion of Fermat’s little theorem. That is, if n is prime
and (a, n) = 1, then

(3) an−1 ≡ 1 (mod n) .

The converse of Fermat’s little theorem is not true, but if (3) is true for a given a > 1, then n is
likely to be prime.

A base-a pseudoprime, or psp(a), is a composite n that satisfies (3).
Base-2 pseudoprimes up to 25·109 were studied in detail in [22]. The first ten base-2 pseudoprimes

are 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, and 2701.
Since [22] appeared in 1980, Feitsma [11] has computed the psp(2) < 264 ≈ 1.8 · 1019. There are

118 968 378 of them.
There are π(264) − 1 = 425 656 284 035 217 742 odd primes < 264 [25]. Therefore, up to 264,

congruence (3) with a = 2 holds for 425 656 284 035 217 742 + 118 968 378 values of n, of which
99.9999999721 percent are prime. This is why, if 2n−1 ≡ 1 (mod n), it is legitimate to call n a
probable prime, and why this congruence is sometimes used as part of a test for primality.

Euler’s criterion states that if n is an odd prime and (a, n) = 1, then

(4) a(n−1)/2 ≡
(a

n

)

(mod n) ,

where
(

a
n

)

is the Jacobi symbol. A composite number that satisfies this congruence is called a base-
a Euler pseudoprime (epsp(a)). The first ten epsp(2) are 561, 1105, 1729, 1905, 2047, 2465, 3277,
4033, 4681, and 6601. The epsp(a) are a proper subset of the psp(a). About half of the psp(a) are
epsp(a) [22, p. 1005], so (4) is a slightly stronger primality test than (3).

2.2. Strong probable primes and pseudoprimes. We now describe an even stronger, and more
widely-used primality test, also based on Fermat’s little theorem. [22] defines strong probable primes
and strong pseudoprimes. If n is odd, then we can write n− 1 = d · 2s where d is odd. If n is an odd
prime and (a, n) = 1, then either

ad ≡ 1 (mod n), or(5)

ad·2
r ≡ −1 (mod n), for some r with 0 ≤ r < s.(6)



STRENGTHENING THE BAILLIE-PSW PRIMALITY TEST 3

If either (5) or (6) is true, then n is called a base-a strong probable prime (sprp(a)). If either of
these holds, then we also have an−1 = ad·2

s ≡ 1 (mod n).
If n is composite and either (5) or (6) is true, then n is called a base-a strong pseudoprime

(spsp(a)). The spsp(a) are a proper subset of psp(a), and so are scarcer than psp(a). For example,
of the 118 968 378 psp(2) < 264 found by Feitsma, only 31 894 014 are spsp(2) [11]. The first ten
base-2 strong pseudoprimes are 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, and 52633.

The spsp(a) are also a proper subset of epsp(a). Therefore, it makes sense for a primality test to
use the strong conditions (5) and (6) instead of (3) or (4).

To efficiently compute an−1, we use the binary expansion of n − 1. The number of steps is
essentially the number of binary digits in n, that is, log2(n). All of the calculations are performed
modulo n to keep the sizes of the numbers reasonable. Details and a worked example can be found
in the preprint of this article, [6].

A Carmichael number is a composite integer n that is a pseudoprime to every base a for which
(a, n) = 1. They are also sparse, although there are infinitely many of them [2]. However, there
are no strong Carmichael numbers, that is, there is no composite n which is strong pseudoprime
to all bases relatively prime to n: Rabin proved [23, Theorem 1] that any composite n is a strong
pseudoprime to at most 1/4 of bases a, 1 ≤ a < n.

2.3. Lucas sequences and pseudoprimes; Lucas-V pseudoprimes. Lucas sequences, and their
applications to prime-testing, were discussed in [5] and [8].

Let D, P and Q be integers with P > 0 and D = P 2 − 4Q 6= 0. Define U0 = 0, U1 = 1, V0 = 2
and V1 = P . The Lucas sequences Uk and Vk with parameters P and Q are defined recursively for
k ≥ 2 by

Uk = Uk = PUk−1 −QUk−2 and Vk = Vk = PVk−1 −QVk−2 .

For k ≥ 0 we also have

Uk = (αk − βk)/(α− β) and Vk = αk + βk ,

where α and β are the distinct roots of x2 − Px+Q = 0. Note that αβ = Q and α+ β = P .
When n is an odd positive integer, write δ(n) = n− (D/n) where (D/n) is the Jacobi symbol. It

is known [5, pp. 1391-1392], [8, Theorem 8] that if n is prime and (n,Q) = 1, then

Uδ(n) ≡ 0 (mod n),(7)

Vδ(n) ≡ 2Q(1−(D/n))/2 (mod n), provided (n,D) = 1,(8)

Un ≡ (D/n) (mod n),(9)

Vn ≡ V1 = P (mod n).(10)

If (n, 2PQD) = 1, any two of these congruences imply the other two.
Lucas pseudoprimes were defined in [5]. These are analogues of Fermat pseudoprimes in which

an−1 − 1 is replaced by a Lucas sequence.
For reasons discussed in that paper, to use Lucas sequences for primality testing, we choose an

algorithm for picking D, P , and Q based on n, and we require that the Jacobi symbol (D/n) = −1.
If n is prime, (n,D) = (n,Q) = 1, and (D/n) = −1, then δ(n) = n + 1 and congruences (7) and
(8) become (1) and (2). These two congruences are key parts of the primality test that we propose
below.

We’ll discuss (2) in detail later. The other congruences, (9) and (10), also hold if n is prime,
but these congruences are not very useful in primality testing [5, Section 6]: most composite n that
satisfy congruence (9) have small prime factors; many composite n that satisfy (10) are psp(2).

If n satisfies (1), then n is called a Lucas probable prime with parameters P and Q, written
lprp(P , Q). If n satisfies (1) and we know it is composite, then we call n a Lucas pseudoprime,
written lpsp(P , Q). If n fails (1), then n is composite.

For convenience, we also introduce the following
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Definition [7, p. 266]. If n satisfies (2), we call n a Lucas-V probable prime (vprp). If n is
composite and satisfies (2) with parameters P and Q, we call n a Lucas-V pseudoprime (vpsp(P,Q)).

What we call vpsp’s are sometimes called Dickson pseudoprimes of the second kind [24].
The authors of [5] proved that there are infinitely many Lucas pseudoprimes, but that they are

rare compared to the primes.
The precise sequence of numbers that turn out to be Lucas pseudoprimes depends on the algorithm

for choosing D, P , and Q. One algorithm, first proposed by John Selfridge in [22] and mentioned
in [5], and which seems to be widely used in primality testing, is:

Method A: Let D be the first element of the sequence 5, −7, 9, −11, 13, −15, . . . for which
(D/n) = −1. Let P = 1 and Q = (1−D)/4.

This algorithm never sets Q = 1, but if D = 5, it sets Q = −1. (Method A sets Q = −1 fairly
often, namely, when n ≡ ±3 (mod 10).)

We remarked in [5] that more composite n satisfying any of (7)–(10) had Q ≡ ±1 than Q 6≡
±1 (mod n). This observation led the authors to define the following preferred method to select
parameters, which forces Q 6≡ ±1 (mod n):

Method A*: Choose D, P , and Q as in Method A above. If Q = −1, change both P and Q to
5.

Method A* leaves D = P 2 − 4Q unchanged from Method A.
It turns out that the Lucas pseudoprimes generated by Methods A and A* are the same. The

same is true for strong Lucas pseudoprimes (see Section 2.4). We prove this in Appendix A.
If D, P , and Q are chosen with Method A*, the first ten lpsp are: 323, 377, 1159, 1829, 3827,

5459, 5777, 9071, 9179, and 10877.
Calculations performed for this paper show that when Method A* is used, there are 2 402 549

lpsp less than 1015.

2.4. Strong Lucas probable primes and pseudoprimes. [5] defines strong Lucas probable
primes and strong Lucas pseudoprimes. If n is odd, then we can write n + 1 = d · 2s where d
is odd. If n is prime and (D/n) = −1, then we will have either

Ud ≡ 0 (mod n), or(11)

Vd·2r ≡ 0 (mod n), for some r with 0 ≤ r < s.(12)

If (D/n) = −1 and n satisfies (11) or (12), then n is called a strong Lucas probable prime with
parameters P and Q, written slprp(P , Q). If n is an slprp(P , Q), then n is also an lprp(P , Q), that
is, Un+1 = Ud·2s ≡ 0 (mod n).

If (D/n) = −1, n satisfies (11) or (12) and is composite, then n is called a strong Lucas pseudo-
prime, written slpsp(P , Q).

If D, P , and Q are chosen with method A*, the first ten slpsp are: 5459, 5777, 10877, 16109,
18971, 22499, 24569, 25199, 40309, and 58519.

The slpsp(P,Q) are scarcer than lpsp(P,Q). For example, of the 2 402 549 lpsp less than 1015,
only 474971 are slpsp.

Because strong lpsp are rarer than lpsp, a sensible primality test will use the strong version of
the Lucas test, Congruences (11) and (12), instead of (1).

The following equations show how to use the binary representation of n+1 to efficiently compute
the values on the left sides of Congruences (11) and (12). We can also compute Un+1, and, at almost
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no added computational cost, Vn+1 and Qn+1.

U2k = UkVk(13)

V2k = V 2
k − 2Qk(14)

Q2k = (Qk)2(15)

Uk+1 = (PUk + Vk)/2(16)

Vk+1 = (DUk + PVk)/2(17)

Qk+1 = Q ·Qk(18)

Equations (13) and (14) are Equations 4.2.6 and 4.2.7 in Williams [28] while (16) and (17) are
4.2.21 in that book. Equations (13)–(15) are used to double the subscript and exponent; Equations
(16)–(18) are used to increment the subscript and exponent. These equations are also given in [8,
p. 628].

In Equations (16) and (17), if the numerator is odd, we increment it by n to make it be even.
This is legitimate because n is odd, and we care only about the result modulo n.

A worked example with n = 323 is in the preprint of the present article, [6].

3. The original Baillie-PSW primality test

In [5], the first and third authors show that we get a very effective test for primality by combining
Fermat and Lucas probable prime tests.

This combined test works so well because, in some sense, psp’s and lpsp’s tend to be different
kinds of numbers. For example, the numbers that are psp(2) and those that are lpsp from Method
A* tend to fall into residue classes +1 and −1, respectively, for small moduli [5, pp. 1404-1405].
A similar phenomenon is observed for psp(a) for other a, and for lpsp’s generated by several other
methods for choosing D, P , and Q.

The probable prime test we proposed in [5] has these steps:

(1) If n is not a strong base-2 probable prime, then n is composite, so stop.
(2) Choose Lucas parameters with Method A*. (If you encounter a D for which (D/n) = 0: if

either |D| < n, or if |D| ≥ n but n does not divide |D|, then n is composite, so stop.)
(3) If n is not a strong Lucas probable prime with the chosen parameters, then n is composite.

Otherwise, declare n to be (probably) prime.

If n is composite, the test almost always stops in the first step so the other steps are not needed.
The test almost never stops in the second step. If n is prime, then all three steps are needed.

The authors of [22] and [5] observed that, up to 25 · 109, there was no overlap between the psp(2)
and the lpsp from Method A*. Using more recent data from Feitsma [11], we find that none of the
118 968 378 psp(2) up to 264 ≈ 1.8 · 1019 is an lpsp when Method A* is used. Therefore, this test
correctly distinguishes primes from composites up to at least 264. Further, no one has reported a
larger composite n that is both psp(2) and lpsp(P , Q) using method A*.

Richard Pinch [18], [19] has computed a list of all 20 138 200 Carmichael numbers up to 1021.
He kindly provided his list to the first author, for which we thank him. None of these Carmichael
numbers is an lpsp when Method A* is used.

The reader might notice that the above test does not first check n for divisibility by small primes.
This check is omitted because it is not necessary (although step 2 does sometimes find small factors).
However, for the sake of efficiency, a practical primality test should first check to see whether n is
divisible by small primes before proceeding to step 1.

Some version of this test is used as a fast algorithm for finding large probable primes in mathe-
matical software packages like FLINT, Maple, Mathematica, Pari/GP, SageMath, and by programs
for choosing large primes for public-key ciphers like RSA.

Several programming languages, like GNU GMP, Java, and Perl also provide functions for doing
Fermat and Lucas tests.
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While some cryptographic libraries use a combined Fermat/Lucas test, some do not. Albrecht, et
al, were able to find composite numbers which some of the latter libraries declared were prime [1].

A reward of $620 was offered for an example of a composite n declared prime by this test. No one
has claimed the reward after 40 years; many have tried to collect it. It has been tested on billions
of large odd integers n and has never been reported to have failed.

4. The data to 1015

Recall that lpsp and vpsp are composite n that satisfy (1) and (2), respectively.
We computed the lpsp and vpsp up to 1015, using Method A* to choose the Lucas parameters.
This calculation took about 750000 core-hours on the Rice cluster at Purdue University, plus

about 10000 core-hours on computers at the University of Lethbridge.
The counts are shown in Table 1. What is striking is that, while there are about 2 million each

of psp(2) and lpsp, there are only five vpsp.
These five numbers are shown in Table 2. For n = 14 760 229 232 131, Method A* set P = 1,

Q = 2. For the other four n, Method A* set P = Q = 5.

Table 1. Number of psp(2), spsp(2), lpsp, slpsp, and vpsp with n < 10k using
Method A*.

k psp(2) spsp(2) lpsp slpsp vpsp
2 0 0 0 0 0
3 3 0 2 0 1
4 22 5 9 2 1
5 78 16 57 12 1
6 245 46 219 58 1
7 750 162 659 178 1
8 2057 488 1911 505 1
9 5597 1282 5485 1415 1
10 14884 3291 15352 3622 1
11 38975 8607 42505 9714 1
12 101629 22407 116928 25542 3
13 264239 58892 319687 67045 3
14 687007 156251 875270 178118 4
15 1801533 419489 2402549 474971 5

Table 2. vpsp < 1015 using Method A*.

n n factored n− 1 factored n+ 1 factored
913 11 · 83 24 · 3 · 19 2 · 457

150 267 335 403 3 · 47 · 89 · 563 · 21269 2 · 157 · 478 558 393 22 · 1609 · 23 347 939
430 558 874 533 75913 · 5 671 741 22 · 32 · 11 959 968 737 2 · 197947 · 1 087 561

14 760 229 232 131 2467 · 5 983 068 193 2 ·3 ·5 ·107 ·53569 ·
·85837 22 · 3 690 057 308 033

936 916 995 253 453 2027 · 21521 · 21 477 559 22 ·3 ·37 ·41 ·1109·
·46 409 057

2 · 389 · 15313 ·
·78 643 211

In Section 7, we give heuristic arguments as to why vpsp are so rare, especially when Q 6≡
±1 (mod n).

When P and Q are chosen by Method A*, we found that (i) none of the five vpsp(P,Q) is an
lpsp(P,Q), (ii) none of the 118 968 378 psp(2) less than 264 is either an lpsp or a vpsp, and (iii) none
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of the 20 138 200 Carmichael numbers below 1021 is either an lpsp or a vpsp. (We do not know if
there is an n > 1015 which is both lpsp(P,Q) and vpsp(P,Q).)

The enhanced primality test we propose in Section 6 is based on the rarity of vpsp, and on this
absence of overlap between any two of spsp(2), slpsp, and vpsp.

Dana Jacobsen’s website [15] displays counts of psp(2), spsp(2), lpsp, and slpsp less than 1015,
where P and Q are selected by method A (or A*), as well as other types of pseudoprimes. The lists
of pseudoprimes can also be downloaded from that site.

5. Is there anything special about Method A*?

The reader may wonder whether the rarity of vpsp compared to lpsp is an artifact of using Method
A* to choose D, P , and Q.

The answer appears to be “no”, especially if we require that Q 6≡ ±1 (mod n). We compared
several methods for choosing D, P , and Q; see Table 3.

For example, [5] describes Methods B and B*:

Method B: Let D be the first element of the sequence 5, 9, 13, 17, . . . for which (D/n) = −1.

Let P be the smallest odd number exceeding
√
D, and Q = (P 2 −D)/4.

Method B*: Choose D, P , and Q as in Method B. If Q = 1, replace Q by P +Q+1 and replace
P by P + 2 (this preserves the value of D).

For this paper, we also tested:
Method C: Same as Method A, except we start testing D’s at D = 41 instead of at D = 5.

This insures that Method C almost always produces a (P,Q) pair different from the pair produced
by Method A.

Method D: Fix Q = 2. Try P = 4, 5, 6, 7, ... until (D/n) = −1.
Method R1: Choose P and Q at random from a uniform distribution with 1 ≤ P,Q ≤ n − 1,

until (D/n) = −1. We used the random( ) function in version 2.11.4 of PARI/GP, initialized with
PARI ’s default seed of 1.

Method R2: Same as Method R1, but initialized with the (randomly-selected) seed 737984.

We compared these eight methods for odd, composite n < 1010.
Methods A*, B*, C, and D can never set Q ≡ ±1 (mod n).
Method B yielded 5940 vpsp. Only one of these, n = 64469, occurred with Q 6≡ ±1 (mod n):

This n is vpsp(5, 3), but is not lpsp(5, 3).
Method B* yielded two vpsp: n = 913 (P = Q = 5) and n = 64469 (P = 5, Q = 3).
No vpsp from Method R1 or R2 had Q ≡ ±1 (mod n). This is not surprising: Q was a random

integer between 1 and n − 1, and Q ≡ ±1 (mod n) occurred for only eight n’s with R1 and twelve
with R2.

simultaneously
Method lpsp vpsp, Q ≡ ±1 vpsp, Q 6≡ ±1 lpsp and vpsp
A 15352 914 0 757
A* 15352 – 1 0
B 15019 5939 1 4374
B* 12879 – 2 0
C 13766 – 4 0
D 15957 – 6 0
R1 17065 0 3 0
R2 16863 0 4 0

Table 3. Number of lpsp and vpsp to 1010 using various methods for choosing P
and Q.
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All of the methods tested in Table 3 yielded fewer vpsp than lpsp. Moreover, if Q 6≡ ±1 (mod n),
none of the lpsp(P,Q) was also vpsp(P,Q). This Table supports the importance of choosing Q 6≡
±1 (mod n).

6. The enhanced BPSW primality test

The enhanced primality test we propose here is based on the one described in Section 3. The
most important strengthening is that we now include Congruence (2) to check whether n is a vprp.
This has very little additional computational cost beyond the Lucas test in step 3.

The strong Lucas probable prime test, Congruences (11) and (12), allows us to stop the calculation
one or more steps before reaching Un+1, Vn+1, and Qn+1 (mod n). Here, we assume that we continue
the calculation for a few additional steps in order to obtain Q(n+1)/2 and Vn+1 (mod n).

Here is our proposed enhanced primality test for odd, positive integer n:

(1) If n is not a strong probable prime to base 2, then n is composite; stop.
(2) Choose Lucas parameters with Method A*. If you encounter a D for which (D/n) = 0: if

either |D| < n, or if |D| ≥ n but n does not divide |D|, then n is composite; stop.
(3) If n is not an slprp(P , Q), then n is composite; stop.
(4) If n is not a vprp(P , Q), then n is composite; stop.
(5) If n does not satisfy Q(n+1)/2 ≡ Q · (Q/n) (mod n), then n is composite; stop. Otherwise,

declare n to be probably prime.

Recall that no composite number is known that passes steps 1 through 3. This test is more
powerful than the original BPSW test because so few composite n satisfy step 4. A composite
n that passes this test would have to be, simultaneously, spsp(2), slpsp(P,Q), and vpsp(P,Q).
Consequently, we expect that a composite n would be even less likely to pass this test than to pass
the original BPSW test.

An odd, composite n that is both an lpsp and a vpsp is a Frobenius pseudoprime [9, p. 145], [13],
[14]. These are rare [15], in part because, as we’ve seen above, the vpsp are rare. Odd, composite n
that pass this enhanced test should be even rarer.

Step 5 is a primality check based on Euler’s criterion, Congruence (4). This is a relatively minor
enhancement. However, since we essentially already have the power of Q necessary for the test, we
may as well use it. Once we have calculated Q(n+1)/2 = Q · Q(n−1)/2 (mod n), we can compute
(Q/n), then apply Euler’s criterion to check whether

Q(n+1)/2 ≡ Q · (Q/n) (mod n) .

If this congruence fails, then n is composite.

Suggestions for implementing this primality test.

1. For efficiency, before step 1, one should first check n for divisibility by small primes.
2. We recommend doing a (strong) Fermat test to base 2 instead of to some other base. As far

as anyone knows, there is nothing inherently better about using base 2. However, because we know
all psp(2) up to 264, we know that no psp(2) below that limit is an lpsp. We do not know whether
this is true for other bases.

3. In step 2: If n happens to be a perfect square, then (D/n) will never be −1. So, after
encountering, say, 20 D’s with (D/n) = 1, one should check whether n is a perfect square; if so, it
is composite. This can be done quickly using Newton’s method; see [5, p. 1401].

4. It is easy to show that, if n is sprp(a), then n is also sprp(±(ak)) for k ≥ 1. Therefore, if
Method A* chooses a Q such that |Q| is a power of 2, then, because n is known from step 1 to be
sprp(2), the test in step 5 will not strengthen the test. For n < 109, this happens about 28 percent
of the time (D = −7, Q = 2; D = −15, Q = 4; D = 17, Q = −4, etc).

5. To compute all three of Un+1, Vn+1, and Qn+1 (mod n) takes roughly three times as many
multi-precision operations as it takes to compute 2n−1 (mod n). Therefore, this enhanced BPSW
test takes about as long as doing Fermat tests to four different bases. However, as noted in [22, p.
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1020], if n is psp to base a, then n is more likely than the average number of that size to also be
psp to some other base b. In other words, there are diminishing returns in doing repeated Fermat
tests. Therefore, it makes more sense to do one Fermat test followed by the Lucas tests in steps 3
and 4, than to perform Fermat tests to four (or more) different bases.

Reward for a counterexample or for a proof that there are none.

A counterexample to this enhanced test would be a positive, odd composite n which this test
declares is probably prime. The first and third authors each offer U.S. $1000 for either the first
counterexample to this enhanced test, or the first proof, published in a peer-reviewed journal, that
there are none. A claim that n is a counterexample must be accompanied by a (P,Q) pair that came
from Method A*, for which the test claims n is probably prime. The claim must also be accompanied
by a proof that n is composite: either a (not necessarily prime) factor of n that is larger than 1 and
less than n, or a base a with 2 < a < n− 1 for which n is not a base-a strong probable prime, or a
(P,Q) pair not from Method A* such that D = P 2 − 4Q has Jacobi symbol (D/n) = −1, but for
which n is not slpsp(P,Q), or is not vpsp(P,Q).

7. Some Heuristics for lpsps and vpsps

We note that both conditions of (7) and (8) are both congruences modulo n, and thus if p is any
prime which divides n, then we obtain implied congruences modulo p. That is if

Uδ(n) ≡ 0 (mod n), then Uδ(n) ≡ 0 (mod p)

and if

Vδ(n) ≡ 2Q(1−(D/n))/2 (mod n), then Vδ(n) ≡ 2Q(1−(D/n))/2 (mod p).

Moreover, if n were square free, we have that the conditions modulo p for all p dividing n would
give sufficient conditions for the same congruences modulo n.

Now, suppose we write n = py, we can assess the probability that for example

Vδ(n) ≡ 2Q(1−(D/n))/2 (mod p)

by considering the probability that, as we vary y among y with (D/py) = (D/n),

Vδ(py) ≡ 2Q(1−(D/py))/2 (mod p).

We note that this quantity only depends on y modulo the period of the sequence Vk (mod p), so
the probability is well defined. If these probabilities were independent for distinct prime factors of
n, then for square free n we could determine the probability that n is a pseudoprime from local
contributions. These probabilities are most likely not independent.

Assume D is square free.
Before looking at these probabilities in the various cases we first recall a few facts. Fix the prime

p. Let Fp and Fp2 denote the fields of order p and p2, respectively. In the notation of Section 2.3,

α =
P +

√
D

2
β =

P −
√
D

2
.

We think of these quantities as elements of Q(
√
D), or Fp2 when (D/p) = −1, or Fp when (D/p) = 1.

When (D/p) = −1, for x, y ∈ Fp we have (x + y
√
D)p = x− y

√
D in Fp2 . In particular, αp = β

and βp = α. Whereas when (D/p) = 1, for x, y ∈ Fp we have (x+ y
√
D)p = x+ y

√
D and xp−1 = 1

in Fp. In particular, αp−1 = 1 and βp−1 = 1.
These facts allow us to derive the formulas (7) and (8). Indeed if (D/p) = −1, then in Fp2 we

have

Up+1 =
αp+1 − βp+1

α− β
=

αβ − βα

α− β
= 0

and

Vp+1 = αp+1 + βp+1 = 2αβ = 2Q.
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Since both sides are in Fp, we may think of these congruences as congruences modulo p. These give
exactly (7) and (8) with (D/p) = −1.

Similarly if (D/p) = 1, then in Fp we have

Up−1 =
αp−1 − βp−1

α− β
=

1− 1

α− β
= 0

and
Vp−1 = αp−1 + βp−1 = 1 + 1 = 2.

We are most interested in the case (D/n) = −1 and composite n that satisfy Un+1 ≡ 0 (mod n)
and Vn+1 ≡ 2Q (mod n). Consequently in the following we shall focus on the case of (D/n) = −1.
We now investigate the probabilities mentioned above.

7.1. Case 1: (D/p) = −1. Since (D/p)(D/y) = (D/py) = (D/n) = −1, we must have (D/y) = 1.
We also have

Upy+1 =
αpy+1 − βpy+1

α− β
= αβ

βy−1 − αy−1

α− β
= QUy−1

and
Vpy+1 = αpy+1 + βpy+1 = Q(βy−1 + αy−1) = QVy−1.

Thus, for Congruences (7) and (8) we are interested respectively in the probability that Uy−1 ≡
0 (mod p) and the probability that Vy−1 ≡ 2 (mod p).

The sequences Uy and Vy as functions of y modulo p are periodic with periods less than p2. The
condition (D/y) = 1 has period D (or 4D) as we are implicitly interested in representatives for y
that are odd. By the CRT this modulo D condition is irrelevant to the conditional probability unless
D | p2 − 1.

Lemma 1. The periodicity of the appearance of 0 for the sequence Uy−1 is exactly the order of the
image of α in the group F×

p2/F
×

p . In particular, it divides p+ 1.

Moreover, the order is 2 when P = 0 (mod p).

Proof. We recall that the sequence Uy−1 gives the irrational part of the number αy−1, and thus
Uy−1 = 0 (mod p) if and only if αy−1 ∈ Fp. Thus the collection of y such that Uy−1 = 0 is

exactly the kernel of the map F×

p2 → F×

p2/F×

p . Hence, we are really studying the image of the map

〈αn〉 → F×

p2/F
×

p . Since the image is a subgroup, its order divides p+ 1. This completes the proof of

the first claim.
We note that if P = 0 (mod p), then α =

√
D/2 and α2 = −Q ∈ Fp.

Since we know U(p+2)−1 = 0, we obtain

Proposition 1. There exists a divisor k of p + 1 such that Upy+1 ≡ 0 (mod p) if and only if
y ≡ p+ 2 ≡ 1 (mod k).

In particular, the probability that Upy+1 ≡ 0 (mod p) is 1
k ≥ 1

p+1 .

If we assume additionally the y is odd then subject to this condition the probability is at least 2
p+1

.

We note that in the above we are not directly accounting for the possibility that D divides k, in
which case the condition (D/y) = 1 would tend to lead to a higher conditional probability as some
of the k options for y must be discarded, but we will never discard the option 1 mod k. In particular
the claim remains valid with these considerations.

Now we note that the order of α in F×

p2/F
×

p is precisely the order of α
β = α2

Q in F×

p2 and the

condition Uy+1 ≡ 0 (mod p) is equivalent to
(

α2

Q

)y+1

= 1 ∈ F×

p2 . In the case n, and hence y, are

odd we will always have y + 1 even, and writing y + 1 = 2z the condition on z is

1 =

(

α2

Q

)2z

.
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As such we can see that this order is automatically at most (p+ 1)/2.
If we continue to write y + 1 = 2z and look at

1 =

(

α2

Q

)2z

=

(

α2

−Q

)2z

.

we can see that the 2-part of the order of (α2/Q)2 will tend to further bounded if Q or −Q is a
square. Though this is guaranteed when p ≡ 3 (mod 4) it is also guaranteed if Q or −Q is an integer
perfect square.

Additionally we notice that when y is odd if we replace α, β by the conjugate pair α′ =
√
Dα, β′ =

−
√
Dβ we effectively replace Q by −DQ but the order of (α′/β′)2 agrees with that of (α/β)2. It

follows that having any of

Q, ,−Q, DQ, −DQ

perfect integer squares will tend to increase the probability Uy+1 ≡ 0 (mod p) when y is odd. This
phenomenon can be observed empirically by counting the proportion of n which are lpsp for different
options P,Q. Those with Q of the above form tend to appear more than on average.

The situation for (8) is somewhat more subtle. We have the following

Lemma 2. The period of the sequence Vy−1 divides the order of α in F×

p2 , which is a divisor of

p2 − 1.
Moreover, the order of α in F×

p2 is divisible by the LCM of the order of α in the group F×

p2/F
×

p

and the order of Q in F×

p , and is at most twice this amount. In particular, this period is at least as
large as the period of Lemma 1.

Proof. The first claim about the period is clear given that α and β have the same period.
For the second claim we note that the order of an element is divisible by the order of its image

under any homomorphism. We obtain the result by considering the map F×

p2 → F×

p2/F×

p as well as

the norm map

N
F
×

p2
/F×

p

: F×

p2 → F×

p

for which we have

N
F
×

p2
/F×

p

(α) = αp+1 = Q

Because the intersection of the kernels of these two maps is ±1 we conclude that the exact order of
α is either the LCM or the two quantities, or exactly twice this. (The exact order is twice this if
and only if there exists z with αz = −1 (mod p). This is guaranteed if Q is not a square mod p.)
We note further that because we are taking the LCM of a number dividing p+ 1 and one dividing
p− 1 the LCM is almost exactly the product.

Note from the lemma above we may conclude that if P = 0 the order of α is exactly 2 times the
order of −Q. We also conclude that if Q = ±1, the order of α divides 2(p+ 1).

It remains the case that we cannot expect that 2 only appears once in each period. Additionally,
in contrast to the previous case there is no guarantee that the appearance of 2 in the period is
actually itself periodic.

Lemma 3. Let ℓ denote the period of Vy modulo p. We have that Vy+m(p+1) = QmVy and conse-

quently each a ∈ F×

p is repeated by Vy equally often as Qma and hence not more than ℓ/ord(Q) times
within one period of Vy (mod p).

Proof.
This follows from the observation that

Vy+p+1 = QVy

from which we obtain a bijection between the occurrences of x and Qx. Hence, each value 0 6≡
x (mod p) which occurs, does so just as often as Qx (mod p) in one period.
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Now we consider the map

Ψ : Z → Fp × F×

p

given by

y 7→ (Vy, NF
×

p2
/F×

p

(αy)) = (Vy, Q
y).

And note that this map has a period which is either ord(α) or ord(α)/2

Lemma 4. The function Ψ is exactly 2 : 1 on its image, and hence each a ∈ F×

p is repeated by Vy

no more than 2ord(Q) times in 0 ≤ y ≤ ord(α).

We note that the image of Ψ gives the trace and norm of αy, hence we can recover the minimal
polynomial of αy from Ψ(y). It follows that Ψ(y1) = Ψ(y2) implies either αy1 = αy2 or αy1 = βy2 .
Because ℓ divides the order of α in the first case we obtain y1 ≡ y2 (mod ℓ). In the second case we
obtain y1 ≡ py2 ≡ −y2 (mod ℓ).

Proposition 2. The probability that Vpy+1 ≡ 2Q (mod p) is less than the minimum of

1

ord(Q)
and

2ord(Q)

ord(α)
.

We remark that

2ord(Q)

ord(α)
=

{

1
k if ∃z, αz = −1 (mod p)
2
k otherwise

where as before, k is the order of α in F×

p2/F
×

p

We first note that this proposition gives an indication of why having ord(Q) large is beneficial.
Moreover, it indicates why one should expect the V test to be better than the U test, and at least
as good even when Q = −1.

We next note that in the above we are not accounting for the possibility that D | ℓ, in which case
the condition (D/y) = 1 and (D/p) = −1 would imply the map Ψ must be injective on relevant
cases. The effect is that the conditional probabilities are still bounded by the above.

Finally we note that when we combine both the U and V conditions, and consider the condi-
tional probability of the V condition assuming the U condition this amounts to restricting to the
subsequence y = (p+2)+ kx for which that Uy−1 = 0, then as (α− β)Uz +2βz = Vz, the condition
Vy−1 = V(p+2)+xk−1 = 2 becomes

β(p+1)+kx = Q(βk)x.

This condition is periodic in x, with period the exact order of βk, as k is the smallest power for which
βk ∈ F×

p the order of βk divides p− 1 and is, up to a multiple of 2, the order of Q. In particular, if
Q has a large order, the probability that the V condition is satisfied remains low independently of
the U condition.

7.2. Case 2: (D/p) = 1. Since (D/p)(D/y) = (D/py) = (D/n) = −1, we must have (D/y) = −1.
As αp = α and βp = β we also have

Upy+1 =
αpy+1 − βpy+1

α− β
=

αy+1 − βy+1

α− β
= Uy+1,

so we want to estimate the fraction of y with (D/y) = −1 that have Uy+1 ≡ 0 (mod p). Likewise
we have

Vpy+1 = αpy+1 + βpy+1 = αy+1 + βy+1 = Vy+1,

so we want to estimate the fraction of y with (D/y) = −1 that have Vy+1 ≡ 2Q (mod p).
We note that in this case α, β ∈ F×

p are essentially independently chosen elements (determined
by P and Q).
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Lemma 5. The sequence Uy+1 is zero precisely when ((α)β−1)y+1 = 1. Hence the period of the
vanishing of Uy+1 is precisely the order of (α)β−1 as an element of F×

p . In particular, it divides
p− 1 and the LCM of the orders of α and β. Consequently, there is a divisor k of p − 1 such that
Uy+1 = 0 if and only if y = −1 (mod k).

Proof. The condition Uy+1 ≡ 0 (mod p) becomes αy+1 = βy+1 in F×

p , or (α)β
−1 = 1, which proves

the lemma.
If D | k, then we should consider the impact of the condition (D/y) = −1. In contrast to the

previous case it may not be possible to have (D/y) = −1 and y = −1 (mod k). If we assume D | k
so that y = −1 (mod D), then in the case

• D = 1 (mod 4) and D > 0 then (D/y) = (y/D) = (−1/D) = 1 hence the conditions are
never simultaneously satisfiable.

• D = 3 (mod 4) and D > 0 then (D/y) = (−1/y)(y/D) = (−1/y)(−1/D) = −(−1/y) hence
the condition is satisfiable if y = 1 (mod 4). But we note that if 4 | k this is not possible.

• D = 3 (mod 4) and D < 0 then (D/y) = (−1/y)(y/ − D) = (−1/y)(−1/ − D) = (−1/y)
hence the condition is satisfiable if y = 3 (mod 4).

• D = 1 (mod 4) and D < 0 then (D/y) = (y/−D) = (−1/−D) = −1 hence the condition
is always satisfiable.

The above suggests D = 1 (mod 4) and D > 0 would be ideal. We note about the above conditions,
D | p − 1 is only particularly likely for random n when D is small. Counts of lpsps are consistent
with this expectation that small positive D have fewer lpsps.

We remark that as in the case (D/p) = −1 if y + 1 = 2z we are considering the condition

1 =

(

α

β

)y+1

=

(

α4

Q2

)z

.

In the case p ≡ 3 (mod 4) the 2-part of the order is already reduced to 1. However, if p ≡ 1 (mod 4),
we will have −1, D,−D are all squares modulo p, hence if any of

Q, −Q, DQ, −DQ

are perfect integer squares this will reduce the maximum 2-part of the order of ((α)β−1)2 and hence
increase the probability that Uy+1 ≡ 0 (mod p). In contrast if Q is not a square ((α)β−1)(p−1)/2 ≡
(αp−1/Q(p−1)/2) ≡ −1. This phenomenon can be observed empirically by counting the proportion
of n which are lpsp for different options P,Q. Those with Q of the above form tend to be lpsp more
than on average.

Lemma 6. The period of the Vy+1 sequence divides the LCM of the orders of α and β. The order
of Q divides the LCM of the orders of α and β, as does the order of (α)β−1. All of these orders
divide p− 1.

Proof. It is clear from the definition of Vy+1 that its period divides the periods of the two functions
added to obtain it. Since Q = αβ, its order must divide the LCM of the orders of α and β. Likewise,
the order of (α)β−1 divides this LCM. This completes the proof.

In contrast to the previous cases, if Q 6≡ 1 or P/2 (mod p), there is no guarantee that there are
any solutions at all.

However, we know that

V(p−2)+ℓ(p−1)+1 ≡ 2 (mod p) and Vℓ(p−1)+1 ≡ P (mod p).

Lemma 7. Let t denote the order of α/β in F×

p then

Vy+mt = (βt)mVy

and hence each a ∈ F×

p is repeated by Vy equally often as (βt)ma and hence not more than ℓ/ord(βt)
times within one period of Vy (mod p).
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Let f denote the order of α in F×

p then

Vy+mf = Vy + βy((βf )m − 1)

and hence each a ∈ F×

p is repeated by Vy equally often as (βf )ma and hence not more than ℓ/ord(βt)
times within one period of Vy (mod p).

By symmetry each a ∈ F×

p is repeated by not more than ℓ/ord(αord(β)) times within one period of
Vy (mod p).

The proof is as in the previous case.
Now we consider the map

Ψ : Z → Fp × F×

p

given by
y 7→ (Vy, NF

×

p2
/F×

p

(αy)) = (Vy, Q
y).

And note that this map has a period which divides the LCM of ord(α) and ord(β), and equals it up
to a multiple of 2.

Lemma 8. The function Ψ is either 1 : 1 or 2 : 1 on its image, and hence each a ∈ F×

p is repeated
by Vy no more than 2ord(Q) times within for 0 ≤ y ≤ LCM(ord(α), ord(β)).

It is 1 : 1 unless there exists k with β = αk and α = βk.

The proof is as in the previous case.

Proposition 3. The probability that Vpy+1 ≡ 2Q (mod p) is less than the minimum of

2ord(Q)

LCM(ord(α), ord(β))
,

ord(α)

LCM(ord(α), ord(β))
,

ord(β)

LCM(ord(α), ord(β))
,

ord(α/β)

LCM(ord(α), ord(β))
.

In contrast to the previous case it is challenging to get strong bounds on this expectation when
the orders of α and β are both large. However, in that case one still expects the values of αy and
βy to behave like uniform random variables, and hence Vy = αy + βy should as well.

Note also that, as in the case (D/p) = −1 if we were considering the conditional probability of
Congruence (8) given (7), we would restrict to y = (p − 2) + xℓ, where ℓ is the order of (α)β−1 so
that Uy+1 = 0, then as

(α− β)Uz + 2βz = Vz

the condition
2Q = Vy+1 = V(p−2)+xℓ+1 = 2βxℓ

becomes
Q = βxℓ

which is periodic with period the order of βℓ, and is up to a multiple of 2 the order of αβ = Q. By
symmetry we also obtain

Q = αxℓ

and taking the product of these two congruences gives

Q2 = Qxℓ

and so xℓ = 2 (mod ord(Q)). This final condition has a low probability of being satisfied if ord(Q)
is large. And is likely impossible to satisfy if ℓ = ord((α)β−1) is not relatively prime to ord(Q).

Once again we can see why the V sequence probably outperforms the U sequence: the expected
period of the U sequence is strictly less than p− 1, while that of V is likely to be closer to p− 1 as
it comes from the LCM of two periods. The probability that Vy+1 = 2Q can however be less than
1/(p− 1) since it can be 0. Realistically, one expects that the values of the V sequence occur with
equal frequency, though this is not guaranteed.

In contrast to the previous case the probabilities that for fixed D and p we have Uy+1 = 0 or
Vy+1 = 2Q are largely not independent as they both depend on periods modulo p− 1 and so likely
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either completely conflict or completely overlap. This is consistent with the observation that there
should be fewer composites satisfying (7) and (8) with (D/n) = −1 where most p | n have (D/p) = 1.

7.3. Both cases together. We have seen that heuristically, if you use (8) with (D/p) = −1 and
allow Q = 1 or −1 as in Method A, then the order of α divides 2(p+1). But if you force |Q| > 1 as
in Method A*, then this order divides p2 − 1 = (p− 1)(p+ 1) and probably not 2(p+ 1) or p− 1.

Consider the BPSW probable prime test. The Fermat condition 2n−1 = 1 (mod n) basically
requires that the order of 2 modulo any prime factor p of n divide n− 1. If the order is large, as it
often is, then it rarely divides n− 1 when n has other prime factors than p. But it is not that rare;
it does happen occasionally, and we get (some) pseudoprimes to base 2.

The Lucas condition (7) is trickier. With (D/n) = 1, it is just a Fermat test with 2 replaced by
α. With (D/n) = −1, it operates in Fp2 and needs n+ 1 to satisfy a congruence condition modulo
p+ 1 in order to report n probably prime. Such a condition modulo p + 1 happens about as often
as p− 1 divides n− 1, so we get occasional Lucas psps.

When we combine the Fermat and Lucas conditions, we ask for n to satisfy congruence conditions
modulo both p− 1 and p+1. These probabilities are not independent, but as a first approximation,
each event has probability about 1/p. The probability of both events simultaneously would be
1/p2. Now

∑

p 1/p diverges, while
∑

p 1/p
2 converges. By the Borel-Cantelli lemmas, the first

event (just pseudoprimes or just Lucas pseudoprimes) occurs infinitely often, while the second event
(counterexample to BPSW) occurs only finitely often. (The second Borel-Cantelli Lemma requires
the events be pairwise independent; the first Lemma does not have this hypothesis.)

If we consider just (8) with (D/n) = −1 and use a method for choosing D, P , Q that does not
allow |Q| = 1, then we are forcing both congruence conditions on n modulo p− 1 and p+ 1 (or at
least a large divisor of p − 1 respectively p + 1), so the number of solutions should be finite. Of
course, the fact that some orders will be proper divisors of p − 1, p + 1, or p2 − 1 will allow some
solutions, perhaps infinitely many, because the event probabilities are greater than 1/p2 but still less
than 1/p.

8. Are there infinitely many counterexamples to the test?

As noted earlier, no odd, composite n is known that is psp(2) and, when Method A* is used to
choose P and Q, such that n is also lpsp(P,Q).

Nevertheless, if we search hard enough, we can find odd, composite n and Lucas parameters P
and Q for which

2n−1 ≡ 1 (mod n) ,

Un+1 ≡ 0 (mod n) , and

Vn+1 ≡ 2Q (mod n)

are simultaneously true. One such example is n = 341, P = 27, Q = 47, D = P 2 − 4Q = 541. This
example was found by testing all possible (P,Q) pairs (mod n), something one would not do when
testing n for primality.

We can also find odd, composite n along with P and Q, such that n is simultaneously strong
psp(2), strong lpsp(P,Q), and vpsp(P,Q). This theorem was found empirically by testing all (P,Q)
pairs (mod n).

Theorem 1. Let n ≡ 3 (mod 4) be a strong pseudoprime base 2. Let k ≥ 0 be an integer. Set
P = 2k and Q = 22k−1. Then n is also a strong lpsp(P,Q) and a vpsp(P,Q).

Remarks.
1. If k = 0, then Q = 2−1 ≡ (n+ 1)/2 (mod n).
2. Examples of spsp(2) that are ≡ 3 (mod 4) include composite Mersenne numbers of the form

2p − 1 where p is an odd prime [22, p. 1008].
3. Corollary 1 below shows that infinitely many n satisfy Theorem 1.
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4. This proof uses the facts that n is an epsp(2) and that n ≡ 3 (mod 4). However, if n ≡
3 (mod 4), then n is epsp(a) if and only if n is spsp(a) [22, Theorem 4, p. 1009].

Proof. First, D = P 2 − 4Q = 22k − 4 · 22k−1 = 22k − 2 · 22k = −(2k)2. Because n ≡ 3 (mod 4), this
D has Jacobi symbol (D/n) = (−1/n) · ((2k)2/n) = −1.

Write n + 1 = d · 2s, where d is odd. Then s > 1, and 2d ≤ (n + 1)/2. We will first prove that
V2d ≡ 0 (mod n); by Congruence (12), this will prove that n is slpsp(P,Q).

Let α and β be the roots of the characteristic equation x2 − Px+Q = 0, so that

α =
P +

√
D

2
=

2k +
√
−4k

2
= 2k−1(1 + i) ,

β =
P −

√
D

2
=

2k −
√
−4k

2
= 2k−1(1− i) .

Then V2d = α2d + β2d. Because (1 + i)2 = 2i, we have

α2d =
(

2k−1
)2d · (1 + i)2d =

(

22k−2
)d · (2i)d =

(

22k−1
)d · id .

Similarly, because (1 − i)2 = −2i, we have β2d =
(

22k−1
)d · (−i)d. Therefore,

V2d = α2d + β2d =
(

22k−1
)d · (id + (−i)d) = 0 ,

so n is a strong lpsp(P,Q).
We will now prove that Vn+1 ≡ 2Q (mod n). Because n ≡ 3 (mod 4), we can write n+ 1 = 4M ,

where M is an integer. Also, Vn+1 = αn+1 + β+1.
Observe that (1 + i)4 = (1− i)4 = −4. Then

αn+1 =
(

2k−1
)n+1 · (1 + i)4M =

(

2n+1
)k−1 · (1 + i)4M =

(

4 · 2n−1
)k−1 · (−4)M .

βn+1 has the same value. Therefore,

Vn+1 = αn+1 + βn+1 = 2 ·
(

4 · 2n−1
)k−1 · (−1)M · 4M

= 2 · 22k−2 ·
(

2n−1
)k−1 · (−1)M · 22M

= 22k−1 ·
(

2n−1
)k−1 · (−1)M · 2(n+1)/2

= 2Q ·
(

2n−1
)k−1 · (−1)M · 2(n−1)/2 .(19)

But 2n−1 ≡ 1 (mod n) because n is spsp(2) and is therefore a Fermat pseudoprime base 2 that
satisfies Congruence (3).

Moreover, because n is spsp(2), it is therefore an Euler pseudoprime base 2, so that, by Congruence
(4), 2(n−1)/2 ≡

(

2
n

)

(mod n). We now separate (19) into two cases.

Case I. n ≡ 3 (mod 8). Then (a), M is odd, so (−1)M = −1, and (b), (2/n) = −1.
Case II. n ≡ 7 (mod 8). Then (a), M is even, so (−1)M = 1, and (b), (2/n) = 1.
In both cases, (19) becomes

Vn+1 = 2Q ·
(

2n−1
)k−1 · (−1)M · 2(n−1)/2 ≡ 2Q · 1 · (−1)M ·

(

2

n

)

≡ 2Q (mod n) .

Therefore, n is also vpsp(P,Q). This completes the proof of the theorem.
With this n and Q, the condition Q(n+1)/2 ≡ Q·(Q/n) (mod n) in step 5 of the enhanced primality

test is also satisfied: Since n is a spsp(2), it is also an spsp(22k−1), that is, spsp(Q). Therefore n is
an Euler pseudoprime to base 2: Q(n−1)/2 ≡ (Q/n) (mod n). Multiply by Q to get the condition in
step 5.

Note that the values of n in Theorem 1 are not counterexamples to our primality test, because
Method A* never chooses these values of P and Q.
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Before we discovered paper [26] we tried to prove on our own that there are infinitely many
spsp(2) in the congruence class 3 (mod 4) and found the theorem below, which has independent
interest and which needs the following lemma.

Lemma 9. For every positive integer r there exists an integer a ≡ 3 (mod 4) such that for every

odd prime p, if p ≡ a (mod 4r), then r is a quadratic residue modulo p:
(

r
p

)

= +1.

Proof. Write r = 2st with t odd. If t ≡ 1 (mod 4), let a = 1 + 2t. If t ≡ 3 (mod 4), let a = 4t− 1.
In either case, if s is odd, add 4t to a. It is easy to see that a ≡ 3 (mod 4) in all cases. In the
rest of the proof suppose that p is an odd prime and p ≡ a (mod 4r). Note that this implies that
p ≡ 3 (mod 4).

If r is a power of 4, then s is even, t = 1, a = 3 and
(

r
p

)

=
(

1
p

)

= +1.

If r is twice a power of 4, then s is odd, t = 1, a = 7, 8 | 4r and
(

r
p

)

=
(

2
p

)

= +1 by a supplement

to the Law of Quadratic Reciprocity (LQR) that says that if p ≡ 7 (mod 8), then
(

2
p

)

= +1.

Now suppose s is even and t > 1. If t ≡ 1 (mod 4), then by the LQR we have
(

r

p

)

=

(

2st

p

)

=

(

t

p

)

=
(p

t

)

=
(a

t

)

=

(

1 + 2r

t

)

=

(

1

t

)

= +1.

If t ≡ 3 (mod 4), then by the LQR we have
(

r

p

)

=

(

2st

p

)

=

(

t

p

)

= −
(p

t

)

= −
(

4t− 1

t

)

= −
(−1

t

)

= +1.

Finally, suppose s is odd and t > 1. Then 8 | 4r and a ≡ 7 (mod 8). If t ≡ 1 (mod 4), then by
the LQR we have

(

r

p

)

=

(

2st

p

)

=

(

2

p

)(

t

p

)

= (+1)
(p

t

)

=
(a

t

)

=

(

1 + 2t+ 4t

t

)

=

(

1

t

)

= +1.

If t ≡ 3 (mod 4), then by the LQR we have
(

r

p

)

=

(

2st

p

)

=

(

2

p

)(

t

p

)

= −
(p

t

)

= −
(a

t

)

= −
(

4t− 1 + 4t

t

)

= −
(−1

t

)

= +1.

This completes the proof.

Theorem 2. If r > 1 is an integer, there are infinitely many Carmichael numbers m ≡ 3 (mod 4)
that are also strong pseudoprimes to base r. Moreover, there is a constant K > 0 which depends on

r so that the number of such m < X is ≥ XK/(log log logX)2 for all sufficiently large X.

Proof. Let M = 4r and choose a by Lemma 9. Wright [29] proved that there are infinitely many

Carmichael numbers m ≡ a (mod M) and in fact ≥ XK/(log log logX)2 of them below X for all large
enough X . Since a ≡ 3 (mod 4) and 4 | M , we have m ≡ 3 (mod 4). In the construction of the
Carmichael numbers m in the proof in [29], every prime factor p of m is odd and ≡ a (mod M).

Thus each p | m satisfies p ≡ 3 (mod 4) and, by Lemma 9,
(

r
p

)

= +1. By Corollary 1.2 of [3], if
(

r
p

)

has the same value for every prime p | m, then m is a strong pseudoprime to base r. This completes
the proof.

In 1980, van der Poorten and Rotkiewicz [26] proved that for every integer r > 1 there are
infinitely many spsp(r) in every arithmetic progression ax + b with (a, b) = 1, but they did not
bound the growth rate of such numbers.

Theorem 1 of [22] asserts that for all r > 1 and x > r15r+1, there are more than (log x)/(4r log r)
strong pseudoprimes to base r less than x. Every one of these spsp(r) is ≡ 1 (mod 4). Later,
Pomerance [20] proved an even greater lower bound on the number of strong pseudoprimes to base
r less than x. All of the spsp(r) he constructed are ≡ 1 (mod 4).
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Corollary 1. Let k be a nonnegative integer. Let P = 2k and Q = 22k−1. Then there exist
infinitely many Carmichael numbers m ≡ 3 (mod 4) that are strong pseudoprimes to base 2, strong
lpsp(P,Q) and vpsp(P,Q). Moreover, there is a constant K > 0 so that the number of such m < X

is ≥ XK/(log log logX)2 for all sufficiently large X.

The corollary follows from Theorems 1 and 2.
In the case r = 2 all spsp(2) that we constructed in Theorem 2 are ≡ 7 (mod 8). This is because

when r = 2 Lemma 9 sets s = t = 1 and a = 7. It is easy to modify the proof of Theorem 2 to show
that there are infinitely many spsp(2) that are ≡ 3 (mod 8). Rather than use Lemma 9, just set
M = 8 and a = 3. Then Wright’s proof for this arithmetic progression constructs many Carmichael
numbers m ≡ 3 (mod 8), every prime factor of which is also ≡ 3 (mod 8). Then the Legendre

symbols
(

2
p

)

are all −1 by a supplement to the LQR so that Corollary 1.2 of [3] still applies to show

that m is spsp(2).
The smallest Carmichael number that satisfies all the conditions of this Corollary is 3 215 031 751.

Pomerance’s heuristic argument.

In 1899, Korselt [16] proved that n is a Carmichael number if and only if n is square free, has
at least three prime factors, and for each prime p dividing n we have p − 1 divides n − 1. As part
of Erdős’ heuristic argument (see [10]) that there are infinitely many Carmichael numbers (in fact
more than x1−ǫ up to x), he shows that there are many composite square free numbers n for which
p−1 divides n−1 for each prime factor p of n. Pomerance [21] modified this argument to show that
there are infinitely many strong pseudoprimes n to base 2 that are also Lucas pseudoprimes with
(D/n) = −1. Pomerance’s argument showed heuristically that there are Carmichael numbers n so
that for each prime p dividing n we have p + 1 divides n + 1, and congruence conditions to ensure
that n is a strong pseudoprime to base 2 and (D/n) = (5/n) = −1. Since the numbers n Pomerance
constructed all satisfy p− 1 | n− 1 and p+ 1 | n+ 1 for each prime factor p of n, they satisfy all of
Congruences (7)–(10).

Pomerance chooses an integer k > 4 and a large T . He lets Pk(T ) be the set of all primes p in
[T, T k] such that

(1) p ≡ 3 (mod 8) and the Jacobi symbol (5/p) = −1.
(2) (p− 1)/2 is square free and composed only of primes q < T with q ≡ 1 (mod 4).
(3) (p+ 1)/4 is square free and composed only of primes q < T with q ≡ 3 (mod 4).

Let Q1 be the product of all primes q < T with q ≡ 1 (mod 4). Let Q3 be the product of all
primes q < T with q ≡ 3 (mod 4).

Heuristically, the size of Pk(T ) is about T
k/ log2 T .

Let ℓ be odd and let n be any product of ℓ primes p ∈ Pk(T ) such that n ≡ 1 (mod Q1) and
n ≡ −1 (mod Q3).

Then n ≡ 3 (mod 8), (5/n) = −1 and for all primes p | n we have p− 1 | n− 1 and p+ 1 | n+ 1.
This implies that n is a strong pseudoprime to base 2 and n satisfies all of (7)–(10), so n is a Lucas
pseudoprime, a v pseudoprime, and so is a counterexample to the enhanced BPSW primality test.

The arguments of both Erdős and Pomerance were heuristic, with many unproved but plausible
assumptions.

The condition k > 4 allows one to show that there are x1−ǫ counterexamples n to the enhanced
BPSW primality test with n < x.

The conditions p ≡ 3 (mod 8) for p ∈ Pk(T ) make it easy to prove n is spsp(2).
A computer search for counterexamples to BPSW using Pomerance’s construction would be very

slow due partly to the conditions 2 and 3 above for primes q < T and due partly to the conditions
n ≡ 1 (mod Q1) and n ≡ −1 (mod Q3).

Conclusion.

In Section 7, we have presented some reasons why counterexamples to the BPSW test or to our
new strengthened test should be rare or nonexistent. On the other hand, in this section we have



STRENGTHENING THE BAILLIE-PSW PRIMALITY TEST 19

suggested that there might be many, perhaps infinitely many counterexamples to these tests. So
which is it?

The arguments in Section 7 seem to apply to relatively small numbers, those with hundreds or
thousands of decimal digits that we might actually test for primality using computers. We believe
that counterexamples to either test are extremely rare among numbers of that size. The arguments
in this section seem to apply to truly enormous numbers, numbers too large for even a computer to
multiply. Some day, when we know more about the distribution of primes, we might be able to prove
rigorously that there are infinitely many counterexamples, but these numbers might be so large that
their logarithm exceeds the number of electrons in the universe.

9. Open Questions

Suppose n is composite and that we have the full factorization of n. Work by various authors has
produced formulas that count or estimate:

• the number of bases a for which n is a psp(a) [5, Thm. 1], [17, Lemma 1]
• the number of bases a for which n is a spsp(a) [17, Prop. 1], [4, Thm. 1.4]
• given D, the number of P for which there is a Q such that n is lpsp(P,Q) [5, Thm. 2]
• given D, the number of (P,Q) pairs for which n is slpsp(P,Q) [4, Thm. 1.5]
• the number of (P,Q) pairs (mod n) for which n is simultaneously lpsp(P,Q) and vpsp(P,Q)
[12, Thm. 16].

We would like to have a formula that bounds, or better yet, counts, the number of D, or the
number of (P,Q) pairs for which n is a vpsp(P,Q). We would also like to see an estimate of
the asymptotic growth rate for the number of vpsp’s ≤ x; this would presumably depend on the
algorithm for choosing P and Q.
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Karhumäki, Arto Lepistö (Eds.), Proceedings of Conference on Algorithmic Number Theory, TUCS General
Publication, Turku Centre for Computer Science, pp. 129-131, 2007.
https://tucs.fi/publications/attachment.php?fname=G46.pdf

[19] Richard Pinch, The Carmichael numbers up to 1018. https://arxiv.org/abs/math/0604376
[20] Carl Pomerance, A New Lower Bound for the Pseudoprime Counting Function, Illinois J. Math., vol. 26, no. 1,

1982, pp. 4–9.
https://math.dartmouth.edu/~carlp/PDF/lower.pdf

[21] Carl Pomerance, Are there counterexamples to the Baillie-PSW primality test? In H. W. Lenstra, Jr., J. K.
Lenstra, and P. Van Emde Boas, editors, Dopo le parole angeboden aan Dr. A. K. Lenstra. Amsterdam, 1984.
https://www.math.dartmouth.edu/~carlp/dopo.pdf

[22] Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff, Jr., The Pseudoprimes to 25 · 109, Math. Comp., vol.
35, no. 151, July, 1980, pp. 1003–1026.
https://doi.org/10.1090/S0025-5718-1980-0572872-7 ,
https://math.dartmouth.edu/~carlp/PDF/paper25.pdf

[23] Michael O. Rabin, Probabilistic Algorithm for Testing Primality, Journal of Number Theory, vol. 12, no. 1, 1980,
pp. 128–138. https://doi.org/10.1016/0022-314X(80)90084-0

[24] Andrzej Rotkiewicz, Lucas and Frobenius Pseudoprimes, Annales Mathematicae Silesianae, vol. 17, 2003, pp.
17–39,
available at http://www.sbc.org.pl/Content/33711/2003_03.pdf

[25] Douglas B. Staple, The Combinatorial Algorithm for Computing π(x), Master’s Degree Thesis at Dalhousie
University, August, 2015.
https://arxiv.org/abs/1503.01839

[26] A. J. van der Poorten and A. Rotkiewicz, On Strong Pseudoprimes in Arithmetic Progressions, J. Austral. Math.
Soc. (Series A) 29 (1980), pp. 316–321.

[27] H. C. Williams. On numbers analogous to the Carmichael numbers. Canad. Math. Bull., 20:133–143, 1977.
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Appendix A. Appendix. Methods A and A* generate the same lpsp lists

Recall that a Lucas probable prime is a solution n to (1). Here we prove that Methods A and
A* give the same solutions. We also prove a similar result for strong Lucas probable primes. In this
appendix we write Un(P,Q) and Vn(P,Q) for the two Lucas sequences with parameters P , Q.

Theorem 3. Let n be a positive integer relatively prime to 10. Then n is a Lucas probable prime
for Method A if and only if it is a Lucas probable prime for Method A*.

Proof. Methods A and A* differ only when D = 5. With that D, Method A sets P = 1, Q = −1,
while A* sets P = Q = 5. Let

α1 =
1+

√
5

2
and β1 =

1−
√
5

2
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be the two roots of x2 − x− 1 = 0 and let

α2 =
5+

√
5

2
and β2 =

5−
√
5

2

be the two roots of x2 − 5x+ 5 = 0. Then

(20) α2
2 = 5

(

3 +
√
5

2

)

= 5α2
1 and β2

2 = 5

(

3−
√
5

2

)

= 5β2
1 .

Since α1 − β1 =
√
5 = α2 − β2, we have

U2k(5, 5) =
α2k
2 − β2k

2

α2 − β2
= 5k

(

α2k
1 − β2k

1

α1 − β1

)

= 5kU2k(1,−1).

Now n is odd, so we can write n+ 1 = 2k; by the previous expression,

Un+1(5, 5) = 5(n+1)/2Un+1(1,−1).

Since n is not a multiple of 5, Un+1(5, 5) ≡ 0 (mod n) if and only if Un+1(1,−1) ≡ 0 (mod n). This
completes the proof.

Now we prove the analogue of this theorem for the strong lprp test.

Theorem 4. Let n be a positive integer relatively prime to 10. Then n is a strong Lucas probable
prime for Method A if and only if it is a strong Lucas probable prime for Method A*.

Proof. Let α1, α2, β1, β2 be as in the proof of the previous theorem. We will prove that

U2k+1(5, 5) = 5kV2k+1(1,−1),(21)

V2k+1(5, 5) = 5k+1U2k+1(1,−1), and(22)

V2k(5, 5) = 5kV2k(1,−1),(23)

Using Equation (20), the left side of (21) is

α2k+1
2 − β2k+1

2

α2 − β2
=

5k

α2 − β2

(

α2k
1 α2 − β2k

1 β2

)

=
5k√
5

(

α2k+1
1

α2

α1
− β2k+1

1

β2

β1

)

.

Now

α2

α1
=

5 +
√
5

1 +
√
5
=

√
5 and

β2

β1
=

5−
√
5

1−
√
5
= −

√
5,

so the left side of (21) becomes

5k√
5

(

α2k+1
1

√
5− β2k+1

1 (−
√
5)
)

= 5k
(

α2k+1
1 + β2k+1

1

)

,

which is the right side of (21). Equation (22) is proved the same way. Equation (23) is even easier:

V2k(5, 5) = α2k
2 + β2k

2 = (5α1)
2k + (5β1)

2k = 5k(α2k
1 + β1)

2k = 5kV2k(1,−1).

Now if n is an slprp(1,−1) because Vd(1,−1) ≡ 0 (mod n), then Equation (21) shows that
n is an slprp(5,5) because Ud(5, 5) ≡ 0 (mod n), and vice versa. Also if n is an slprp(1,−1)
because Ud(1,−1) ≡ 0 (mod n), then Equation (22) shows that n is an slprp(5,5) because Vd(5, 5) ≡
0 (mod n), and vice versa. Finally, if n is an slprp(1,−1) because Vd2s(1,−1) ≡ 0 (mod n) for some
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0 < s < d, then Equation (23) shows that n is an slprp(5,5) because Vd2s(5, 5) ≡ 0 (mod n), and
vice versa. This completes the proof.
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