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ABSTRACT. We study binomial D-modules, which generalize A-hypergeometric systems. We de-
termine explicitly their singular loci and provide three characterizations of their holonomicity. The
first of these is an equivalence of holonomicity and L-holonomicity for these systems. The sec-
ond refines the first by giving more detailed information about the L-characteristic variety of a
non-holonomic binomial D-module. The final characterization states that a binomial D-module is
holonomic if and only if its corresponding singular locus is proper.

1. INTRODUCTION3

Binomial ideals in a polynomial ring over a field enjoy many special properties that set them apart4

from more general ideals. For example, work of Eisenbud and Sturmfels [ES96] shows that toric5

ideals can be viewed as basic building blocks of binomial ideals. Extending this point of view6

to D-modules, binomial D-modules (Definition 2.3) were introduced in [DMM10b] as a gener-7

alized framework to study systems of hypergeometric differential equations; here, the pendant to8

the toric ideals are the A-hypergeometric differential equations of Gelfand, Graev, Kapranov and9

Zelevinsky [GGZ87, GKZ89, GKZ90].10

As in the polynomial case, binomial D-modules have some unusual properties. For instance, a11

binomial D-module is holonomic if and only if it has a finite dimensional solution space; while the12

forward implication in the previous statement is true in general, the converse certainly is not.13

The goal of this article is to provide more results in this vein, further showing how special bino-14

mialD-modules are within the class of allD-modules. For this purpose, we study the characteristic15

variety and singular locus of a binomial D-module, and use our conclusions to obtain new charac-16

terizations of holonomicity for these objects.17

Our main result is that a binomial D-module on Cn is holonomic if and only if its restriction18

to (C∗)n is holonomic (Theorem 3.1), if and only if its singular locus is a proper subvariety of19

Cn (Theorem 4.2). As before, the forward implications are always true, but the converses fail in20

general, even in the simplest instances (Examples 3.3 and 4.3).21

A strong motivation for the statements in this paper comes from our companion article [BMW13].22

In that work, the results here are used to obtain conclusions about classical systems of hypergeo-23

metric differential equations; see Remark 3.2 for more details.24

Outline. In Section 2, we introduce concepts and notation about D-modules that will be used25

throughout. In Section 3, we prove Theorem 3.1 using ideas from [SW08]. In Section 4, we prove26
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Theorem 4.2 by referring to a result from [BMW13] and we give a combinatorial description of27

the singular locus of a binomial D-module along the lines of previous work by Gelfand, Kapranov28

and Zelevinsky, and Adolphson.29
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2. PRELIMINARIES37

2.1. Set-up. We let d ≤ n stand for two elements of the set of natural numbers N = 0, 1, 2, . . .38

Convention 2.1. Throughout this article, A = [ a1 a2 · · · an ] is an integer d × n matrix such that39

Z · A = Zd as lattices, and that there exists h ∈ Qd such that h · ai > 0 for i = 1, . . . , n.40

Let X be affine n-space over C, with coordinates x1, . . . , xn. The Weyl algebra D is the ring41

of differential operators on X; it is generated by the multiplication operators x1, . . . , xn and the42

differentiation operators ∂1 := ∂
∂x1
, . . . , ∂n := ∂

∂xn
, subject to the Leibniz rule ∂jxi − xi∂j = δij43

(the Kronecker delta).44

2.2. Holonomicities and singular locus. A projective weight vector on D is L = (Lx, L∂) ∈45

Qn × Qn such that Lx + L∂ = c · 1n := c · (1, . . . , 1) for some constant c > 0. This determines46

an increasing filtration L on D by LkD := C · {xu∂v | L · (u, v) ≤ k} for k ∈ Q. Set L<kD :=47 ⋃
`<k L

`D. Since c > 0, the associated graded ring grLD is isomorphic to the coordinate ring48

of T ∗X ∼= C2n, which is a polynomial ring in 2n variables. For any P in LkD r L<kD, set49

inL(P ) := P + L<kD ∈ grL,kD := LkD/L<kD ⊆ grLD and degL(P ) := k. By a slight abuse of50

notation, set xi := inL(xi) and ξi := inL(∂i), where (x, ξ) are coordinates on T ∗X .51

For a left D-ideal I , set grL(I) := 〈inL(P ) | P ∈ I〉 ⊆ grL(D). The L-characteristic variety of52

the module D/I is53
CharL(D/I) := Var(grL(I)) ⊆ T ∗X ∼= C2n. (2.1)

The projective weight vector F = (0n,1n) := (0, . . . , 0, 1, . . . , 1) ∈ Q2n induces the order filtra-54

tion on D. The F -characteristic variety of a D-module is usually called its characteristic variety.55

The singular locus ofD/I , denoted Sing(D/I), is the projection of CharF (D/I)rVar(ξ1, . . . , ξn)56

onto X , and as such, it is a closed subvariety of X .57

The divisorial singular locus of D/I , denoted by Sing1(D/I), is the codimension at most one part58

of Sing(D/I). From the point of view of (classical) holomorphic solutions of systems of differen-59

tial equations, there is no difference between Sing(D/I) and Sing1(D/I) because the codimension60

two singularities of holomorphic functions can be removed.61

For a left D-ideal I , dim(CharF (D/I)) ≥ n by Bernstein’s inequality [Ber72] (see also [Smi01]);62

D/I is holonomic if equality holds.63

Definition 2.2. The D-module D/I is L-holonomic if CharL(D/I) is empty or has dimension n.64

The rank of D/I is rank(D/I) := dimC(x) C(x)⊗C[x] D/I .65
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2.3. Binomial D-modules. We recall here binomial D-modules and the structure of their L-66

characteristic varieties from [DMM10b].67

The matrix A determines a (C∗)d-action on X by68

t � p = (ta1p1, . . . , t
anpn) for t = (t1, . . . , td) ∈ (C∗)d and p = (p1, . . . , pn) ∈ X.

This action passes to the Weyl algebra D via69

t � xi := taixi and t � ∂i = t−ai∂i for i = 1, . . . , n.

Let A = [aij] be as in Convention 2.1. The Euler operators for A are70

Ei :=
n∑
j=1

aijxj∂j for i = 1, . . . , d. (2.2)

We writeEA forE1, . . . , Ed, and for β ∈ Cd, we denote byEA−β the sequenceE1−β1, . . . , Ed−71

βd. Let I ⊆ C[∂1, . . . , ∂n] = C[∂] be a binomial ideal, that is, an ideal generated by binomials and72

monomials. We assume that I is equivariant with respect to the (C∗)d-action on C[∂] induced by73

A.74

Definition 2.3. Given β ∈ Cd, a binomial D-module is of the form75

D

(I, EA − β)
:=

D

D · I +D · (EA − β)
.

The (very special) binomial ideal76

IA := 〈∂u − ∂v | u, v ∈ Nn, Au = Av〉 ⊆ C[∂] (2.3)

is called the toric ideal associated to A. The left D-ideal77

HA(β) := D · (IA, EA − β)

is called an A-hypergeometric system, and D/HA(β) is called an A-hypergeometric D-module.78

2.4. Toral and Andean components. Every associated prime of a binomial ideal is also bino-79

mial, and every prime binomial ideal is isomorphic to a toric ideal up to a rescaling of the vari-80

ables [ES96]. We review from [DMM10b] how A-hypergeometric systems play a similarly funda-81

mental role in the theory of binomial D-modules.82

The action of the torus (C∗)d on C[∂] defines the A-grading, with deg(xi) = − deg(∂i) := ai. A83

binomial ideal I ⊆ C[∂] is torus equivariant if and only if it is A-graded. If M =
⊕

α∈ZdMα is an84

A-graded C[∂]-module, then the set of quasidegrees of M is85

qdeg(M) := {α ∈ Zd |Mα 6= 0}
Zariski

⊆ Cd,

where the closure is taken in the Zariski topology of Cd.86

Let C be a primary component of an A-graded binomial ideal I ⊆ C[∂], which can be chosen87

to be binomial by [ES96]. If the A-graded Hilbert function of C[∂]/
√

C is bounded, then the88

component C , along with its corresponding associated prime
√

C , is toral; otherwise, they are89

Andean. Examples and more details can be found in [DMM10a].90

Theorem 2.4. [DMM10b, Theorem 6.3] Let I ⊆ C[∂] be an A-graded binomial ideal. The bino-91

mial D-module D/(I, EA − β) is holonomic if and only if −β lies outside the union of the sets92

qdeg(C[∂]/C ), running over the Andean components C of the binomial ideal I . �93
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2.5. L-Characteristic varieties. We next reproduce results of Schulze and Walther [SW08] that94

set-theoretically describe the L-characteristic variety of hypergeometric ideals.95

Let A and h = (h1, . . . , hd) be as in Convention 2.1, and let L = (Lx, L∂) ∈ Q2n be a projective96

weight vector on D. Choose ε > 0 such that h · ai + εL∂i > 0 for i = 1, . . . , n, and denote by Hε97

the hyperplane in PdQ given by {(y0 : y1 : · · · : yd) ∈ PdQ | ε y0 + h1y1 + · · · + hdyd = 0}. The98

L-polyhedron of A is the convex hull of {(1 : 0d), (L∂1 : a1), . . . , (L∂n : an)} in the affine space99

PdQ rHε. The L-umbrella of A, denoted Φ(A,L), is the set of faces of the L-polyhedron of A that100

do not contain (1 : 0d).101

Let τ ∈ Φ(A,L) and identify τ with the subset of {1, . . . , n} indexing the columns of A belonging102

to τ . Whenever it is convenient, view τ as the set {ai | i ∈ τ}, or as the matrix whose columns are103

ai for i ∈ τ . Denote by τ̄ the set {1, . . . , n}r τ .104

Let Cτ denote the conormal space to the orbit under the torus action of the point 1τ in Cn whose
coordinates indexed by τ are equal to 1 and those indexed by τ̄ are equal to 0. Writing xξ :=
(x1ξ1, . . . , xnξn) and ξτ :=

∏
j∈τ ξj , the Zariski closure of Cτ , denoted Cτ , is equal to the Zariski

closure in T ∗(Cn) of the variety in T ∗(Cn) r Var(ξτ ) defined by

C[ξ−1
τ ]⊗C[ξτ ] (〈ξi | i /∈ τ〉+ 〈ξu − ξv | u, v ∈ Nn, ui = vi = 0 for i /∈ τ, Au = Av〉+ 〈Axξ〉) .

(2.4)

Note that the polynomials in (2.4) can be viewed as to not involve the variables xi for i /∈ τ ; in105

particular, if (x, ξ) ∈ Cτ , then (Cτ̄ × xτ )× {ξ} ⊆ Cτ . Here Cτ̄ denotes the affine subspace of X106

whose coordinates indexed by τ are zero, and xτ is the point in Cτ whose coordinates indexed by107

τ coincide with those of x.108

Theorem 2.5. [SW08, Corollary 4.17] The L-characteristic variety of D/HA(β) is109

CharL(D/HA(β)) =
⊔

τ∈Φ(A,L)

Cτ =
⋃

τ∈Φ(A,L)

Cτ . 2

The L-characteristic variety of a holonomic binomial D-module has been computed in [CF12]:110

Theorem 2.6. [CF12, Theorem 4.3] If the binomialD-moduleM = D/(I, EA−β) is holonomic,111

then the L-characteristic variety of M is the union of the L-characteristic varieties of the binomial112

modules D/(
√

C , EA − β), where the union runs over the toral primary components C of I such113

that −β ∈ qdeg(C[∂]/C ).114

3. THE L-HOLONOMICITY OF BINOMIAL D-MODULES115

Using some ideas from [SW08], we prove here our first main result:116

Theorem 3.1. Let M be a binomial D-module.117

(1) The moduleM is holonomic if and only ifM is L-holonomic for some (equivalently, every)118

projective weight vector L on D.119

(2) Furthermore, the module M is not holonomic if and only if CharL(M) has a component120

in T ∗(C∗)n of dimension greater than n for some (equivalently, every) projective weight121

vector L on D.122

Note that [SST00, Theorem 1.4.12] uses a Gröbner walk argument to show equivalence of holo-123

nomicity and L-holonomicity for any cyclic module D/I , but with different assumptions on L124
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than we make here: [SST00] requires that all coordinates of L be nonnegative and Lx + L∂ > 0125

coordinatewise, while we ask for projective weight vectors whose coordinate sums are positive,126

but whose individual entries may be negative.127

Remark 3.2. Theorem 3.1(2) can be restated as “A binomial D-module M is L-holonomic if128

and only if its restriction to (C∗)n is L-holonomic.” In this form, it is easy to see the usefulness129

of this result for the purposes of the companion article [BMW13]. In that paper, binomial D-130

modules are related to classical hypergeometric systems using a specially constructed functor that131

preserves importantD-module theoretic properties. Part of that functor is restriction to the ambient132

torus (C∗)n. Theorem 3.1.(2) ensures that, when applied to binomial D-modules, the functor133

constructed in [BMW13] preserves L-holonomicity attributes of the original module, which in134

turn provides long-sought results about the holonomicity of classical hypergeometric systems of135

differential equations. 7136

Example 3.3. On X = C2, the left ideal 〈x2
1∂1, x1∂2〉 fails to be L-holonomic for all projec-137

tive weight L as its L-characteristic variety contains the hyperplane given by x1 = 0. However,138

its restriction to (C∗)2 is the ideal generated by ∂1 and ∂2, which is clearly L-holonomic for all139

projective weight vectors L. 7140

Notation 3.4. For A as in Convention 2.1, let Ă ∈ Zk×n denote a matrix of full rank k with141

d < k < n, and assume thatA is the submatrix of Ă consisting of its first d rows. Let L ∈ Qn×Qn142

be a projective weight vector.143

Given a face τ ∈ Φ(Ă, L), put ∂τ =
∏

i∈τ ∂i and144

C̆τ := {(x, ξ) | ξi 6= 0 for all i ∈ τ} ∩ Var(〈ξi | i /∈ τ〉+ grL(IĂ) + grL(EA − β)).

7145

Recall from [SW08] that grL(IĂ) ⊆ grL(D) has a minimal component for every τ ∈ Φ(Ă, L) of146

dimension k− 1 (a facet). Since IĂ ⊆ C[∂], we have abused notation and written grL(IĂ) in place147

of grL(D · IĂ).148

Proposition 3.5. Let Ă be as in Notation 3.4. Then for any facet τ ∈ Φ(Ă, L), C̆τ is contained in149

CharL(D/(IĂ, EA − β)).150

Proof. Fix a facet τ ∈ Φ(Ă, L); then the matrix τ has full rank k. We argue as in [SW08, Theo-151

rem 3.10]. Since grL(EĂ) is a regular sequence on grL(D[∂−1
τ ]/IĂ), so is grL(EA). The spectral152

sequence of a filtered complex shows that153

grL
(

D[∂−1
τ ]

(IĂ, EA − β)

)
=

grL(D[∂−1
τ ])

grL(IĂ) + grL(EA − β)
.

(A similar argument is made in in [SST00, Theorem 4.3.5].) However,154

grL(IĂ) + grL(EA − β) ⊆ 〈ξi | i /∈ τ〉+ grL(IĂ) + grL(EA − β),

and localizing at ∂τ we conclude that C̆τ is contained in CharL(D/(IĂ, EA − β)). �155

Proposition 3.6. If Ă is as in Notation 3.4, then D/(IĂ, EA − β) fails to be L-holonomic for all156

projective weight vectors L.157
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Proof. Fix a projective weight vector L. By Proposition 3.5, C̆τ ⊆ CharL(D/(IĂ, EA − β))158

for each face τ ∈ Φ(Ă, L) of dimension k − 1, and grL(EA − β) is a regular sequence on159

grL(D[∂−1
τ ]/IĂ). Thus, dim(C̆τ ) = n+ k − d > n and D/(IĂ, EA − β) is not L-holonomic. �160

Proof of Theorem 3.1.(1). Let M = D/(I, E − β) be a binomial D-module. If M is holonomic,161

then it is L-holonomic for all projective weight vectors L since all A-hypergeometric D-modules162

(such as the modules D/(
√

C , EA − β) for C toral) are L-holonomic.163

Now assume that M is a non-holonomic binomial D-module. The associated primes of I are of164

the form p = C[∂] · (I0 + 〈∂i | i /∈ σ〉), where σ ⊆ {1, . . . , n}, I0 is generated by binomials165

in C[∂j | j ∈ σ] =: C[∂σ], and I0 ∩ C[∂σ] is isomorphic to a toric ideal after rescaling the166

variables [ES96, Corollary 2.6].167

By [DMM10b, Theorems 5.6, 6.3] there exists a primary component C of I corresponding to an168

Andean associated prime p such that −β ∈ qdeg(C[∂]/C ) and such that D/(C , EA − β) is not169

holonomic. The argument in the proof of [DMM10b, Theorem 5.6] allows us to reduce to the case170

when−β ∈ qdeg(C[∂]/p). In this case, the Andean condition ensures that D/(p, EA−β) is (after171

rescaling of the variables) a binomial D-module as in Notation 3.4. Thus, the proof is complete by172

Proposition 3.6. �173

We now prove a stronger version of Proposition 3.6.174

Proposition 3.7. If Ă is as in Notation 3.4, then CharL(D/(IĂ, EA − β)) has a component in175

T ∗(C∗)n of dimension n+ k − d.176

Proof. Let ăi denote the ith column of Ă and let N be an Ă-graded C[∂]-module where deg(xi) =177

ăi = − deg(∂i). Fix some βĂ ∈ Ck that agrees with β in its first d coordinates, and let K•(EĂ −178

βĂ;N) and H•(EĂ − βĂ;N) respectively denote the Euler–Koszul complex and its homology in179

the sense of [MMW05, SW08].180

Recall that the L-initial terms of xj and ∂j are denoted by xj and ξj respectively. Let τ be a facet181

of Φ(Ă, L), and set ξτ :=
∏

j∈τ ξj , ∂τ :=
∏

j∈τ ∂j and let Iτ ⊆ C[∂j | j ∈ τ ] be the toric ideal182

defined by (the submatrix of Ă whose columns are indexed by) τ .183

By [SW08], the spectral sequence184

H•(grL(D[∂−1
τ ]⊗D K•(EĂ − βĂ;D/IĂ)))⇒ grL(D)[ξ−1

τ ]⊗grL(D) grL(H•(EĂ − βĂ, D/IĂ))

induced by the L-filtration on the localized Euler–Koszul complex to D/IĂ collapses, essentially185

since grL(EĂ − βĂ) forms a regular sequence on grL(D)[ξ−1
τ ]/

(
grL(D)[ξ−1

τ ] · grL(IĂ)
)
.186

The facet τ may or may not be a pyramid in the sense of [SW12, Definition 2.4]. By Remark 2.5 in187

loc. cit. that there is a unique face σ of τ such that τ is a pyramid over σ and σ is not a pyramid. In188

particular, slightly abusing notation, Iτ = Iσ and Iτ -primary ideals are Iσ-primary ideals. Hence189

H•(grL(D[∂−1
σ ]⊗D K•(EĂ − βĂ;D/IĂ)))⇒ grL(D)[ξ−1

σ ]⊗grL(D) grL(H•(EĂ − βĂ, D/IĂ))

also collapses because grL(EĂ) is a regular sequence on grL(D)[ξ−1
σ ]/

(
grL(D)[ξ−1

σ ] · grL(IĂ)
)
. In190

particular, grL(D)[ξ−1
σ ]⊗grL(D)grL(D/HĂ(βĂ)) = grL(D)[ξ−1

σ ]/
(
grL(D)[ξ−1

σ ] · (Pτ + grL(EĂ))
)
,191

where Pτ is the
(
grL(Iτ ) + 〈ξi | i /∈ τ〉

)
-primary component of grL(IĂ).192
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It follows that in grL(D)[ξ−1
σ ], grL(EA) is regular on grL(IĂ) and193

grL(D)[ξ−1
σ ]⊗grL(D) grL(D/(IĂ, EA − β) = grL(D)[ξ−1

σ ]/
(
grL(D)[ξ−1

σ ] · (Pτ + grL(EA))
)
.

We now show that the variety of (Pτ + grL(EA)) ⊆ grL(D)[ξ−1
σ ] has a component of dimension at194

least n+ 1 that meets T ∗(C∗)n.195

The regularity of grL(EA) on grL(IĂ) in the localized ring ensures that every component of196

grL[ξ−1
σ ](Pτ + grL(EA)) has dimension 2n − d − (n − d) = n + k − d, as τ is a facet and so197

the height of Pτ is n − d. It remains to be shown that one of its components meets T ∗(C∗)n. We198

may safely replace Pτ by
√
Pτ = grL(Iτ ) + 〈ξi | i /∈ τ〉 = grL(Iσ) + 〈ξi | i /∈ τ〉. Then we have199

grL(D)[ξ−1
σ ]
(
grL(Iσ)+〈ξi | i /∈ τ〉+grL(EA)

)
= grL(D)[ξ−1

σ ]
(
grL(Iσ)+〈ξi | i /∈ τ〉+grL(EA,τ )

)
,

whereEA,τ denotes the Euler operators arising from the submatrix ofAwhose columns are indexed200

by τ . As τ ⊇ σ is a pyramid, the right hand side above is equal to201

grL(D)[ξσ
−1]
(
grL(Iσ) + 〈ξi | i /∈ τ〉+ grL(EA,σ) + 〈xiξi | i ∈ τ r σ〉

)
,

and, in particular, it is contained in the ideal grL(D)[ξ−1
σ ]
(
grL(Iσ) + 〈ξi | i /∈ σ〉+ grL(EA,σ)

)
of202

height n− d+ k.203

To avoid confusion, for σ ∈ Φ(Ă, L), we denote by Cσ,Ă the conormal space to the orbit of the204

point 1σ ∈ Cn under the (C∗)k-action (defined by Ă). Previously defined for τ ∈ Φ(A,L) and the205

corresponding (C∗)d-action, such a conormal was written Cτ , see (2.4).206

Suppose now that Var
(
grL(D)[ξ−1

σ ]
(
grL(Iσ) + 〈ξi | i /∈ σ〉+ grL(EA,σ)

))
does not meet T ∗(C∗)n.207

As this variety contains the conormal Cσ,Ă, none of its components containing Cσ,Ă can meet208

T ∗(C∗)n in ξσ 6= 0. Any such component must be contained in a hyperplane Var(xi) inside the209

cotangent space of Cn r Var(ξσ). In particular, this must then hold for Cσ,Ă itself because its210

generic point is over ξσ 6= 0. We show now that this is impossible.211

Let Var(xi) be the presumed hyperplane that contains Cσ,Ă; since for the (C∗)k-orbit of 1σ the212

variable xi is a cotangent variable, this implies that the toric ideal Iσ does not involve ∂i. In turn,213

σ must be a pyramid by [SW12, Remark 2.5]. However, this contradicts our choices, so Cσ,Ă must214

meet T ∗(C∗)n. �215

It would be interesting to determine the structure of CharL(D/(IĂ, EA−β)). Frequently, different216

facets of theL-umbrella ofA give rise to the same “bad” component in the proof of Proposition 3.7.217

Proof of Theorem 3.1.(2). Fix a projective weight vector L on D. By Theorem 3.1.(1), we may218

replace “holonomic” by “L-holonomic.” The “if” direction is clear from the definition of L-charac-219

teristic variety. For the “only if” direction, as in the proof of Theorem 3.1.(1) above, we can reduce220

to the case of M as in Proposition 3.7. �221

4. FINITE RANK, SINGULAR LOCI, AND HOLONOMICITY222

4.1. Properness of the singular locus. As shown by Kashiwara, holonomicity implies finite rank223

for any D-module (see [SST00, Proposition 1.4.9]). The converse need not hold as obvious cases224

such as Example 4.3 show. Interestingly, for an arbitrary cyclic module D/I , the finiteness of the225

rank implications on the structure of the singular locus:226
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Proposition 4.1. If I is a left D-ideal, then D/I is of finite rank if and only if Sing(D/I) is a227

proper subset of X .228

Proof. By [SST00, Corollary 1.4.14], the rank ofD/I is the length of grF (D/I)〈ξ〉 over grF (D)〈ξ〉.229

Thus, rank(D/I) < ∞ is equivalent to grF (D/I)〈ξ〉 being an Artinian grF (D)〈ξ〉-module. To230

put this another way, for all (minimal) primes p of grF (I), the ring (grF (D)/p)〈ξ〉 is Artinian.231

Equivalently, for all (minimal) primes p of grF (I), p is not properly contained in 〈ξ〉; in other232

words, such a p either equals 〈ξ〉 or contains an element in grF (D) that lies outside of 〈ξ〉. This233

means exactly that each (minimal) prime of grF (I) that is different from 〈ξ〉 contains a nontrivial234

polynomial in x. This is because grF (I), and hence each of its (minimal) primes, is ξ-homogeneous235

and 〈ξ〉 contains all elements of positive degree. Therefore, the rank of D/I is finite exactly when236

grF (I) : 〈ξ〉∞ contains a polynomial in x, which is equivalent to properness of the singular locus237

of D/I , as desired. �238

For an arbitrary left D-ideal I , the holonomicity of D/I implies the properness of its singular239

locus [Bjö79, Subsection 5.4.6]. That the converse holds for binomial D-modules is a special240

feature of this class:241

Theorem 4.2. A binomial D-module M is holonomic if and only if its singular locus Sing(M) is242

a proper subset of X .243

Example 4.3. Over X = C2, the module D/〈x1〉 is not holonomic because its characteristic vari-244

ety is a hypersurface in C4. However, Sing(D/〈x1〉) = Var(x1), and as such, it is a proper subset245

of X . For other examples of non-holonomic modules with proper singular loci, see Example 4.4246

and [SST00, Example 1.4.10]. 7247

Proof of Theorem 4.2. For binomial D-modules, holonomicity is equivalent to having finite rank248

by [DMM10b, Theorem 6.3]. Thus, the result follows by combining [SST00, Proposition 1.4.9],249

[DMM10b, Theorem 6.3], and our Proposition 4.1. �250

Theorem 4.2 was inspired by [PST05, Proof of Theorem 7], where Proposition 4.1 was used for251

Horn hypergeometric systems. Horn hypergeometric systems are closely related to certain bino-252

mialD-modules (see [BMW13]); however, even for these systems, properness of the singular locus253

is not equivalent to holonomicity, as shown in the following example.254

Example 4.4. On X = C3, let θi := xi∂i for 1 ≤ i ≤ 3. The left D-ideal

I = D · 〈(θ1 + 2θ2 + θ3 + 2)θ1 − x1(θ1 + 2θ2)θ1,

(θ1 + 2θ2 + θ3 + 2)(θ1 + 2θ2 + θ3 + 1)θ2 + x2(θ1 + 2θ2)(θ1 + 2θ2 + 1)θ2,

(θ1 + 2θ2 + θ3 + 2) + x3θ3〉

is a nonconfluent Horn hypergeometric system of finite rank. However, D/I is not holonomic, as255

witnessed by the component Var(〈x3, x1ξ1 +x2ξ2〉) of its characteristic variety. On the other hand,256

computations in Macaulay2 [M2] verify that Sing(D/I) is indeed a proper subset of X . 7257

4.2. A formula for the singular locus. We finally produce now a polynomial that defines the258

divisorial singular locus of a binomial D-module. The point is the selection of the contributing259

toral ideals, see Corollary 4.6.260
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We first consider the divisorial singular locus of an A-hypergeometric system. By definition, the261

divisorial singular locus of D/HA(β) is obtained by removing the variety Var(ξ1, . . . , ξn) from262

CharF (D/HA(β)), projecting the resulting set onto X , and discarding the components of codi-263

mension two or higher.264

A theorem, quoted below, of Gelfand, Kapranov, and Zelevinsky [GKZ88, GKZ89] as well as265

Adolphson [Ado94] describes the divisorial singular locus of an A-hypergeometric system. We266

shall use it to characterize the divisorial singular locus of a binomial D-module.267

Let f = x̄1t
a1 + · · ·+ x̄nt

an . The Zariski closure of the set268 {
x̄ ∈ Cn

∣∣∣∣∃ t̄ ∈ (C∗)d such that f(t̄) =
∂f

∂ti
(t̄) = 0 for i = 1, . . . , d

}
is called the A-discriminantal variety. If this (irreducible) variety is a hypersurface, its defining269

polynomial is called the A-discriminant, denoted ∆A. If the codimension of the A-discriminantal270

variety is at least 2, then we set ∆A = 1. The principal A-determinant, denoted EA, is defined271

in [GKZ94, Chapter 10, Equation 1.1],272

EA = ±
∏

τ face of conv(A)

(∆τ )
µ(τ)

for certain positive integers µ(τ). See [GKZ94, Chapter 10, Theorem 1.2] for more details, as well273

as [Kap91] for a parametric treatment of A-discriminants.274

Theorem 4.5. The divisorial singular locus of an A-hypergeometric system D/HA(β) is the zero275

set of the product of all τ -discriminants arsing from the faces τ of Φ(A,F ). In particular, if all of276

the columns of A lie in a hyperplane off the origin, then Sing1(D/HA(β)) = Var(EA). 2277

Returning to the case of a binomial D-module M = D/(I, EA − β), recall from Theorem 2.6 that278

the L-characteristic variety of M is the union of L-characteristic varieties of A-hypergeometric279

systems (up to a rescaling of the variables) given by certain toral associated primes of I . An280

alternative characterization for the toral components of I is that C is toral if and only if D ·281

(
√

C , EA − β) is isomorphic to an Ã-hypergeometric system by rescaling the variables, where Ã282

is the submatrix of A consisting of the columns ai such that ∂i /∈
√

C [DMM10a, Corollary 4.8].283

This observation provides a description of the characteristic variety of a binomial D-module in284

terms of those of such Ã-hypergeometric modules. Consequently, the divisorial singular locus of285

a holonomic binomial D-module can be expressed in terms of principal τ -determinants.286

Corollary 4.6. The singular locus of a holonomic binomial D-module D/(I, EA−β) is the union287

of Sing(D/(
√

C , EA − β)), where the union runs over the toral primary components C of I such288

that −β ∈ qdeg(C[∂]/C ). The divisorial singular locus of D/(I, EA − β) is a union of rescaled289

discriminantal varieties, given by the product of the rescaled τ -discriminants for τ ∈ Φ(Ap, L),290

where, for a toral associated prime p of I , the matrix Ap has columns ai whenever ∂i /∈ p.291

REFERENCES292

[Ado94] Alan Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994),293
269–290.294

[BMW13] Christine Berkesch Zamaere, Laura Felicia Matusevich, and Uli Walther, Torus equivariant D-modules295
and hypergeometric systems, 2013, available at arXiv:1308.5901.296



10 CHRISTINE BERKESCH ZAMAERE, LAURA FELICIA MATUSEVICH, AND ULI WALTHER
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