Answers to questions from class

1. $\sum_{n=2}^{\infty} \frac{4 \cdot 6 \cdot 8 \cdots(2 n)}{5^{n+1}(n+2)!} x^{n}$.

Ratio test gives a ratio of $(2 n+2) / 5(n+3)|x|$. In the limit this is $2|x| / 5$, so ROC is $5 / 2$. At $x=-5 / 2$ the series satisfies the alternating series test conditions (check that!!!), so it converges.
At $x=5 / 2$,

$$
\begin{aligned}
\sum_{2}^{\infty} \frac{4 \cdot 6 \cdot 8 \cdots(2 n)}{5^{n+1}(n+2)!} x^{n} & =\frac{1}{10} \cdot \sum_{2}^{\infty} \frac{n!\cdot 2^{n}}{5^{n}(n+2)!}(5 / 2)^{n} \\
& =\frac{1}{10} \cdot \sum_{2}^{\infty} \frac{1}{(n+2)(n+1)}
\end{aligned}
$$

which converges by p-test with $p=2$.
2. Using the Taylor series for $\sin (x)$,

$$
\begin{aligned}
\int_{0}^{x} \sin \left(t^{2}\right) d t & =\int_{0}^{x}\left(t^{2}-t^{6} / 3!+t^{10} / 5!-\cdots\right) d t \\
& =x^{3} / 3-x^{7} /(7 \cdot 3!)+x^{11} /(11 \cdot 5!)+\cdots
\end{aligned}
$$

Since $x \in[0,1]$ is assumed, this satisfies the alternating series test (check!!!). In particular, the $(n+1)$ st term in the series bounds the error one makes when replacing the actual integral by the nth partial sum.
We want the error less than 10^{-3}, so we ask which of these terms in the series has absolute value less than that. At worst, $x=1$ and so the third term is no more than $1 / 11 \cdot 120<10^{-3}$, so we can use the approximation $x^{3} / 3-x^{7} /(7 \cdot 3!)$.
3. $\frac{x^{4}}{x^{4}+y^{2}}$ along the y-axis is 0 , but along the x-axis is 1 . So at $(0,0)$ there can be no limit.
4. The tangent plane at $P=(1,1,2)$ for the surface $x^{2}+y^{2}=z$ is perpendicular to the gradient of $x^{2}+y^{2}-z$ at $(1,1,2)$, and also passes through $(1,1,2)$. The gradient of the function at $(1,1,2)$ is $(2 x, 2 y,-1)$ at $(1,1,2)$ and this comes out to be $(2,2,-1)$. So the equation of the tangent plane looks like $2 x+2 y+(-1) z=c$, and plugging in c one finds $c=2$.
5. With $R_{1}=5000 \Omega$ and $R_{2}=1000 \Omega, R=1 /\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\left(R_{1} R_{2}\right) /\left(R_{1}+R_{2}\right)$. Then $d R=\left(R_{2} S-R_{1} R_{2}\right) d R_{1} / S^{2}+\left(R_{1} S-R_{1} R_{2}\right) d R_{2} / S^{2}$ where I abbreviate $R_{1}+R_{2}$ by S.
Then $d R_{1}=20$ and $d R_{2}=0$ leads to $d R=20\left(R_{2} S-R_{1} R_{2}\right) / S^{2}=20(1000 * 6000-$ $5000 * 1000) / 6000^{2}=20 / 36$.
On the other hand, $d R_{1}=0, d R_{2}=1$ leads to $d R=1(5000 * 6000-5000 * 1000) / 1000^{2}=$ $25 / 36$. So the small change in R_{2} has a greater effect overall than the 20 times bigger change in R_{1}.
6. $f=x^{2}+k x y+y^{2}$ has Hesse matrix $\left(\begin{array}{ll}2 & k \\ k & 2\end{array}\right)$ and discriminant $4-k^{2}$.

If $|k|<2$, this is positive and so f has a minimum (as $f_{x x}>0$). If $|k|>2$ it has a saddle.
If $k= \pm 2$, then $f=(x \pm y)^{2}$ and so it has a whole line of minima along $x \pm y=0$.
7. $a, b, c \geq 0$ means that the maximum of $f=a b^{2} c^{3}$ will not have any of $a, b, c=0$ (since then $f=0$ but $f(1,1,1)=1$ is bigger). So, we are actually looking in the open set $a, b, c>0$ with $a+b+c=3$. In other words, we can ignore the boundary.

Lagrange says, we need to satisfy the equations $g=0$ and $\nabla f=\lambda \nabla g$.
Write this out: $\left(b^{2} c^{3}, 2 a b c^{3}, 3 a b^{2} c^{2}\right)=\lambda \cdot(1,1,1)$. As all components on the right are equal, so all those on the left. That is, $b^{2} c^{3}=2 a b c^{3}=3 a b^{2} c^{2}$. Since $a b c \neq 0$, this gives $b=2 a, c=3 a$. As $a+b+c=3,6 a=3$ and hence $(a, b, c)=(1 / 2,1,3 / 2)$ realizes the maximum of f.
(It is a maximum, since it cannot be a minimum as the the minimum is zero, realized in any point where $a b c=0$).
Note: We also ought to check the places where the constraint is singular. However, the gradient of g is never zero, so no critical points can come that way.
8. If $g(x, y, z)=0$ and we choose base variables x, y then this determines $z=z(x, y)$ as a function of x, y. Then $g(x, y, z(x, y))$ is tautologically 0 .
The chain rule for $(\partial / \partial y)_{x}$, viewing z as function of x, y on the constraint says: $8 y+$ $18 z(\partial z / \partial y)_{x}=0$. Solve this for the derivative.
Next use the chain rule for $(\partial / \partial y)_{x}$ on w. You get $(\partial w / \partial y)_{x}=x(-\sin (x y) \sin (y z)+$ $\cos (x y) z \cos (y z)(\partial z / \partial y)_{x}+x z+x y(\partial z / \partial y)_{x}$. Plug in x, y, z as given, and $(\partial z / \partial y)_{x}$ as computed.

