Sample problems for midterm 2.

1. Determine for $\sum_{n=2}^{\infty} \frac{4 \cdot 6 \cdot 8 \cdot \cdots(2 n)}{5^{n+1}(n+2)!} x^{n}$ the ROC, and test whether the series converges at the two endpoints.
2. Approximate $\int_{0}^{x} \sin \left(t^{2}\right) d t$ by a polynomial on the interval $[0,1]$ to within $1 / 1000$.
3. Determine whether $\frac{x^{4}}{x^{4}+y^{2}}$ has a limit at $x=y=0$. If so, find the linit.
4. Find the tangent plane at $P=(1,1,2)$ for the surface $x^{2}+y^{2}=z$.
5. Two resistors $R_{1}=5000 \Omega$ and $R_{2}=1000 \Omega$ are in a parallel connection. Using differentials, which change in the resistors will produce a greater change in the overall resistance: increasing R_{1} by 20Ω or R_{2} by 1Ω ?
(Recall: parallel resistance satisfies $1 / R=1 / R_{1}+1 / R_{1}$.)
6. What kind of critical point does $f=x^{2}+k x y+y^{2}$ have at $x=y=0$, if k is some constant?
7. Find the maximum of $f=a b^{2} c^{3}$ if $a, b, c \geq 0$ are constrained by $a+b+c-3=0$.
8. Let $w(x, y, z)=\cos (x y) \cdot \sin (y z)+x y z$. Suppose x, y, z are constrained to the surface $x^{2}+$ $4 y^{2}+9 z^{2}=1$. Compute $(\partial z / \partial y)_{x}$ and $(\partial w / \partial y)_{x}$ in the point $(x, y, z)=(1 / 3,1 / 3,2 / 9)$.
