Sample problems for midterm 2.

- 1. Determine for $\sum_{n=2}^{\infty} \frac{4 \cdot 6 \cdot 8 \cdots (2n)}{5^{n+1}(n+2)!} x^n$ the ROC, and test whether the series converges at the two endpoints.
- 2. Approximate $\int_0^x \sin(t^2) dt$ by a polynomial on the interval [0, 1] to within 1/1000.
- 3. Determine whether $\frac{x^4}{x^4+y^2}$ has a limit at x = y = 0. If so, find the limit.
- 4. Find the tangent plane at P = (1, 1, 2) for the surface $x^2 + y^2 = z$.
- 5. Two resistors $R_1 = 5000\Omega$ and $R_2 = 1000\Omega$ are in a parallel connection. Using differentials, which change in the resistors will produce a greater change in the overall resistance: increasing R_1 by 20 Ω or R_2 by 1 Ω ?

(Recall: parallel resistance satisfies $1/R = 1/R_1 + 1/R_1$.)

- 6. What kind of critical point does $f = x^2 + kxy + y^2$ have at x = y = 0, if k is some constant?
- 7. Find the maximum of $f = ab^2c^3$ if $a, b, c \ge 0$ are constrained by a + b + c 3 = 0.
- 8. Let $w(x, y, z) = \cos(xy) \cdot \sin(yz) + xyz$. Suppose x, y, z are constrained to the surface $x^2 + 4y^2 + 9z^2 = 1$. Compute $(\partial z/\partial y)_x$ and $(\partial w/\partial y)_x$ in the point (x, y, z) = (1/3, 1/3, 2/9).