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Jim McClure

1 Definitions and Basic Facts.

The goal of this course is to help you become expert in geometry, so that you can teach
it with confidence and pleasure. We begin more or less where you left off in high school,
and then advance rather quickly to a higher level.

Here’s the big picture. The goal of geometry is to know the truth about geometrical
figures, just as the goal of astronomy is to know the truth about planets and stars,
and the goal of chemistry is to know the truth about atoms, molecules and chemical
reactions. To achieve this goal we must have a way of knowing which statements are
true and which statements are false. In sciences like astronomy and chemistry the way
to do this is to test each statement against careful observations. But this method is not
foolproof, because no observation can be perfectly accurate. For example, Newton’s laws
in physics were tested by thousands of observations over almost 200 years, but the small
uncertainties in these observations concealed the fact that there is a more accurate and
fundamental theory than Newton’s, namely Einstein’s theory of relativity.

Mathematics is the only science in which there is a way to achieve complete certainty,
with no possibility of errors due to observation. The way mathematicians do this is to
begin with a few very simple statements (called Basic Facts or Axioms) that can be
accepted as true on the basis of intuition. These are then used to prove everything else.
This means that as long as the Basic Facts are correct, everything else is guaranteed to
be completely correct.

Before we can state the Basic Facts and begin to prove things, it’s helpful to have
some special words (such as congruent or parallel) that refer to geometric figures. Thus
we begin with a section of Definitions.

1.1 Definitions.

In order to achieve complete certainty in our proofs we must avoid any uncertainty
or ambiguity in the way we use geometric terms. We need to be sure that we all mean
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the same thing by these terms and that we’re always using them in the same way. The
way to accomplish this is to begin with precise definitions. I assume that you already
know the meanings of some simple terms like point, line, line segment, and ray.

Angle An angle is the figure formed by two rays which begin at the same point; this
point is called the vertex of the angle.

Straight angle A straight angle is an angle in which the two rays point in opposite
directions on the same line. Here is a picture:

You know that we measure angles in degrees. But what is a degree?

Degree A degree is the 1
180

th part of a straight angle.

(Note: we will not consider angles bigger than 180◦).

Right Angle A 90◦ angle is called a right angle.

Perpendicular Two lines are called perpendicular if they form a right angle.

Triangle A triangle consists of three points (called vertices) and the three line segments
which connect them (called sides). The vertices are not allowed to be collinear (that
is, they are not allowed to all lie on the same line).

Congruent Triangles Two triangles 4ABC and 4DEF are congruent (written
4ABC ∼= 4DEF ) if all three corresponding angles and all three corresponding
sides are equal. Here is a picture:

A B

C

D E

F
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(Note: when we say that 4ABC is congruent to 4DEF , we mean that the vertices
match up in that order, that is, A matches with D, B matches with E, and C matches
with F .)

Similar Triangles Two triangles 4ABC and 4DEF are similar (written
4ABC ∼ 4DEF ) if all three corresponding angles are equal. (Note: a common
mistake is to say that the definition of similarity tells you that the corresponding
sides are proportional. This is not part of the definition, it is Basic Fact BF 4 in
Section 1.2). Here is a picture:

F

D EA B

C

Parallel Lines Two lines are parallel if they do not intersect.

Corresponding angles If two lines m and n are crossed by a third line (the third line
is called a transversal), then the following pairs of angles are called “corresponding
angles:” ∠1 and ∠5, ∠2 and ∠6, ∠3 and ∠7, ∠4 and ∠8.

n

m 2
1

3 4

5 6

7 8
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Midpoint of a line segment The midpoint of a segment AB is the point M on the
segment for which MA = MB.

Angle bisector The bisector of an angle is the line that goes through the vertex of the
angle and splits the angle into two equal parts.

Quadrilateral A quadrilateral consists of four points A, B, C, and D (called vertices)
and the line segments AB, BC, CD and AD (called sides).

Parallelogram A quadrilateral is a parallelogram if the opposite sides are parallel.
(Note: a common mistake is to say that the definition of parallelogram tells you
that the opposite sides are equal; this is not part of the definition, it is Theorem
10.)

Rectangle A quadrilateral is a rectangle if it has four right angles.

Square A quadrilateral is a square if it has four equal sides and four right angles.

Comment on the definitions of similar triangles and parallelogram. As I’ve
mentioned, the definition of similarity doesn’t include the fact that corresponding sides
of similar triangles are proportional, and the definition of parallelogram doesn’t include
the statement that opposite sides are equal. This means that when you want to say that
similar triangles have equal angles, you use the definition of similarity, but when you
want to say that similar triangles have proportional sides, you have to use Basic Fact
4, which is stated in Section 1.2. And when you want to say that opposite sides of a
parallelogram are parallel, you use the definition of parallelogram, but when you want
to say that opposite sides of a parallelogram are equal, you have to use Theorem 10.

Since this makes your life more complicated, I should explain why we do it this way.
As I’ve said, our method for achieving complete certainty in geometry is to begin with
Basic Facts that we can accept on the basis of intuition and then to prove everything else
using only those. But for this method to work, we have to be careful to know exactly
what we’re assuming. In particular, we must be careful to distinguish between Basic
Facts (which are statements about reality that we’re assuming) and Definitions (which
are agreements about the meanings of words). The fact that when two triangles have
equal angles they also have proportional sides is a (rather surprising) statement about
reality, it isn’t a statement about the meanings of the words. If we included this fact
in the definition of the word similar, we would be making a hidden assumption about
reality.

Here’s an analogy that can make this clearer. If we want to prove the statement that
there is water on Mars, we can’t do it by including this statement in the definition of
the word Mars or of the word water. We can only prove it by making observations, for
example by sending a spacecraft to Mars and finding water there.
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This way of using definitions is also what we do in ordinary life. For example, the
dictionary definition of “president” is “the highest executive officer in a modern republic;”
the definition does not include the statement that Washington was the first president of
the United States, although this is a true fact.

1.2 Basic Facts.

Before we can begin to prove things, we have to have as a starting point a list of
intuitively clear facts that we accept without proof. Here is a list of basic facts that you
know from high school which will be the starting points for our proofs. (When we get to
Euclid, we will see that most of these basic facts can themselves be proved by starting
from even simpler facts: Euclid gives proofs of BF 1, BF 2, BF 3, BF 4 and the second
part of BF 5).

An important point. In geometry it’s more satisfying to prove things than to base
them on intuition. Because of this, we want to keep the list of Basic Facts as short as
possible. We shouldn’t add a statement to the list of Basic Facts if there’s a way to
prove it from the other Basic Facts.

BF 1 SSS: if two triangles have three pairs of corresponding sides equal, then the tri-
angles are congruent.

BF 2 SAS: if two triangles have two pairs of corresponding sides and the included angles
equal, then the triangles are congruent. (Note: it is possible for two triangles to
have two pairs of corresponding sides and a pair of nonincluded corresponding
angles equal, and still not be congruent—can you draw an example of this?).

BF 3 ASA: if two triangles have two pairs of corresponding angles and the included side
equal, then the triangles are congruent. (Note: as you know from high school, the
AAS criterion for congruence is also valid, but we don’t include it in the list of
Basic Facts because we can prove it—see the end of Section 2.2).

BF 4 If two triangles are similar then their corresponding sides are proportional: that
is, if 4ABC is similar to 4DEF then

AB

DE
=
AC

DF
=
BC

EF

(Note: BF 4 is a “one-way street”—it does not say that if the corresponding sides
are proportional then the triangles are similar. Eventually we will prove that if the
corresponding sides are proportional then the triangles are similar.)
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BF 5 If two parallel lines ` and m are crossed by a transversal, then all corresponding
angles are equal. If two lines ` and m are crossed by a transversal, and at least one
pair of corresponding angles are equal, then the lines are parallel.

(Note: BF 5 is a two-way street: you can use it in either direction.)

Here are some simpler Basic Facts which are included for completeness: we will need
these in order to give reasons for every step in our proofs. (Euclid gives proofs of BF 10,
BF 11, BF 12, BF 13, BF 14 and part of BF 8.)

BF 6 The whole is the sum of its parts; this applies to lengths, angles, areas and arcs.

BF 7 Through two given points there is one and only one line. (This means two things.
First, it is possible to draw a line through two points. Second, if two lines have
two or more points in common they must really be the same line).

BF 8 On a ray there is exactly one point at a given distance from the endpoint. (This
means two things. First, it is possible to find a point on the ray at a given distance
from the endpoint. Second, if two points on the ray have the same distance from
the endpoint they must really be the same point.)

BF 9 It is possible to extend a line segment to an infinite line.

BF 10 It is possible to find the midpoint of a line segment.

BF 11 It is possible to draw the bisector of an angle.

BF 12 Given a line ` and a point P (which may be either on ` or not on `) it is possible
to draw a line through P which is perpendicular to `.

BF 13 Given a line ` and a point P not on `, it is possible to draw a line through P
which is parallel to `.

BF 14 If two lines are each parallel to a third line then they are parallel to each other.

BF 15 The area of a rectangle is the base times the height.

2 Some familiar theorems from high-school geome-

try.

Now we can start proving things. The facts we state from now on will be called
Theorems, not Basic Facts. Both Basic Facts and Theorems are true statements about
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reality—the difference between them is that a Basic Fact is something we accept without
proof (based on intuition) while a Theorem is something we can prove by using the Basic
Facts. (Basic Facts are also called Axioms).

A very important point. In proving theorems, we are allowed to use only three
ingredients: definitions, Basic Facts, and theorems that have already been proved. We
have to be careful not to use Theorems that have not yet been proved because we have
to avoid circular arguments: we aren’t allowed to use one theorem to prove a second and
then use the second to prove the first.

2.1 Angles formed by intersecting and parallel lines.

Before continuing we need a few more definitions:

Adjacent and Vertical Angles When two lines cross, four angles are formed. The
pairs of angles that share a side are called adjacent and the pairs of angles that do
not share a side are called vertical. In the picture, the adjacent pairs are ∠1 and
∠2, ∠1 and ∠4, ∠2 and ∠3, ∠3 and ∠4. The vertical pairs are ∠1 and ∠3, ∠2 and
∠4.

1
2

3

4

Interior and exterior angles If two lines m and n are crossed by a transversal, then
angles 1, 2, 7 and 8 are called exterior angles and angles 3, 4, 5, and 6 are called
interior angles.
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n

m

87

65

43

1
2

Alternate interior angles In the picture above, the following pairs of angles are called
“alternate interior pairs:” ∠3 and ∠6, ∠4 and ∠5.

Theorem 1. When two lines cross,

(a) adjacent angles add up to 180◦, and

(b) vertical angles are equal.

Proof Every possible picture which illustrates the theorem will look like Figure 1, so
it is enough if we show in Figure 1 that ∠1 and ∠2 add up to 180◦ and that ∠1 and ∠3
are equal. Now

(∗) ∠1 + ∠2 = ∠ABC

by BF 6, and

(∗∗) ∠ABC = 180◦

by the definition of degree. Combining (∗) and (∗∗) gives

(∗ ∗ ∗) ∠1 + ∠2 = 180◦

which is what we were to prove for part (a). An exactly similar argument shows that

(∗∗∗∗) ∠2 + ∠3 = 180◦

and we conclude that ∠1 = ∠3 by (∗ ∗ ∗), (∗∗∗∗) and algebra. This is what we were to
prove for part (b). QED
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B

A

C

4

3

2

1

Figure 1

Note: we always end a proof by writing QED. This is an abbreviation for the Latin
phrase “Quod erat demonstrandum” which means “this is what was to be proved.”

Comment on the use of pictures in proofs. We are allowed to use a picture
in a proof as long as we use a typical picture, that is, one which has only the features
guaranteed by the hypothesis, and no special features. An argument which is valid for
such a picture will automatically be valid for every other picture which satisfies the
hypothesis. Examples of the sort of thing you should be careful about: if the theorem is
to be valid for every rectangle, your proof shouldn’t be based on a picture of a square; if
the theorem is to be valid for every triangle, your proof shouldn’t be based on a picture
of an isosceles triangle.

Our next theorem collects some useful variations on BF 5.

Theorem 2. Suppose that ` and m are two lines crossed by a transversal.

(a) If ` and m are parallel, then both pairs of alternate interior angles are equal. If at
least one pair of alternate interior angles are equal, then ` and m are parallel.

(b) If ` and m are parallel, then each pair of interior angles on the same side of the
transversal adds up to 180◦. If at least one pair of interior angles on the same side
of the transversal adds up to 180◦, then ` and m are parallel.

(c) If ` and m are parallel, then each pair of exterior angles on the same side of the
transversal adds up to 180◦. If at least one pair of exterior angles on the same side
of the transversal adds up to 180◦, then ` and m are parallel.

Proof Every possible picture that illustrates the Theorem will look like Figure 2.
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1 2

3 4

7

5 6

8

Figure 2

Part (a) contains two statements, and we have to prove both. For the first statement,
we are given that ` and m are parallel, and we have to prove that the two pairs of alternate
interior angles are equal. We know that

(∗) ∠1 = ∠5

by BF 5. We also know that

(∗∗) ∠1 = ∠4

by Theorem 1(b). Combining (∗) and (∗∗) tells us that ∠4 = ∠5. An exactly similar
argument gives the equality of the other alternate interior pair.

For the second statement in part (a), we are given that a pair of alternate interior
angles are equal. It’s enough to give the proof when this pair is ∠4 and ∠5, because the
proof for the other pair is exactly similar. So we are given

(∗) ∠4 = ∠5

Theorem 1(b) tells us that

(∗∗) ∠4 = ∠1

Combining (∗) and (∗∗) tells us that ∠1 = ∠5. Since this is a pair of corresponding
angles, BF 5 tells us that ` and m are parallel.

For the first statement of part (b), we are given that the lines ` and m are parallel,
and by BF 5 this tells us that

(∗) ∠1 = ∠5

Theorem 1(a) tells us that

(∗∗) ∠1 + ∠3 = 180◦
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Combining (∗) and (∗∗) tells us that ∠3 +∠5 = 180◦. An exactly similar argument tells
us that the other two interior angles also add up to 180◦.

For the second statement of part (b), we are given that a pair of interior angles on
the same side of the transversal adds up to 180◦. It’s enough to give the proof when this
pair is ∠3 and ∠5, since the argument is exactly similar if it is the other pair. So we are
given

(∗) ∠3 + ∠5 = 180◦

Theorem 1(a) tells us

(∗∗) ∠1 + ∠3 = 180◦

Combining (∗) and (∗∗) we see that ∠1 = ∠5, and by BF 5 we conclude that ` and m
are parallel.

The proof of part (c) is a homework problem. QED

A convenient shortcut. When one part of an argument repeats an earlier part
word for word, with only the names of the points and lines changed, you’re allowed (and
encouraged) to skip the repetition and just say this part is “similar” This happened in
the proof of Theorem 1 and several times in the proof of Theorem 2. But the part that’s
skipped must be an exact repetition of an earlier part—if it merely resembles an earlier
part you still have to give it in full.

2.2 The sum of the angles of a triangle.

Theorem 3. The angles of a triangle add up to 180◦.

Proof Refer to Figure 3. BF 13 allows us to draw a line m through C which is parallel
to AB. Now

(∗) ∠1 + ∠2 + ∠3 = 180◦

by BF 6. Theorem 2(a) tells us that

(∗∗) ∠1 = ∠A

and

(∗ ∗ ∗) ∠3 = ∠B

Combining (∗), (∗∗) and (∗ ∗ ∗) we see that ∠A + ∠B + ∠2 = 180◦, which is what we
were to show. QED
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A B

C

1 2
3

m

Figure 3

Note We don’t need to consider the different ways the picture might look because
the argument works exactly the same way for all possible pictures.

Theorem 4. If two triangles ABC and DEF have ∠A = ∠D and ∠B = ∠E then also
∠C = ∠F .

Proof We know from Theorem 3 that

∠A+ ∠B + ∠C = 180◦

Combining this with the given, we have

(∗) ∠D + ∠E + ∠C = 180◦

But using Theorem 3 again we have

(∗∗) ∠D + ∠E + ∠F = 180◦

By (∗), (∗∗) and algebra we conclude that ∠C = ∠F . QED

Comment on the AAS criterion for congruence. Suppose that you have two triangles
and you know that two pairs of corresponding angles and a nonincluded pair of corre-
sponding sides are equal. You can’t apply BF 3 directly to this situation, but Theorem
4 implies that all corresponding pairs of angles are equal, and then BF 3 does apply. So
when you are in the AAS situation, you may conclude that the triangles are congruent,
with the justification “Theorem 4 and BF 3.” (For an example, see the proof of Theorem
5).
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2.3 Isosceles triangles.

Theorem 5. (a) If two sides of a triangle are equal then the opposite angles are equal.

(b) If two angles of a triangle are equal then the opposite sides are equal.

C

A B

Comment. This theorem is a two-way street: it says that if you are given either one
of the statements “two sides are equal” or “two angles are equal” then the other statement
must also be true. There is a convenient abbreviation for this kind of situation: if we
have a theorem that says “if A is true then B is true, and if B is true then A is true,”
we can state it more briefly by saying “A is true if and only if B is true” or even more
briefly by A ⇐⇒ B. For example, we can restate Theorem 5 as “Two sides of a triangle
are equal⇐⇒ the opposite angles are equal.” It’s important to note that, when we want
to prove a theorem that has ⇐⇒ , we have to give two proofs, one for each direction.

Proof of Theorem 5 We begin with part (a). This means that in Figure 4 we are
given that AC = BC and we want to prove ∠A = ∠B. Find the midpoint M of AB
(which we are allowed to do by BF 10) and connect it to C. In triangles AMC and
BMC we have AC = BC (given), AM = MB (definition of midpoint) and MC = MC.
Now by BF 1 we have 4AMC ∼= 4BMC, and from this we conclude that ∠A = ∠B
(definition of congruent triangles).
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C

MA B
? ?

Figure 4

For part (b), we are given that ∠A = ∠B and we want to prove that AC = BC. Draw
the perpendicular line m from C to AB (allowed by BF 12) and give the intersection of
m and AB the name D (see Figure 5). Then ∠1 = ∠2 (since both are right angles by
the definition of perpendicular) and ∠A = ∠B (given). Thus ∠3 = ∠4 (by Theorem 4).
Furthermore, CD = DC, so 4ADC ∼= 4BDC (by BF 3) and from this we conclude
that AC = BC (definition of congruent triangles). QED

C

D BA

43

21

??

m
Figure 5

Note: In this proof, M and D are actually the same point. However, because they
are constructed by different recipes, the information which is available for use is different
in the two parts of the proof: for part (a) we are allowed to use the fact that AM = MB,
whereas for part (b) what we are allowed to use is that ∠ADC and ∠BDC are right
angles.

There is a standard name for the kind of triangle described in Theorem 5:
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Isosceles A triangle with two equal sides is called isosceles.

The word “isosceles” is a Greek word meaning “equal sides.” Using this terminology,
Theorem 5 says that a triangle is isosceles ⇐⇒ it has two equal angles.

More about definitions. As I’ve mentioned, a frequently asked question about
definitions is why they don’t include more information. For example, why doesn’t the
definition of isosceles say that an isosceles triangle has both two equal sides and two equal
angles? At first sight, this might seem to make Theorem 5 unnecessary. But more careful
thought shows otherwise. Suppose we did define “isosceles” to mean two equal sides and
two equal angles. We would still want to know that whenever two sides are equal we
are guaranteed that two angles will be equal—that is, we would want to know that if a
triangle has two equal sides then it is “isosceles” in the new sense. And we would also
want to know that if it has two equal angles then it is “isosceles” in the new sense. In
other words, we would still want to know both parts of Theorem 5, and the proof of
Theorem 5 wouldn’t be any easier than before. The moral of this discussion is that by
making the definition more complicated we wouldn’t actually have made anything else
simpler. So we might as well at least make the definition as simple as possible, and this
is what mathematicians usually do.

To put it another way, Theorem 5 is a fact about reality, so our only choice is to prove
it or add it to the list of Basic Facts. We aren’t allowed to hide it inside a definition.

2.4 The area of a triangle.

Our goal in this section is to prove that the area of a triangle is one-half of the base
times the height. We begin with a special case.

Theorem 6. In triangle ABC, if ∠B is a right angle then the area of the triangle is
1
2
AB ·BC.

Proof Using BF 13, draw a line m through A parallel to BC and a line n through
C parallel to AB (see Figure 6). Give the intersection of m and n the name D. Then
∠1 = ∠4 by Theorem 2(a) (using the fact that AD and BC are parallel) and ∠2 = ∠3 by
Theorem 2(a) again (this time using the fact that AB and CD are parallel). Furthermore,
AC = AC, so by BF 3 we have 4ABC ∼= 4CDA. Now the area of ABCD is equal to
the sum of the areas of ABC and CDA (by BF 6), and the areas of these two triangles
are the same (since they are congruent) so we conclude that the area of ABCD is twice
the area of ABC: in other words,

(∗) area of ABC = 1
2

area of ABCD

Next we want to show that ABCD is a rectangle. We are given that ∠B is a right angle,
and so by Theorem 2(b) we know that ∠BCD is also a right angle. Using Theorem 2(b)
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again, this implies that ∠D is a right angle, and this in turn implies (by one more use
of Theorem 2(b)) that ∠DAB is a right angle. Now we have shown that ABCD is a
rectangle (definition of rectangle) and so we know by BF 15 that

(∗∗) area of ABCD = AB · BC.

Combining (∗) and (∗∗) gives us the formula which was to be proved. QED

D C

BA

4
3

2
1

m

n

Figure 6

Next we need some definitions.

Distance from a point to a line The distance from a point P to a line m is defined
to be the length of the line segment from P to m which is perpendicular to m.

P

m

Base and height of a triangle In triangle ABC, any side can be chosen as the base.
Once we have chosen the base, the height is the distance from the remaining vertex
to the line containing the base.

For example, if we choose BC as the base, then the height is the distance from A to
←→
BC. (Remember that “distance” has just been defined to mean the perpendicular
distance.) The perpendicular from A to BC will be inside of the triangle if the
base angles are both less than 90◦ but if one of them is bigger than 90◦ it will be
outside the triangle, as shown in the following picture.
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A BA B

C

C

h

h

Theorem 7. The area of a triangle is one-half of the base times the height.

Note. For each triangle we are really getting three formulas for the area, because
there are three ways of choosing the base.

In the proof of Theorem 7, for the first time, we have to consider different ways that
the picture might look, because the argument will be different.

Proof of Theorem 7. It’s enough to give the proof when AB has been chosen as the
base: the other two possibilities are proved by exactly similar arguments. Draw the line

m that goes through C and is perpendicular to
←→
AB (as we may by BF 12) and give the

intersection of this line with
←→
AB the name D. There are four cases to consider:

Case (i). D is between A and B

Case (ii). D is to the right of B or to the left of A.
Case (iii). D is the same point as A.
Case (iv). D is the same point as B.

DD BA

C

B

C

A

Case (ii)Case (i)
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B=D
A

CC

BA=D

Case (iv)Case (iii)

In all four cases CD is the height of the triangle (by definition of height) and the
angle formed by CD and line AB is a right angle (by definition of perpendicular).

In case (i) we have

area of ABC = area of ADC + area of BDC by BF 6

=
1

2
AD ·DC +

1

2
BD ·DC by Theorem 6

=
1

2
(AD +BD)DC by algebra

=
1

2
AB ·DC by BF 6

and this is what was to be shown for this case.
In case (ii), the area of ADC is equal to the area of ABC plus the area of BDC (by

BF 6) and so

area of ABC = area of ADC − area of BDC

=
1

2
AD ·DC − 1

2
BD ·DC by Theorem 6

=
1

2
(AD −BD)DC by algebra

=
1

2
AB ·DC by BF 6 and algebra

and this is what was to be shown for this case.
In case (iii) ∠A must be a right angle, so we can apply Theorem 6. Case (iv) is

similar. QED

2.5 The Pythagorean Theorem and the Hypotenuse-Leg The-

orem.

Theorem 8 (Pythagorean theorem). In a right triangle the sum of the squares of
the two legs is equal to the square of the hypotenuse.
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Proof In Figure 7, we are given that ∠ACB is a right angle, and we want to prove that
a2 + b2 = c2 (where a, b and c are the lengths of BC, AC and AB respectively). We
draw a perpendicular line ` from C to AB (which we are allowed to do by BF 12) and
label the intersection of ` and AB by F . Let d and e stand for the lengths of AF and
BF ; note that

(∗) d+ e = c

by BF 6.
Now ∠1 = ∠ACB (because both are right angles) and ∠A = ∠A, so by Theorem 4

and the definition of similarity we see that 4ABC ∼ 4ACF . Using BF 4, we see that

c/b = b/d

and algebra tells us

(∗∗) b2 = cd

An exactly similar argument shows that 4ABC ∼ 4CBF , and BF 4 tells us that

c/a = a/e

which by algebra gives

(∗ ∗ ∗) a2 = ce

Combining (∗), (∗∗) and (∗ ∗ ∗) we see that

a2 + b2 = ce+ cd = c(e + d) = c · c = c2

and this is what we wanted to show. QED

d e

b a

F

C

A B

1 2

Figure 7

From the Pythagorean Theorem it is easy to prove the Hypotenuse-Leg criterion for
congruence:
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Theorem 9 (Hypotenuse-Leg Theorem). In triangles ABC and DEF , if ∠A and
∠D are right angles, and if BC = EF and AB = DE, then 4ABC ∼= 4DEF . That is,
if two right triangles have the hypotenuse and a leg matching then they are congruent.

F

ED

C

BA

Proof The Pythagorean Theorem says that

AB2 + AC2 = BC2

and

DE2 +DF 2 = EF 2

Combining these equations with the given, we see that AC2 = DF 2, and since AC and
DF are positive numbers this implies AC = DF . Now BF 2 tells us that 4ABC ∼=
4DEF . QED

2.6 Parallelograms.

Theorem 10. If ABCD is a parallelogram then opposite sides of ABCD are equal.

Proof In Figure 8, we are given that ABCD is a parallelogram. Connect A and C by
a line segment. Now AB is parallel to CD (by definition of parallelogram) so

(∗) ∠1 = ∠4

(Theorem 2(a)). Also, AD is parallel to BC (definition of parallelogram) so

(∗∗) ∠2 = ∠3

(Theorem 2(a)). Furthermore, AC = AC, and so 4ACD ∼= 4CAB (BF 3). From this
we conclude that AB = CD and AD = BC (definition of ∼=). QED
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Theorem 11. If ABCD is a parallelogram then opposite angles of ABCD are equal.

Proof By Theorem 2(b), ∠A+∠B = 180◦ and ∠B+∠C = 180◦. Combining these two
equations gives ∠A = ∠C. The proof that ∠B = ∠D is similar. QED

Theorem 12. If a quadrilateral has a pair of sides which are equal and parallel then it
is a parallelogram.

The proof of Theorem 12 is a homework problem.

Theorem 13. A quadrilateral is a parallelogram ⇐⇒ the diagonals bisect each other
(that is, ⇐⇒ the intersection of the two diagonals is the midpoint of each diagonal).

The proof of Theorem 13 is a homework problem.

3 More about triangles.

3.1 The line through the midpoints of two sides of a triangle.

We begin with a convenient piece of algebra.

Theorem 14. (a) Suppose that C is a point on the segment AB. C is the midpoint of
AB ⇐⇒ AB = 2AC.

(b) A line segment can have only one midpoint.

Proof For (a), we begin with the =⇒ direction, so we are given that C is the midpoint
of AB. Now AB = AC + BC (by BF 6) and also AC = BC (definition of midpoint).
Combining these equations gives AB = 2AC.

In the⇐= direction, we are given that AB = 2AC. But we also have AB = AC+BC
(by BF 6). Combining these equations gives AC = BC, so C is the midpoint of AB
(definition of midpoint).
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For (b), suppose that C and C ′ were both midpoints of AB. Then AC = 1
2
AB and

AC ′ = 1
2
AB (both by part (a)) and so AC = AC ′. Now BF 8 tells us that C and C ′ are

the same point. QED

Theorem 15. In triangle ABC, let D be the midpoint of AC and suppose that E is a
point on BC with DE parallel to AB. Then E is the midpoint of BC and DE = 1

2
AB.

Proof (See Figure 9) By BF 5, ∠1 = ∠2 and ∠3 = ∠4. Also, ∠C = ∠C. Thus
4ABC ∼ 4DEC (definition of similarity), and therefore

(∗) AC

DC
=
BC

EC
=
AB

DE

by BF 4. Since we are given that D is the midpoint of AC, we can apply Theorem 14(a)
to get

(∗∗) AC

DC
= 2

Combining (∗) and (∗∗) we see that
BC

EC
= 2, so that E is the midpoint of BC by

Theorem 14(a).
Finally, (∗) and (∗∗) also tell us that

AB

DE
= 2

so that DE = 1
2
AB. QED

ED

A B

C

1

2

3

4

Figure 9

Our next theorem is closely related to Theorem 15 but considerably trickier to prove.
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Theorem 16. In triangle ABC, let D be the midpoint of AC and let E be the midpoint
of BC. Then DE is parallel to AB and DE = 1

2
AB.

Notice that the picture which illustrates this theorem is the same as that for Theorem
15, but the information we are given about this picture is different.

Proof Use BF 13 to draw a line m through D which is parallel to AB. Give the
intersection of m and BC the name F . Then

(∗) DF is parallel to AB

so we can apply Theorem 15 to conclude that F is the midpoint of BC. But then F is
really the same point as E (by Theorem 14(b)). Now BF 7 tells us that DE is the same
line as DF , so DE is parallel to AB by (∗). Finally, since we now know that E satisfies
the hypothesis of Theorem 15, we can apply Theorem 15 to conclude DE = 1

2
AB.

QED

The proof of Theorem 16 is the trickiest we have seen so far. You should study
this proof carefully, because we will be using similar ideas in several other proofs and
homework problems. Note that Theorem 16 would be rather easy if we had a Basic Fact
that said that triangles with two sides proportional and the included angle equal are
similar. But we don’t include this fact among the Basic Facts, because we can prove it
using the Basic Facts we already have. We will do so in the next section.

3.2 The SAS and SSS criteria for similarity.

Theorem 17 (SAS for similarity). In triangles ABC and DEF , if ∠C = ∠F and
AC

DF
=
BC

EF
then 4ABC ∼ 4DEF .

The proof is rather tricky. The basic idea is to make a copy of 4DEF on top of
4ABC, and then show that the copy is similar to 4ABC. But we won’t know that the
copy is actually congruent to 4DEF until almost the end of the proof.

Proof (See Figure 10) On ray
−→
CA mark a point D′ with CD′ = FD (this is allowed

by BF 8). Draw the line m through D′ which is parallel to AB (allowed by BF 13) and
give the intersection of m and BC the name E ′.

Our first goal is to show that 4D′E ′C ∼ 4ABC. Since m is parallel to AB, we can
use BF 5 to see that ∠1 = ∠2 and ∠3 = ∠4. Also, ∠C = ∠C, so

(∗) 4D′E ′C ∼ 4ABC

Our next goal is to see that 4D′E ′C ∼= 4DEF . Because of the way D′ was con-
structed we know

(∗∗) D′C = DF
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Next we use (∗) and BF 4 to get

(∗ ∗ ∗) AC

D′C
=
BC

E ′C

Combining (∗∗) and (∗ ∗ ∗) we have

AC

DF
=
BC

E ′C

and comparing this with the given we obtain

BC

E ′C
=
BC

EF

which by algebra gives E ′C = EF . But we were given that ∠C = ∠F , so we can apply
BF 2 to get

(∗∗∗∗) 4D′E ′C ∼= 4DEF

Now (∗) tells us that ∠1 = ∠2, and (∗∗∗∗) tells us that ∠1 = ∠D, so we conclude that
∠2 = ∠D. Similarly, ∠4 = ∠E. And we were given ∠C = ∠F , so 4ABC ∼ 4DEF by
definition of similarity. QED

F

E

E'

D

D'

C

BA

1

2

3

4

m

Figure 10

There is also a criterion for similarity analogous to the SSS criterion for congruence
(it’s the other direction of BF 4).

Theorem 18 (SSS for similarity). In triangles ABC and DEF , if
AB

DE
=
AC

DF
=
BC

EF
then 4ABC ∼ 4DEF .

The proof is a homework problem.
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3.3 The sine of an angle.

In this section we introduce the sine of an angle and use it to give a new formula for
the area of a triangle.

First we need an official definition for the sine, and before stating it we need to set

the stage. Let ∠ABC be any angle, and choose a point D on
−→
BC. By BF 12 we can

draw a line m through D perpendicular to
←→
AB. Give the intersection of m and

←→
AB the

name E. Notice that there are three cases, depending on whether ∠ABC is less than
90◦, equal to 90◦, or greater than 90◦:

E

C

D

E

C

D

B=E A B AAB

C

D

ABC < 90 A B C = 9 0 ABC > 90

In all three cases the sine is given by the same formula:

Definition of sine. The sine of ∠ABC is
DE

DB
.

Notice that for angles less than 90◦ this agrees with the formula you learned in high
school:

sin =
opposite

hypotenuse

When applying the definition of sine to an angle you have the freedom to choose any
point D you want (as long as D is on one of the sides of the angle). All choices are
guaranteed to give the same answer, because if you choose D and your friend chooses

D′ the triangles DEB and D′E ′B will be similar, and so
DE

DB
will be equal to

DE ′

DB′
by

BF 4. See Figure 11.
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Figure 11

There is a useful relationship between the sines of angles that add up to 180◦:

Theorem 19. sin(∠ABC) = sin(180◦ − ∠ABC)

Proof In Figure 12, ∠FBC = 180◦ − ∠ABC (by BF 6 and algebra). When we apply
the definition of sine to ∠ABC we get

sin(∠ABC) =
DE

DB

and when we apply the definition of sine to ∠FBC we get

sin(∠FBC) =
DE

DB

so sin(∠ABC) = sin(∠FBC) QED

E

D
C

FA B

Figure 12

Theorem 20. For any triangle ABC, the area can be calculated by any of the following
three formulas:

area of 4ABC =
1

2
AB ·AC · sin∠A
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area of 4ABC =
1

2
AB ·BC · sin∠B

area of 4ABC =
1

2
AC ·BC · sin∠C

that is, the area is one half the product of two sides times the sine of the included angle.

Proof It is enough to give the proof of the first formula—the proofs of the other two
are completely similar. There are three cases: ∠A < 90◦, ∠A = 90◦, and ∠A > 90◦ (see
Figure 13), but in fact the proof is the same in all three cases. Let us choose AB to be
the base of the triangle, and (as usual) use BF 12 to draw a line through C perpendicular

to
←→
AB which intersects

←→
AB at a point E. Then CE is the height of the triangle, and so

we have

(∗) area of 4ABC =
1

2
AB · CE

by Theorem 7. But the definition of sine says

sin(∠A) =
CE

CA

and so

(∗∗) CE = CA · sin(∠A)

Combining (∗) and (∗∗) gives the formula we wanted to prove. QED

C

EE A=E B A BA B

C C

Figure 13

By comparing the three formulas in Theorem 20, we get an interesting relationship
called the Law of Sines:

Theorem 21 (Law of Sines). In any triangle ABC,

sin(∠A)

BC
=

sin(∠B)

AC
=

sin(∠C)

AB
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Proof Theorem 20 tells us that

(∗) 1

2
AB · AC sin(∠A) =

1

2
AB · BC sin(∠B)

(since both sides of the equation are equal to the area of 4ABC). Now (∗) and algebra
give

sin(∠A)

BC
=

sin(∠B)

AC

The proof of the other equality is completely similar. QED
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4 Concurrence Theorems.

Definition of concurrent lines Three lines are concurrent if they meet at a single
point.

non-concur ren t  l i nesconcurrent  l ines

It’s very unusual for three lines to be concurrent—ordinarily three lines will form a
triangle. But in this chapter we will see that certain kinds of lines associated with a
triangle are forced to be concurrent.

4.1 Concurrence of the perpendicular bisectors, angle bisec-
tors, and altitudes.

Our first “concurrence theorem” concerns the perpendicular bisectors of the sides of a
triangle.

Definition of perpendicular bisector The perpendicular bisector of a line segment
is the line that goes through the midpoint and is perpendicular to the segment.

A common mistake: Suppose you have a point A and a line segment BC, and you
put the following statement in a proof: “Draw the perpendicular bisector of BC through
A” This is wrong because the perpendicular bisector of BC may not go through A. It’s
a useful exercise to see why a step like this is not justified by BF 10 and BF 12. BF 10
allows us to find the midpoint M of BC, and BF 12 allows us to draw a line m through
M which is perpendicular to BC; then m is the perpendicular bisector of BC. On the
other hand, BF 12 also allows us to draw a line n through A which is perpendicular to
line BC. But m and n will not ordinarily be the same line, so it’s not allowable to say
“Draw the perpendicular bisector to BC through A,” because ordinarily there is no such
line.
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M

C

B

A

n

m

Theorem 22. For any triangle ABC, the perpendicular bisectors of AB, AC and BC
are concurrent.

It turns out the that obvious way of trying to prove Theorem 22 leads to a dead end.
Anyone’s first idea would be to draw the three perpendicular bisectors and see what
happens. But then there would be two cases: the three perpendicular bisectors might
meet in a point as in Figure 14:

A B

C

Figure 14

but since we don’t yet know Theorem 22 we can’t assume that the picture wouldn’t look
like Figure 15:
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A B

C

Figure 15

and Figure 15 is a dead end: there’s nothing interesting we can say about it.
Instead, we do something trickier. We draw two of the perpendicular bisectors,

then draw the line segment connecting their intersection to the third midpoint, and use
congruent triangles to show that this line segment is the third perpendicular bisector.
Here are the details:

Proof of Theorem 22 Find the midpoints M , N , and P of AB, AC, and BC re-
spectively (which we are allowed to do by BF 10). Now draw a line m through M
perpendicular to AB and a line n through N perpendicular to AC (allowed by BF 12)
and give the intersection of m and n the name X. Connect X to P . There are three
cases:

Case (i) X is inside the triangle.

Case (ii) X is outside the triangle.

Case (iii) X is on BC.

I’ll give the proof of Case (i) here and ask you to do the other two on the homework.

(See Figure 16.) Our strategy is to show that XP is the perpendicular bisector
of BC. First observe that AM = MB (definition of midpoint), MX = MX, and
∠AMX = ∠BMX (by definition of perpendicular). So 4AMX ∼= 4BMX by BF 2,
and hence

(∗) AX = BX

(by the definition of congruent triangles). Similarly, 4ANX ∼= 4CNX, so

(∗∗) AX = CX
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Combining (∗) and (∗∗) gives

BX = CX

But also CP = BP (definition of midpoint) and PX = PX so 4CPX ∼= 4BPX (by
BF 1) and therefore

(∗ ∗ ∗) ∠1 = ∠2

(definition of congruent triangles). On the other hand, Theorem 1(a) says that

(∗∗∗∗) ∠1 + ∠2 = 180◦

Combining (∗ ∗ ∗) and (∗∗∗∗) we see that ∠1 = 90◦, so PX is perpendicular to BC

(definition of perpendicular). Since we already knew that P is the midpoint of BC, we
conclude that

(†) PX is the perpendicular bisector of BC

(definition of perpendicular bisector).
Now X is on the perpendicular bisectors of AB and AC (because of the way X was

constructed) and also on the perpendicular bisector of BC (by (†)). That is, all three
perpendicular bisectors contain X, and so they are concurrent (definition of concurrent).
QED

X

M

P
N

A B

C

1

2

Figure 16

Definition of circumcenter The point where the three perpendicular bisectors of the
sides of a triangle meet is called the circumcenter of the triangle.
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Note: In the proof of Theorem 22, X turned out to be the circumcenter of 4ABC
and we showed that XA = XB = XC. This means that the circle with center X that
goes through A also goes through B and C. Thus X is the center of a circle that goes
through the three vertices of the triangle. This circle is called the circumscribed circle of
4ABC, and because of this its center X is called the circumcenter.

We conclude this section with two more concurrence theorems.

Theorem 23. For any triangle ABC, the bisectors of ∠A, ∠B and ∠C are concurrent.

The proof is a homework problem.

Definition of incenter The point where the three angle bisectors meet is called the
incenter of the triangle.

The incenter turns out to be the center of a circle which is tangent to all three sides of
the triangle; this circle is called the inscribed circle of the triangle and this is the reason
for the name “incenter.”

Definition of altitude An altitude of a triangle is a line that goes through a vertex of
the triangle and is perpendicular to the opposite side.

Theorem 24. For any triangle ABC, the three altitudes are concurrent.

The proof is a homework problem.

Definition of orthocenter The point where the three altitudes meet is called the or-
thocenter of the triangle.

The name “orthocenter” is somewhat misleading since this point isn’t the center of
an interesting circle. The name comes from the fact that “orthogonal” is another word
for perpendicular.

4.2 Concurrence of the medians.

Definition of median A median of a triangle is a line that goes through a vertex of
the triangle and through the midpoint of the opposite side.

We will show that the medians of a triangle are always concurrent. In order to prove
this, we need a preliminary fact which is interesting for its own sake.

Theorem 25. The point where two medians of a triangle intersect is 2/3 of the way
from each of the two vertices to the opposite midpoint.
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Proof In Figure 17, We are given that AP and BN are medians and that X is their
intersection. We need to prove that AX = 2

3
AP and BX = 2

3
BN .

Connect N and P . N and P are the midpoints of AC and BC (by definition of
median) so by Theorem 16 we see that NP is parallel to AB. But then ∠1 = ∠4 and
∠2 = ∠3 (Theorem 2(a)), and so 4ABX ∼ 4PNX (Theorem 4 and the definition of
similar triangles). Now BF 4 implies

(∗) AX

XP
=
BX

XN
=
AB

NP

But Theorem 16 also tells us that
AB

NP
= 2, so (*) implies

(∗∗) AX = 2XP

On the other hand, BF 6 gives

(∗ ∗ ∗) AX +XP = AP

and combining (∗∗) and (∗ ∗ ∗) we see that AX = 2
3
AP . A similar argument shows that

BX = 2
3
BN . QED

X

PN

C

BA

3

2

4

1

Figure 17

Theorem 26. For any triangle ABC, the three medians are concurrent.

Proof Find the midpoints of AB, AC and BC (as we may do by BF 10) and call
them M , N and P respectively. Then AP , BN , and CM are the medians of 4ABC
(definition of median).
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Give the intersection of AP and BN the name X (see Figure 18). Then

(∗) AX =
2

3
AP

by Theorem 25.
Next, give the intersection of AP and CM (see Figure 19) the name Y . Then

(∗∗) AY =
2

3
AP

by Theorem 25.
Combining (∗) and (∗∗) we see that AX = AY . But then X and Y are the same

point, by BF 8. Now X is on AP and BN (because of the way it was constructed) and
it is also on CM (because X is the same point as Y ). So all three medians contain X,
and hence they are concurrent (definition of concurrent). QED

X Y

N P

M

P

A B

C

A B

C

Figure 18 Figure 19

Definition of centroid The point where the three medians meet is called the centroid
of the triangle.

4.3 The Euler line.

Definition of collinear Three points are said to be collinear if they all lie on the same
line.

In this section we will prove:

Theorem 27. Let ABC be any triangle. Let O be the circumcenter of ABC, let G be
the centroid of ABC, and let H be the orthocenter of ABC. Then O, G and H are
collinear.
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This theorem was first proved by Euler in the eighteenth century by analytic geometry.
The proof we will give was first discovered in the nineteenth century.

Proof See Figure 20. We will use an indirect approach, so we use BF 8 to construct a

point H ′ on
←→
OG, on the opposite side of G from O, with

(∗) H ′G = 2OG

Our goal is to show that H ′ is the same point as H , and for this we only need to show
that H ′ lies on all three altitudes of 4ABC.

Construct the midpoint M of AB (possible by BF 10) and connect CM . CM is a
median of 4ABC (definition of median) and so G is on CM (definition of centroid).
Theorem 25 tells us that CG = 2

3
CM . Using BF 6 and algebra, we see that MG = 1

3
CM ,

so

(∗∗) CG

MG
= 2

Now draw in
←→
OM and

←→
CH ′. By Theorem 1(b) we have

(∗ ∗ ∗) ∠OGM = ∠H ′GC

Combining (∗), (∗∗), (∗ ∗ ∗) and Theorem 17 we obtain

(∗∗∗∗) 4OGM ∼ 4H ′GC

Now by definition of similar triangles we have ∠OMG = ∠H ′CG, and by Theorem 2(a)
we see that

(†) OM is parallel to
←→
CH ′.

Next observe that the perpendicular bisector of AB contains O (by definition of
circumcenter) and M (by definition of perpendicular bisector). It is therefore the same
line as OM by BF 7; this tells us that OM is perpendicular to AB (by definition
of perpendicular bisector) and so we have ∠1 = 90◦ (by definition of perpendicular).
Therefore ∠2 = 90◦ by BF 5. This tells us that CH ′ is perpendicular to AB (definition
of perpendicular) and therefore CH ′ is an altitude of 4ABC (definition of altitude).
That is, H ′ is on the altitude of 4ABC that goes through C.

Similarly, H ′ is on the other two altitudes of 4ABC. Since H is also on all three
altitudes (definition of orthocenter), we conclude that H and H ′ are the same point.

Since we constructed H ′ to be on
←→
OG, we now know that H is on

←→
OG, so O, G and H

are collinear (definition of collinear). QED
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5 The Theorems of Menelaus and Ceva.

5.1 The Theorem of Menelaus.

Our next goal is to prove:

Theorem 28 (Theorem of Menelaus). Let ABC be any triangle. Let A′ be a point

of
←→
BC other than B and C, let B′ be a point of

←→
AC other than A and C, and let C ′ be

a point of
←→
AB other than A and B. If A′, B′ and C ′ are collinear then

A′B

A′C

B′C

B′A

C ′A

C ′B
= 1

The following picture illustrates the two cases of the theorem: either the line A′B′C ′

crosses the triangle, or it stays entirely outside the triangle.

B'

B'

C'

A'

A'

A B

C

A B

C

C'

The Theorem is named after Menelaus, who was a Greek mathematician in Alexan-

dria in the second century AD. A line which crosses all three of the lines
←→
AB,

←→
AC and

←→
BC, without going through any of the points A, B and C, is called a Menelaus line.

Proof We have to prove both cases:

Case (i) The Menelaus line A′B′C ′ crosses the triangle.

Case (ii) The Menelaus line A′B′C ′ is entirely outside the triangle.

I’ll give the proof for Case (i); the other case is a homework problem.

(See Figure 21) Draw a line m through B parallel to AC (allowed by BF 13) and give
the intersection of m with the line A′B′C ′ the name X. Now ∠1 = ∠2 and ∠3 = ∠4
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(both by BF 5 applied to the parallel lines AC and m), so 4BC ′X ∼ 4AC ′B′ by
Theorem 4 and the definition of similarity. This allows us to apply BF 4 to get

(∗) C ′B

C ′A
=
BX

B′A

Next, we have ∠5 = ∠6 and ∠7 = ∠8 (both by Theorem 2(a) applied to the parallel lines
AC and m) and so 4BA′X ∼ 4CA′B′ by Theorem 4 and the definition of similarity.
This allows us to apply BF 4 to get

(∗∗) A′B

A′C
=
BX

B′C

Solving (∗) for BX gives

(∗ ∗ ∗) BX =
C ′B

C ′A
B′A

and solving (∗∗) for BX gives

(∗∗∗∗) BX =
A′B

A′C
B′C

Combining (∗ ∗ ∗) and (∗∗∗∗) we have

(†) C ′B

C ′A
B′A =

A′B

A′C
B′C

and multiplying both sides of (†) by
C ′A

C ′B

1

B′A
gives

1 =
A′B

A′C

B′C

B′A

C ′A

C ′B

which is what we were to prove. QED
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Figure 21

Note: The statement of Menelaus’s theorem looks complicated, but there’s an easy
way to remember it. Suppose we want to apply it to the triangle PQR and the Menelaus
line SMA in the following picture:

S

A

M

R

Q

P

First write out a partial version of the Menelaus equation using just the points on
the Menelaus line (in any order):

S

S

M

M

A

A
= 1

Now fill in the rest by pairing each point on the Menelaus line with the two vertices
of the side that contains it, but make sure that each vertex appears once in the numerator
and once in the denominator. In our example, the point S gets paired with Q and R,
the point M gets paired with P and Q, and the point A gets paired with P and R.
We can choose whether to put SQ or SR in the numerator, but after that all choices
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are determined. If we put SQ in the numerator, then in the second factor MQ has to
go in the denominator (so that Q will appear once in the numerator and once in the
denominator), and so on.

SQ

SR

MP

MQ

AR

AP
= 1

If you go through the process with the points on the Menelaus line in a different order,
or if you make a different choice about what goes in the numerator in the first factor,
you get a different way of writing the same equation. For example, if we put the points
on the Menelaus line in the order ASM and put AP in the numerator of the first factor,
we get

AP

AR

SR

SQ

MQ

MP
= 1

which is just the reciprocal of the previous equation.

5.2 The converse of a statement.

The word “converse” is often useful in understanding logical relationships in geometry.
Here’s what it means: when you have a statement “if A then B”, the converse of the
statement is “if B then A.” That is, in the converse the “given” and “to prove” are
switched. The converse of a true statement may or may not be true. (When both the
statement and its converse are true, we use the symbol ⇐⇒.)

Here is an example from ordinary life: the statement “if a person lives in West
Lafayette then they are an Indiana resident” is true. But its converse says “if a person
is an Indiana resident then they live in West Lafayette” and this is false.

5.3 The converse of Menelaus’s theorem: preliminary discus-

sion.

Now let us consider Theorem 28 and its converse. We are given a triangle ABC and

points A′, B′ and C ′ on the lines
←→
BC,

←→
AC and

←→
AB respectively. Theorem 28 says that

if A′, B′ and C ′ are collinear then the equation

(∗) A′B

A′C

B′C

B′A

C ′A

C ′B
= 1

is satisfied. That is, the Theorem says that

A′, B′ and C ′ collinear =⇒ equation (*) is satisfied.
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The converse of Theorem 28 is the statement “whenever equation (*) is satisfied, A′,
B′ and C ′ will be collinear.” Rather surprisingly, this statement is not true. You can see
this by doing an experiment with Geometer’s Sketchpad. If we choose A′ and B′, there
will always be two points C ′ for which equation (*) is satisfied, but only one of these two
points will be collinear with A′ and B′.

On the other hand, the converse of Theorem 28 is close to being true, since for each
choice of A′ and B′ there is only one bad (i.e., noncollinear) point C ′ which satisfies
equation (*). This suggests that we should be able to get a true statement by making a
small modification to the converse of Theorem 28.

The first thing to notice is that, of the two points C ′ on the line
←→
AB which satisfy

equation (∗), one of them is always inside the line segment AB and the other one is
always outside of AB. This suggests that it’s important to keep track of whether the
points are on the original (nonextended) sides of the triangle or not. Experimenting
with Geometer’s Sketchpad, we arrive at the following corrected version of the converse
of Menelaus’s theorem.

Let ABC be any triangle. Let A′ be a point of
←→
BC other than B and

C, let B′ be a point of
←→
AC other than A and C, and let C ′ be a point

of
←→
AB other than A and B. Suppose that

(1) the equation

A′B

A′C

B′C

B′A

C ′A

C ′B
= 1

is satisfied
and
one of the following is true:
(2a) Two of the points A′, B′ and C ′ are on the original (nonextended)
sides of the triangle and the third is not
or
(2b) None of the three points is on the original (nonextended) sides of
the triangle

Then A′, B′ and C ′ are collinear.

So far we have only experimental evidence for the statement in the box and we still
need to prove it. But there’s another issue that must be dealt with first: the statement
in the box is messy, and this makes it both hard to prove and hard to use in proofs. We
need to find a way to say the same thing in a more convenient way. The way to do this

is to incorporate a + or − sign in ratios like
C ′A

C ′B
to keep track of whether C ′ is inside

the segment AB or not. We will explain how to do this in the next section.
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5.4 Signed ratios.

Let us begin by thinking about points on a number line:

321- 3 - 2 0- 1

Every point on the line has a coordinate, which is a real number that specifies the
exact location of the point.

If A and B are two points on the line, with coordinates a and b, then the length of
AB is given by the formula |a − b|. Now notice that if we leave out the absolute value
symbol, we get a number a − b which contains two pieces of information: its size is the
length of AB, and its sign tells whether A is to the right or to the left of B (A is to the
right of B when the sign is positive, and to the left of B when the sign is negative).

Next let us consider the kind of ratios that occur in Theorem 28. So let C ′, A, and
B be three points on the number line, and let c′, a and b be their coordinates. The ratio
C ′A

C ′B
is given by the formula

|c′ − a|
|c′ − b| . When we leave out the absolute values symbols,

we get a number
c′ − a
c′ − b which contains two pieces of information: its size is

C ′A

C ′B
and its

sign is described in our next theorem.

Theorem 29. The number
c′ − a
c′ − b is positive if C ′ is outside of the segment AB and

negative if C ′ is inside AB.

Proof There are four cases to consider:
Case (i): C ′ is to the right of both A and B.
Case (ii): C ′ is to the left of both A and B.
Case (iii): C ′ is between A and B and A is to the left of B.
Case (iv): C ′ is between A and B and A is to the right of B.

In Case (i),
c′ − a
c′ − b is positive because the numerator and denominator are both

positive. In Case (ii),
c′ − a
c′ − b is positive because the numerator and denominator are

both negative. In Case (iii),
c′ − a
c′ − b is negative because the numerator is positive and

the denominator is negative. In Case (iv),
c′ − a
c′ − b is negative because the numerator in

negative and the denominator is positive. QED

Comparing Theorem 29 with the the box on page 42, we see that it should be possible

to simplify the statement in the box by using formulas like
c′ − a
c′ − b . However, in the
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situation we’re interested in the lines
←→
AB,

←→
AC and

←→
BC are not number lines. This is not

a serious problem because we can make any line into a number line by picking an origin
and a positive direction. This leads us to the following definition:

Definition of signed ratio Let ` be any line and let C ′, A and B be three points on
`. Make ` into a number line by choosing an origin and a positive direction and let
c′, a and b be the coordinates of C ′, A and B. We define

7−→
C ′A
7−→
C ′B

to be
c′ − a
c′ − b and we call this a signed ratio.

One way to think about the signed ratio

7−→
C ′A
7−→
C ′B

is that it is the quotient of the vector

7−→
C ′A by the vector

7−→
C ′B. It isn’t usually possible to divide one vector by another, but

it is possible in our situation since the vectors are on the same line and must therefore
be scalar multiples of each other. The signed ratio is positive if the vectors point in the
same direction and negative if they point in opposite directions. However, we will not
be using the theory of vectors in this course.

Another way to think about

7−→
C ′A
7−→
C ′B

is given by our next theorem.

Theorem 30. The number

7−→
C ′A
7−→
C ′B

is equal to
C ′A

C ′B
if C ′ is outside of the segment AB and

is equal to −C
′A

C ′B
if C ′ is inside the segment AB.

Proof The absolute value of

7−→
C ′A
7−→
C ′B

is
|c′ − a|
|c′ − b| which is the same as

C ′A

C ′B
. Theorem 29

says that the sign of

7−→
C ′A
7−→
C ′B

is positive if C ′ is outside of the segment AB and is negative

if C ′ is inside the segment AB. QED

A question that arises in connection with the definition of signed ratio is whether
7−→
C ′A
7−→
C ′B

is “well-defined.” That is, if you and your friend are given the same line ` and the

same points C ′, A and B, but you choose two different ways to make ` into a number
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line, do you get the same number for

7−→
C ′A
7−→
C ′B

? The answer is yes. First notice that if you

move the origin from the position you chose to the position your friend chose, then the
numbers c′, a and b will change, but the differences c′ − a and c′ − b will not. Next, if
your friend chose the positive direction differently from you, then his values of c′−a and
c′ − b will be the negatives of yours, but these negative signs will cancel in the quotient
c′ − a
c′ − b . So you and your friend will get the same value.

We conclude this section with an important fact about signed ratios which will be
used in our future work.

Theorem 31. Let ` be any line, and let C ′, C ′′, A and B be points on `, with A not the

same point as B. If

7−→
C ′A
7−→
C ′B

=

7−→
C ′′A
7−→
C ′′B

then C ′ is the same point as C ′′.

Proof Make ` into a number line and let c′, c′′, a and b stand for the coordinates of C ′,
C ′′, A and B. We are given

7−→
C ′A
7−→
C ′B

=

7−→
C ′′A
7−→
C ′′B

and by the definition of signed ratio this means

(∗) c′ − a
c′ − b =

c′′ − a
c′′ − b

Cross-multiplying in (*) gives

(c′ − a)(c′′ − b) = (c′ − b)(c′′ − a)

and simplifying this we obtain

c′c′′ − ac′′ − c′b+ ab = c′c′′ − bc′′ − c′a+ ab

Cancellation gives

−ac′′ − c′b = −bc′′ − c′a

Moving the terms with c′ to the left and the terms with c′′ to the right we get

(∗∗) c′(a− b) = c′′(a− b)

Now we are given that A and B are different points, so their coordinates a and b are
different numbers, and therefore a− b 6= 0. This allows us to cancel a− b in (∗∗), so we
have

c′ = c′′
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This means that the coordinates of C ′ and C ′′ are the same number, so C ′ and C ′′ are
the same point. QED

Notice that Theorem 31 would not be true if we used ordinary ratios instead of
signed ratios. Whenever C ′, A and B are points on a line, there will always be a point

C ′′ different from C ′ for which the ordinary ratios
C ′A

C ′B
and

C ′′A

C ′′B
are the same. When

this happens, one of the points C ′ and C ′′ will be inside the segment AB and the other

will be outside, so the signed ratios

7−→
C ′A
7−→
C ′B

and

7−→
C ′′A
7−→
C ′′B

will be different.

5.5 The converse of Menelaus’s theorem.

We can now restate conditions (2a) and (2b) in the box on page 42 in a simple and

convenient way: condition (2a) says that two of the signed ratios

7−→
A′B
7−→
A′C

,

7−→
B′C
7−→
B′A

and

7−→
C ′A
7−→
C ′B

are negative, and condition (2b) says that none of them are negative. So (2a) and (2b)
together can be combined into the single statement that the product

7−→
A′B
7−→
A′C

7−→
B′C
7−→
B′A

7−→
C ′A
7−→
C ′B

is positive. And combining this with condition (1) we see that the box on page 42 simply
says that if

7−→
A′B
7−→
A′C

7−→
B′C
7−→
B′A

7−→
C ′A
7−→
C ′B

= 1

then the points A′, B′ and C ′ will be collinear. We still need to prove this. But first let
us pause to check that Theorem 28 itself remains true with signed ratios.

Theorem 32. Let ABC be a triangle. Let A′ be a point of
←→
BC other than B and C, let

B′ be a point of
←→
AC other than A and C, and let C ′ be a point of

←→
AB other than A and

B. If A′, B′ and C ′ are collinear then

7−→
A′B
7−→
A′C

7−→
B′C
7−→
B′A

7−→
C ′A
7−→
C ′B

= 1

Proof Theorem 28 tells us that the equation is true if we ignore the signs, so we know
that the left-hand side is equal to either +1 or −1, and we want it to be +1. Thus all we
have left to show is that the left-hand side is positive. There are two cases to consider:
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Case (i) The Menelaus line A′B′C ′ crosses the triangle.

Case (ii) The Menelaus line A′B′C ′ is entirely outside the triangle.

For Case (i), see Figure 22. In this case two of the points are on the (nonextended)
sides of the triangle and one is on an extended side, so two of the signed ratios are
negative and one is positive. Thus the product of all three is positive.

B'

C'

A'

AB

C

Figure 22

For Case (ii), see Figure 23. In this case all three points are on extended sides of the
triangle, so all three signed ratios are positive and the product is also positive. QED

B'

A'

A B

C

C'

Figure 23

Our next theorem is the converse of Theorem 32; this is the corrected converse of
Menelaus’s theorem.
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Theorem 33. Let ABC be a triangle. Let A′ be a point of
←→
BC other than B and C, let

B′ be a point of
←→
AC other than A and C, and let C ′ be a point of

←→
AB other than A and

B. If

7−→
A′B
7−→
A′C

7−→
B′C
7−→
B′A

7−→
C ′A
7−→
C ′B

= 1

then A′, B′ and C ′ are collinear.

Proof (See Figure 24) Draw the line
←→
A′B′, and give the intersection of this line with

←→
AB the name C ′′. Then

(*) A′, B′ and C ′′ are collinear.

We want to show that C ′′ is the same point as C ′. Since A′, B′ and C ′′ are collinear, we
can apply Theorem 32 to get

7−→
A′B
7−→
A′C

7−→
B′C
7−→
B′A

7−→
C ′′A
7−→
C ′′B

= 1

Combining this with the given, we obtain

7−→
C ′A
7−→
C ′B

=

7−→
C ′′A
7−→
C ′′B

Now Theorem 31 tells us that C ′′ is the same point as C ′, and combining this fact with
(*) we see that A′, B′ and C ′ are collinear. QED

B'

A'

C''

C

BA

Figure 24
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5.6 The Theorem of Ceva and its converse.

Theorem 34 (Theorem of Ceva). Let ABC be a triangle. Let A′ be a point of
←→
BC

other than B and C, let B′ be a point of
←→
AC other than A and C, and let C ′ be a point

of
←→
AB other than A and B. If

←→
AA′,

←→
BB′ and

←→
CC ′ are concurrent then

7−→
A′B
7−→
A′C

7−→
B′C
7−→
B′A

7−→
C ′A
7−→
C ′B

= −1

A'

C'

B'

A B

C

The proof is a homework problem.
Ceva proved this theorem in the late 1600’s.
The converse of Theorem 34 is also true.

Theorem 35. Let ABC be a triangle. Let A′ be a point of
←→
BC other than B and C, let

B′ be a point of
←→
AC other than A and C, and let C ′ be a point of

←→
AB other than A and

B. If

7−→
A′B
7−→
A′C

7−→
B′C
7−→
B′A

7−→
C ′A
7−→
C ′B

= −1

then
←→
AA′,

←→
BB′ and

←→
CC ′ are concurrent.

The proof is a homework problem.

As an example of how useful Theorem 35 can be, let us use it to give a new proof of
Theorem 26 (concurrence of the medians):
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M

PN

C

BA

Given: M , N and P are midpoints. To prove: AP , BN and CM are concurrent.

Proof We know PB = PC by definition of midpoint, so
PB

PC
= 1. Also, P is between

B and C, so by Theorem 30 we have

7−→
PB
7−→
PC

= −PB
PC

= −1

Similarly,

7−→
NC
7−→
NA

= −1 and

7−→
MA
7−→
MB

= −1. Combining these equations gives

7−→
PB
7−→
PC

7−→
NC
7−→
NA

7−→
MA
7−→
MB

= −1

so we may apply Theorem 35 (with A′ = P , B′ = N , and C ′ = M) to conclude that
←→
AP ,

←→
BN and

←→
CM are concurrent. QED

6 Circles.

Definition of circle A circle consists of all of the points which are at a given distance
(called the radius) from a given point (called the center).

6.1 Inscribed angles and central angles.

Definition of inscribed angle Given three points A, B and C on a circle, the angle
∠ABC is said to be inscribed in the circle
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Definition of central angle Given a circle with center O, a central angle is an angle
with its vertex at O.

If A, B and C are points on a circle with center O, there is a relationship between
the inscribed angle ∠ABC and the central angle ∠AOC. However, the relationship is
somewhat complicated and depends on the positions of A, B, C and O. The following
pictures show the possible cases.

C

B

A

C

B

A

O
O

Figure 25 Figure 26

A

B

C

A

B

C

O

O

Figure 27 Figure 28

Experimenting with Geometer’s Sketchpad shows that for pictures like Figures 25, 26,

and 27, ∠ABC =
1

2
∠AOC, but for pictures like Figure 28, ∠ABC = 180◦− 1

2
∠AOC. It

turns out that in order to know which formula applies we just have to know the location
of point B:

Theorem 36. Let A, B and C be points on a circle with center O.

(a) If B is outside of ∠AOC, then ∠ABC =
1

2
∠AOC.
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(b) If B is inside of ∠AOC, then ∠ABC = 180◦ − 1

2
∠AOC.

Proof For part (a) there are four cases:
(i) O is on ray BA
(ii) O is on ray BC
(iii) O is inside ∠ABC
(iv) O is outside ∠ABC
For case (i) see Figure 29. We know that OB = OC, by definition of circle, so

∠OCB = ∠OBC by Theorem 5. Let us call both of these angles x, and let y = ∠AOC.
Then

(∗) y + ∠BOC = 180◦

by Theorem 1(a), and

(∗∗) 2x+ ∠BOC = 180◦

by Theorem 3. Combining equations (∗) and (∗∗) gives y = 2x, which is what we were
to prove in this case.

A

C

B

O

x

x y

Figure 29

Case (ii) is precisely similar to case (i).
For Case (iii), see Figure 30. We can apply case (ii) to ∠ABD to get

(∗) ∠ABD =
1

2
∠AOD

and we can apply case (ii) to ∠CBD to get

(∗∗) ∠CBD =
1

2
∠COD
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Finally, we have

∠ABC = ∠ABD + ∠CBD by BF 6

=
1

2
∠AOD +

1

2
∠COD by (∗) and (∗∗)

=
1

2
(∠AOD + ∠COD) by algebra

=
1

2
∠AOC by BF 6

so ∠ABC =
1

2
∠AOC, which is what we were to prove in this case.

D

A

B

C

O

Figure 30

For case (iv), see Figure 31. We can apply case (ii) to ∠ABD to get

(∗) ∠ABD =
1

2
∠AOD

and we can apply case (ii) to ∠CBD to get

(∗∗) ∠CBD =
1

2
∠COD

Then we have

∠ABC = ∠ABD − ∠CBD by BF 6 and algebra

=
1

2
∠AOD − 1

2
∠COD by (∗) and (∗∗)

=
1

2
(∠AOD −∠COD) by algebra

=
1

2
∠AOC by BF 6 and algebra
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so ∠ABC =
1

2
∠AOC, which is what we were to prove in this case.

D
C

B

A

O

Figure 31

It remains to prove part (b) of the Theorem. For this, see Figure 32. We know that
OA = OB, by definition of circle, so ∠OAB = ∠OBA by Theorem 5. Let us call both
of these angles x. Similarly, ∠OBC = ∠OCB; let us call both of these angles y. Next
we apply Theorem 3 to triangles AOB and COB to get

(∗) ∠AOB = 180◦ − 2x

and

(∗∗) ∠COB = 180◦ − 2y

Now

∠AOC = ∠AOB + ∠COB by BF 6

= (180◦ − 2x) + (180◦ − 2y) by (∗) and (∗∗)
= 360◦ − 2(x+ y) by algebra

= 360◦ − 2∠ABC by BF 6

So we have shown that ∠AOC = 360◦ − 2∠ABC. Solving for ∠ABC gives

∠ABC = 180◦ − 1

2
∠AOC

which is what we were to prove in this case. QED
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C

B

A

O

x

x y
y

Figure 32

Some comments on the proof. Notice that in all four parts of the proof of
Theorem 36 the basic strategy is to draw line OB. Also notice that once case (ii) of part
(a) has been proved, we are allowed to use it to prove the remaining cases without having
to worry about a circular argument. Finally, notice the general resemblance between the
proof of part (a) and the proof of Theorem 7.

Because Theorem 36 contains two different formulas which are valid in different situ-
ations, it can be hard to remember. In fact there is a way to unify the two formulas into
a single formula, using the idea of arc measure which we discuss in the next section.

6.2 Arcs and arc measurement.

An arc is a piece of a circle. We can measure an arc in degrees: here is the official
definition.

Degree of arc-measure A degree of arc on a circle is the 1
360

th part of the full circle.

Note. Although angles can never be bigger than 180◦, arcs can be anything up to
360◦.

In order to use this definition we need to have a way of naming arcs. First notice that
the endpoints of an arc do not determine the arc; there are always two different arcs with
these endpoints (for example, in Figure 33 there are two different arcs with endpoints
AB, one of which goes through C and the other through D.). In order to specify an
arc unambiguously, we have to give the two endpoints and a point in the middle. For
example, in Figure 32 the two arcs with endpoints A and B are denoted ACB and ADB.
One thing that may cause confusion is that occasionally we will create a point on an arc
whose only purpose is to help name the arc.
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D

A

B
C

Figure 33

Next we will consider the arc cut off by an angle. We begin with the case of a central
angle.

Definition of arc cut off by a central angle The arc cut off by a central angle is
the part of the circle inside the angle (see Figure 34).

Figure 34

The most important fact about the arc cut off by a central angle is:

Theorem 37. The arc cut off by a central angle is the same number of degrees as the
angle.

Proof It suffices to show that a 1◦ central angle cuts of a 1◦ arc. In Section 1.1 we
defined a 1◦ angle to be the 1

180
th part of a straight angle, so it suffices to check that

a central straight angle cuts off a 180◦ arc. But this is true because a central straight
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angle divides the circle into two equal pieces, and we have defined the whole circle to be
360◦ of arc. QED

Next we consider the arc cut off by an inscribed angle.

Definition of the arc cut off by an inscribed angle The arc cut off by an inscribed
angle ∠ABC is the part of the circle inside the angle. In Figure 35 the part of the
plane inside ∠ABC is shaded, and the arc cut off by ∠ABC is the shaded arc.

C
A

B

Figure 35

By analogy with Theorem 37, it’s natural to ask whether there is a simple relation-
ship between the size of an inscribed angle and the size of the arc which it cuts off.
Experimenting with Geometer’s Sketchpad shows that the angle is always 1

2
of the arc.

We will prove this in the next section.

6.3 Inscribed angles and arcs.

We can use the idea of the arc cut off by an angle to give a simpler, unified version
of Theorem 36:

Theorem 38. Let A, B and C be points on a circle, and let ADC be the arc cut off by
∠ABC. Then

∠ABC =
1

2
arc ADC

that is, the number of degrees in angle ABC is half the number of degrees in arc ADC.
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(Notice that the only role of the point D in this theorem is to allow us to name the
arc ADC.)

Proof There are four possible cases, shown in Figures 36, 37, 38 and 39.
In Figures 36, 37 and 38, the arc cut off by ∠AOC is ADC, so in these three figures

the arc-measure of ADC is equal to the degree measure of ∠AOC by Theorem 37. But

we also know in these three cases that ∠ABC =
1

2
∠AOC (by part (a) of Theorem 36),

so we conclude that ∠ABC =
1

2
ADC for these three cases.

In Figure 39, the arc ADC is the part of the circle outside ∠AOC, so in this figure
the arc-measure of ADC is equal to 360◦ −∠AOC (by Theorem 37, BF 6 and algebra).

But we also know that ∠ABC = 180◦ − 1

2
∠AOC in this case (by part (b) of Theorem

36), so we conclude that ∠ABC =
1

2
ADC in this case also. QED

C
D

D

B

A

C

B

A

OO

Figure 36 Figure 37

D

D

A

B

C

A

B

C

O

O

Figure 38 Figure 39

58



Note. The reason why Theorem 36 is more complicated than Theorem 38 is that
the angles ∠ABC and ∠AOC don’t always cut off the same arc, as you can see from
Figures 36, 37, 38 and 39. Since the relation between ∠ABC and the arc it cuts off is
simple, this forces the relation between ∠ABC and ∠AOC to be complicated.

Next consider the situation where we have four points A, B, C and D on a circle
and we are interested in the angles ∠ABC and ∠ADC. The arcs cut off by ∠ABC and
∠ADC will always have the same endpoints (namely A and C), but they won’t always
be the same arc (see Figure 40: in the first picture the two angles do cut off the same
arc but in the second picture they don’t).

D

C

B

A

D

C

B

A

Figure 40

Theorem 39. Let A, B, C and D be points on a circle and consider the angles ABC
and ADC.

(a) If ∠ABC and ∠ADC cut off the same arc, then ∠ABC = ∠ADC.

(b) If ∠ABC and ∠ADC do not cut off the same arc, then ∠ABC = 180◦ −∠ADC.

Proof Part (a) is immediate from Theorem 38.
For part (b), see the second picture in Figure 40. Observe that the arc cut off by

∠ABC is ADC and the arc cut off by ∠ADC is ABC. By BF 6 and algebra,

(∗) arc ADC is 360◦ minus arc ABC.

Now we have

∠ABC =
1

2
ADC by Theorem 38

=
1

2
(360◦ − ABC) by (*)

= 180◦ − 1

2
ABC by algebra

= 180◦ −∠ADC by Theorem 38
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which is what we were to show. QED

Theorem 39 is often useful, and in particular it can be used to prove the following:

Theorem 40. Let A, B, C and D be points on a circle, and suppose that the lines AB
and CD meet at a point P . Then PA · PB = PC · PD.

There are two cases, which are illustrated in Figures 41 and 42. The proofs of the
two cases are homework problems.

P

D

C

A

B

Figure 41

P

B

A

D

C

Figure 42

6.4 Tangents to Circles.

Definition of tangent line A line is tangent to a circle ⇐⇒ it intersects the circle in
exactly one point.
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Theorem 41. Let C be a circle with center O, let A be a point on the circle, and let m
be a line through A. Then m is tangent to the circle ⇐⇒ m is perpendicular to OA.

Proof For the ⇐= direction, see Figure 43. Choose a point of m other than A and call
it B. Since m is perpendicular to OA, we can apply Theorem 8 to get

OB2 = OA2 + AB2

Since AB2 > 0, this tells us that OB2 > OA2, and this implies OB > OA. But OA is
the radius of the circle, so B cannot be on the circle (by definition of circle). Therefore
A is the only point of m which is on the circle, so m is tangent to the circle by definition
of tangent.

The =⇒ direction is a homework problem. QED

B

A

O

m

Figure 43

Next we have an analog of Theorem 38 when one of the sides of the angle is tangent
to the circle.

Arc cut off by an angle tangent to the circle If A and B are points on a circle and
C is a point on the tangent line at B, then the arc cut off by ∠ABC is the part of
the circle inside ∠ABC (see Figure 44).
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C

A

B

Figure 44

Theorem 42. Let A and B be points on a circle, let C be a point on the tangent line at
B, and let ADB be the arc cut off by ∠ABC. Then

∠ABC =
1

2
arc ADB

Proof There are three cases:
(i) O is on ray BA
(ii) O is inside ∠ABC
(iii) O is outside ∠ABC
For case (i) see Figure 45. Here arc ADB is a semicircle, so it measures 180◦, and

∠ABC is a right angle (by Theorem 41) so ∠ABC is half of arc ADB in this case.

D

C

A

B

O

Figure 45
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For case (ii) see Figure 46. Draw line OB and give the intersection of this line with
the circle the name E. Then

∠ABC = ∠1 + ∠2 by BF 6

=
1

2
arc AFE +

1

2
arc EDB by Theorem 38 and Case (i)

=
1

2
(arc AFE + arc EDB) algebra

=
1

2
arc ADB by BF 6 (applied to arcs)

F

A

C

E

D

O

B

21

Figure 46

For Case (iii) see Figure 47. Draw line OB and give the intersection of this line with
the circle the name E. Then

∠ABC = ∠EBC −∠1 by BF 6 and algebra

=
1

2
arc EDB − 1

2
arc EFA by Case (i) and Theorem 38

=
1

2
(arc EDB − arc EFA) algebra

=
1

2
arc ADB by BF 6 (applied to arcs) and algebra

QED
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7 Euclid’s Elements.

Introduction. Euclid’s book was written around 300 BC. It was the finishing step in
a developmental process that went back about 300 years, but unfortunately we
have very little evidence of what the earlier stages of Greek geometry looked like:
Euclid’s text was so successful that the earlier versions ceased to be copied by
hand (which was the only way for books to be preserved in those days). Greek
research in geometry continued for several hundred more years, but Euclid’s text
was established as the definitive account of the foundations of geometry, and it
retained this position until the early 19th century.

What was special about Greek geometry? Before the time of the Greeks there
were already ancient peoples who knew many geometrical facts, for instance the
Babylonians and the Egyptians, and since their time there have been other cul-
tures, such as the Hindus, the Chinese and the Mayans, who rediscovered various
facts (including the Pythagorean theorem) independently.

The new feature of Greek geometry, which had never existed before and which
has never been discovered independently by other cultures, is the idea of proof.
It is also true that the Greeks had factual knowledge about geometry which was
vastly more extensive and sophisticated that of any other culture which pursued
the subject. These two features of the Greek achievement were not unrelated, as
we shall see.
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What is proof? Briefly, proof means explaining why a given fact is true by showing
how it follows logically from simpler facts.

When we do this, it is important to avoid circular argument, so we need to be
sure that the simpler facts can themselves be explained without using the fact we
are proving. (Here is a simple example of a circular argument: “There’s no school
today.” “How do you know?” “My brother told me.” “How does he know?” “I
told him”).

This in turn means that we have to have some way of keeping track of what has
been used to prove what. Euclid does this by numbering the propositions and
never using a later one to prove an earlier one.

What are postulates and “common notions?” It is important to realize that not
every statement can be reduced to simpler pieces, since this would involve an
infinite process of explaining each statement in terms of simpler ones, and then
explaining those in terms of even simpler ones, and so on forever. We have to
start somewhere, with statements whose truth is self-evident. In Euclid, these
statements are the postulates and the axioms (axioma is the Greek word which
Heath translates as “common notions”). The difference between an axiom and a
postulate in Euclid is that an axiom is a statement which could apply to other
parts of mathematics besides geometry and a postulate is a statement specifically
about geometry.

To sum up, a theorem or proposition is a true fact which can be explained
in terms of simpler facts. A postulate or axiom is a true fact which
cannot be explained in terms of simpler facts.

Incidentally, a definition, unlike a postulate or axiom, is not a statement
about reality. It is an agreement to use a certain word or short phrase
to stand for a longer phrase. For example, we use the word “parallelogram”
to stand for “a four-sided figure with two pairs of parallel sides.”

Euclid’s system has two very remarkable features which may not be obvious at first
glance. The first is that he has built all of geometry into a single unified system,
where each statement follows ultimately from a few simple postulates and axioms.
The second is the small number of the postulates and axioms and their simplicity.
This can be illustrated with an analogy from chemistry: every chemical compound,
no matter how complicated, can be broken down into the 92 naturally occurring
elements. What Euclid showed was that in geometry the situation is even simpler:
instead of 92 basic ingredients only 10 are needed.

The relation between proof and discovery. It is important to realize that proving
and discovering are not unrelated activities: by sharpening their ability to explain
a given fact in terms of known ones the Greeks also developed the skill of using
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thought to pass from known facts to new discoveries. The reason for this is that
when the facts already known are organized and explained logically they can be
used as a new basis for the imagination, and a strengthened imagination can explore
new areas that would otherwise be out of reach. You have experienced something
like this already in doing the homework problems.

Why does Euclid prove things that are obvious? For example, Proposition 5 is
obvious from sight, and yet Euclid gives a rather elaborate proof of it. The question
of why he does this is a very important one, which comes up even in high school
mathematics, and you should decide for yourself what you think about it (it is
worth knowing that even Isaac Newton, one of the greatest of mathematicians,
had questions on this subject). Here are some relevant observations:

• If Euclid didn’t prove the facts in Book 1 which are obvious from sight, then
he would have to add them to the list of postulates (because a true fact about
geometry which can’t be explained in terms of simpler facts is a postulate)
and this means that instead of having a simple list of 5 postulates we would
have about 15.

• For the Greeks it was important not to rely on perceptions such as sight
to establish the truth of things, because everyone knows that perceptions
can be mistaken (as in optical illusions) and the Greeks wanted to discover
truths about mathematics (and other things) that didn’t suffer from human
limitations but were eternally and universally valid.

• The exercise of proving something which is obvious from sight is one of the
best ways to sharpen your sensitivity to subtle logical issues. This brings me
to the topic of:

Cleverness and subtlety. Cleverness and subtlety are two different things. It is a
little hard to describe each of them precisely, but here is an attempt. Some ways
in which cleverness might be used in solving a homework problem are: finding
the right pair of congruent or similar triangles, or drawing in the right extra line.
Subtlety often seems like a logical trick; the main example we have seen so far is the
indirect approach used in Theorems 16, 17, 22, 23 and 26. Proof by contradiction
is also an example of subtlety.

The main point I want to make right now is that subtlety isn’t just for logical
tricksters but is a tool for solving problems which is just as important as cleverness.

So here is one reason why Euclid proves things that are obvious: it improves our
ability to be subtle, and this in turn improves our ability to solve problems.

Flaws in Euclid. Since Euclid was a pioneer in organizing geometry as an axiomatic
system, it is not surprising that he made some mistakes (more precisely, omissions,
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mainly in the form of missing axioms). I will point some of these out when we
come to them, and you will notice others. It is interesting that almost none of
these flaws was observed until the nineteenth century, when the discovery of non-
Euclidean geometry caused mathematicians to take a very close look at Euclid. For
the moment I want to observe that Euclid got it 90–95% right and that nineteenth-
century mathematicians completed his work so that there are no flaws at all any
more.

Learning from the historical process. You might ask why, since Euclid’s treatment
is not perfect, we use his version instead of some other. Here are some reasons:

• Euclid’s version is a good place to start since it is closer to your own point of
view than a more perfected version would be. He focuses on issues that you
can learn from and does not obscure them with more technical issues that are
necessary for complete perfection.

• A related point is that Euclid’s language is closer to ordinary language than
a perfected treatment would be.

• You can sharpen your own understanding by learning to spot the missing
steps.

The influence of Euclid on modern mathematics. Until the nineteenth century,
geometry was the only part of mathematics which was organized on an axiomatic
basis. In the nineteenth century mathematicians began to encounter problems (in-
volving Fourier series and other parts of calculus) which could not be answered
confidently without the kind of close analysis provided by an axiomatic approach.
They therefore undertook the project of reorganizing calculus on the Euclidean
model. This led to the formal definition of limit and eventually to a completely
axiomatic and rigorous approach to calculus. In the twentieth century all of math-
ematics has been organized on an axiomatic basis, ultimately resting on the axioms
of set theory.

8 Comments on the definitions, postulates, common

notions and propositions of Euclid Book I

The definitions. Many of the definitions (such as those for point and line) are not
used at all in the proofs. A closer examination of some of these definitions shows
that they are not really definitions in the mathematical sense: they don’t describe
the thing in terms of simpler things, as the definition of parallelogram does. The
definitions that are used later are 10, 15, 16, 20, 22, and 23.
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Note that in definition 20 an equilateral triangle is not considered to be isosceles,
and in definition 22 a square is not considered to be an oblong (what does Euclid
mean by oblong?) This is different from the modern practice. It is not uncommon
for different versions of a subject to use somewhat different definitions; this is
allowable because definitions are not statements about reality but are convenient
abbreviations which the author and his or her readers agree on. Over the course of
time it has been found to be more convenient to consider an equilateral triangle as
a special kind of isosceles triangle, rather than to require that an isosceles triangle
has two but not three equal sides, which is what Euclid does.

Within a given treatment of geometry the definitions can’t be changed: the author
has to use each word with the same meaning all the time.

Postulate 1 This is our BF 7, except that Euclid doesn’t say explicitly that there is
only one line through two given points.

Postulate 2 This is our BF 9.

Postulate 3 We didn’t assume this as a Basic Fact, but Euclid will use it to prove some
of the Basic Facts that we did assume.

It is important to realize that this Postulate allows us to do “Circle by center and
point” but not “Circle by center and radius.” (This is the opposite of what you
might expect from the way it is worded). I will explain this in class.

Postulate 4 This really is a statement about reality and not a definition, as I will
explain in class.

Postulate 5 This postulate doesn’t seem nearly as self-evident as the others, so for
about 2300 years people tried to prove it. Eventually they discovered that it cannot
be proved from the other postulates and common notions—surprisingly, this led to
a new subject, non-Euclidean geometry.

Common Notion 1. This is transitivity.

Common Notions 2 and 3. These are included in what we have been calling “alge-
bra.” Euclid’s goal here is to state in advance what kinds of algebra he will allow,
although he does sometimes use things not included in Common Notions 2 and 3,
as we shall see.

Proposition 1 Frequently asked questions:

What does “circle BCD” mean in line 8? Answer: Euclid names a circle by giving
three points on it. Sometimes this means that he has to create a point whose only
purpose is to name the circle it’s on—that’s what he’s done here with point D.
He has to give three points instead of just two because there is more than one
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circle going through two given points but only one circle going through three given
points.

What does “Post. 1” stand for in line 14? Answer: “Postulate 1” Incidentally, all
of the reasons given in brackets were supplied by the modern editor, T.L. Heath,
and were not in Euclid’s original manuscript. On quizzes and exams, you are
responsible for giving all of the reasons, including those that Heath forgets to give,
using only facts from Euclid and not from the course notes. (There is one exception:
you don’t have to give citations for Postulate 1, since it occurs so often and is so
elementary.)

What does “C.N. 1” stand for in line 22? Answer: “Common Notion 1”

Like all construction proofs, this one has two parts: a recipe for the construction
(lines 1–14) and a verification that the recipe does what it is supposed to do (lines
15–26).

Notice that the proof ends with a summary: “Therefore the triangle ABC is equi-
lateral . . . .”

Also notice the very last line: “what it was required to do”—this is how Euclid
ends a construction proof (other proofs end with “what it was required to show.”)

Proposition 2 Frequently asked questions:

What does “I.1” mean in line 10? Answer: “Book I, Proposition 1”

What does “circle CGH” mean in line 15? Answer: Here Euclid is being a bit
sloppy in his explanation. What he really means is that we draw the circle that
has center B and goes through C, then we find the intersection of this circle with
the extended line DF and call this intersection point G. The point H plays no role
except to be part of the name of the circle.

What does “circle GKL” mean in line 16? Answer: Here we draw the circle with
center D that goes through G, find the intersection of this circle with the extended
line DE, and call this intersection L. The point K plays no role except to be part
of the name of this circle.

The purpose of this proof is to show how one can carry out “Circle by center and
radius” using only “Circle by center and point.”

This is a construction proof, so it has a recipe and a verification that the recipe
works. The recipe is given in lines 1–17, and the verification is lines 18–32.

Proposition 3 This includes part of our BF 8. (It says that on a given ray there is a
point at a given distance from the endpoint, but not that there is only one such
point.)
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Proposition 4 This is SAS. We have assumed it as BF 2, but Euclid gives a proof of it.

Frequently asked question: What does “Therefore etc.” mean in line 44? Answer:
the editor has gotten tired of writing out the summary at the end of the proof, so
he uses this for an abbreviation (see his note in the middle of page 249). Compare
this to the last two lines in the proofs of Propositions 1, 2 and 3.

It is very important to note here that “the triangle will be equal to the triangle”
(in line 4) does not mean “the triangles are congruent.” Euclid has no term corre-
sponding to our term “congruent,” so whenever he wants to say that two triangles
match up completely he has to mention all six parts, which gets tedious. When he
says that two triangles are “equal” he is definitely not saying that they match up
in all six parts, he is only saying that they have equal area. This can be seen most
clearly by looking at the statement and picture for Proposition 37.

Proposition 5 This is one direction of our Theorem 5. Notice that we used BF 10
and BF 1 in our proof, and that Euclid doesn’t yet have these tools (eventually he
proves BF 1 and BF 10 as Propositions 8 and 10).

Frequently asked question: What is happening in lines 15–25? Answer: Euclid is
quoting Proposition 4 (SAS). Lines 15–19 show that the hypotheses of Proposition
4 are satisfied in his situation, and lines 20–25 spell out what the conclusion of
Proposition 4 says in his situation. Note that he quotes Proposition 4 word for
word instead of just referring to it—presumably this is to emphasize the point
that he is specializing a general statement to a particular situation and that the
hypotheses must match up exactly.

You should ignore the last part of the statement (“and, if the equal straight lines
be produced further, the angles under the base will be equal to one another”) and
its proof (lines 46-47).

Note that the proof ends with QED. This stands for the Latin phrase “Quod erat
demonstrandum,” which is a translation of the Greek phrase which means “what
was to be shown.” The editor ends construction proofs from now on with QEF,
which stands for “quod erat faciendum” meaning “what was to be done” (see his
note about line 48).

Proposition 6 This is the other direction of our Theorem 5.

Notice that in line 16 the phrase “the triangle DBC will be equal to the triangle
ACB” means that these triangles will have the same area. (Although in this case
it is also true that the triangles will be congruent, that is not the point that Euclid
is drawing our attention to here. The point of his argument is that if a triangle is
contained inside another then its area must be smaller than that of the triangle it
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is contained in, so the areas of the two triangles cannot be equal, “the lesser to the
greater.”)

This is our first example of a proof by contradiction.

Proposition 7 This proposition is only used to prove Proposition 8, and will never be
used again. The modern name for a proposition which is used only as a tool to
prove something else is “lemma.” It is easier to follow the proof of this proposition
if you use numbers instead of three-letter names to label some of the angles.

Notice that in line 21 Euclid says that the angle CDB is “much greater” than the
angle DCB. What is happening here is that Euclid is using the fact that if one
thing is greater than a second, and the second is greater than a third, then the first
is greater (in fact “much greater”) than the third. This sounds similar to Common
Notion 1 but in fact it is a missing Common Notion that should have been added
to the original list.

Proposition 8 This is SSS. We have assumed this, as BF 1, but Euclid proves it.

Propositions 9–12 These are the usual constructions that are taught in high school.
Notice that (as usual for construction proofs) each of these proofs consists of a
recipe followed by an explanation of why the recipe works.

Proposition 9 is our BF 11, Proposition 10 is our BF 10, and Propositions 11 and
12 are our BF 12.

Propositions 13 and 14 These are converses of each other, and Euclid uses Propo-
sition 13, plus proof by contradiction, to prove Proposition 14. We will see this
pattern, of a statement being used to prove its converse by means of proof by con-
tradiction, several times. (But it isn’t always possible to prove the converse this
way, as we will see in discussing Propositions 27 and 29.) Proposition 14 will be
used later to prove that certain lines are straight.

Proposition 16 Frequently asked questions:

Why doesn’t Euclid just use the fact that the angles of a triangle add up to 180◦?
Answer: Because it isn’t yet available—the fact that the angles of a triangle add
up to 180◦ is Proposition 32.

OK, then why doesn’t Euclid just wait to prove Proposition 16 until after he has
proved Proposition 32? Answer: He can’t do this because it would be a circular
argument! One of the steps in proving Proposition 32 is Proposition 31 (this is
the fact that it is possible to construct a parallel line through a given point), and
Proposition 31 in turn uses Proposition 27, and Proposition 27 uses Proposition
16. There is no way to prove Proposition 32 without proving Proposition 16 first.
(It’s true that we proved it in the course notes without using Proposition 16, but
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that’s because we were assuming BF 13. Euclid proves BF 13, and to prove it he
uses Proposition 16.)

This illustrates a basic difference between axiomatic systems and lists of facts: if
we think of Proposition 16 purely as a fact then it is included in Proposition 32 and
therefore not very important. But if we think about how to prove that Proposition
32 is true then Proposition 16 is an indispensable tool.

One more comment that is of some interest is that Proposition 16 (since it doesn’t
make use of Postulate 5) is true in both Euclidean and non-Euclidean geometry,
whereas Proposition 32 is not true in non-Euclidean geometry.

Another frequently asked question: in line 10, how do we know where F is supposed
to be? Answer: Euclid is cutting corners a bit here and should have said it more
clearly. What he should have said is “let BE be extended (Postulate 2) and let
a point F be marked on the extension with EF = BE (Proposition 3).” This is
the sort of thing that modern mathematicians are always very careful to spell out,
which is one reason why modern mathematical writing often seems cluttered.

Finally, notice that the last part of the argument (lines 27–29 on page 280) isn’t
exactly similar to the first part. You should draw the pictures carefully to see what
the difference is.

Propositions 18 and 19 This is another example where the statements are converses
of each other and the second is proved from the first using proof by contradiction.

Proposition 20 Read the editor’s note about the Epicureans on page 287. What the
Epicureans were asking was “why do we prove things that are obvious?” The
Epicureans were intelligent people and we shouldn’t be surprised if our own students
ask the same question. I have already given my own answer to this earlier in these
notes, but at this point I can add to it: you can probably see now that one reason
we prove things that are obvious is that the proofs are often exciting examples of
the art of proof.

Propositions 24 and 25 This is yet another example where the second proposition is
the converse of the first and is proved from it using proof by contradiction.

It is easier to follow the proof of Proposition 24 if you use numbers instead of
three-letter names to label some of the angles.

Proposition 26 This has two parts: the first is ASA (proved on page 302) and the
second is AAS (proved on page 303).

Frequently asked questions:

Why doesn’t Euclid just use ASA to prove AAS like we usually do? Answer:
because in order to do this you need Proposition 32 which he doesn’t yet have.
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OK, then why doesn’t Euclid delay Proposition 26 until after Proposition 32?
Answer: this is a harder question to answer. He could have done that, but we
think that the reason he didn’t was because he wanted to prove as many things as
possible without using Postulate 5.

Does this mean there’s something wrong with Postulate 5? Answer: No. This
is another place where the difference between an axiomatic system and a list of
facts becomes important. No one doubted that Postulate 5 was a true fact—the
question was whether it was really a postulate (a true fact which cannot be proved)
or a proposition (a true fact which can be proved). Euclid clearly felt that it was
a postulate, but he was also willing to give people a chance to try to prove it if
they wanted to and this seems to be why he showed how to prove Proposition
26 without it; now Proposition 26 could be used in trying to prove Postulate 5
without creating a circular argument. As a matter of historical fact, for the next
2300 years people made many attempts to prove Postulate 5, all of which turned
out to be incorrect. We now know that it is impossible to prove Postulate 5, and
this impossibility is closely related to the possibility of non-Euclidean geometry.

Proposition 27 This is the second part of our Theorem 2(a).

Proposition 28 This is the second part of our BF 5 and Theorem 2(b).

Proposition 29 This is the first parts of our BF 5, Theorem 2(a) and Theorem 2(b).

Proposition 29 is the converse of Proposition 27, but in this case Euclid does not
follow the pattern of proving the converse from the original statement by contra-
diction. He could not follow the pattern if he wanted to because it is impossible
(try it for yourself). Instead, he has to introduce a new ingredient that he hasn’t
used before, namely Postulate 5 (see line 24 of the proof).

Proposition 30 This is our BF 14.

Frequently asked question: Isn’t this just transitivity? Answer: Transitivity is
Common Notion 1 (things which are equal to the same thing are also equal to one
another). In our case we are not asserting that the lines are “equal” but rather
that they are “parallel,” which is different. Of course, Common Notion 1 is used
in the proof (line 18) because we can show that two lines are parallel by showing
that certain angles are equal.

This proof is a very rare example of Euclid making a logical mistake: in line 5 he
says “For let the straight line GK fall upon them” but it isn’t possible to create
such a line without assuming Proposition 30. I’ll show in class how to fix the proof.

Proposition 31 This is our BF 13. We assume BF 13 and Euclid proves it.
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Proposition 34 Notice that the word “parallelogram” (or rather “parallelogrammic
area”) is used here without having been defined. Euclid seems to assume that we
know that the definition of parallelogram is “a four sided figure with two pairs of
parallel sides.” It is a mystery why he didn’t include this definition in his list of
definitions.

Proposition 35 This is related to the fact (which Euclid does not use or even mention)
that the area of a parallelogram is base times height. In the case we are looking
at the parallelograms have the same base, and the fact that they are “in the same
parallels” forces them to have the same height.

Frequently asked question: Why doesn’t he just say that? Answer: The Greeks had
recently discovered the existence of irrational numbers, and because of this they
regarded statements about measurement as uncertain and untrustworthy from a
scientific point of view. Because of that, Euclid never talks about the length of a
segment. The Greeks certainly knew our usual formulas for calculating area but
they thought of these formulas as practical rules that didn’t belong in a scientific
account.

Proposition 36 The editor makes a truly awful mistake here: he gives Proposition 34
as the reason for the statement “Therefore EBCH is a parallelogram.” He should
have said that this is because of the missing definition of parallelogram.

Proposition 37 This proof uses another missing common notion: “the halves of equal
things are equal to one another.”

Proposition 42 This is the first step in proving Proposition 44. It is a good exercise
to carry out the recipe in the proof of Proposition 42 on Geometer’s Sketchpad.

Proposition 43 Very frequently asked question: What does “EH” mean in line 4 and
elsewhere? Answer: Euclid has suddenly introduced this as a convenient way of
abbreviating “EKHA” as the name of a parallelogram. Similarly, he refers to the
parallelograms FCGK, BGKE, and KFDH as FG, BK, and KD. I don’t know why
he has decided to do this.

Proposition 44 This is a very powerful construction. To give an idea of how powerful
it is, let us observe that we can use it to divide the length of one segment by the
length of another using ruler and compass alone. To do this, we let the “given
straight line” be the second segment, the “given rectilineal angle” be a right angle,
and the “given triangle” be a right triangle with height two and base equal to the
first segment. Then the side of the parallelogram (actually a rectangle in this case)
which is constructed by Proposition 44 will be the quotient of the first segment by
the second segment.
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Again, it is a good exercise to carry out the recipe in this proof using Geometer’s
Sketchpad (for this you need to have a script that does the recipe in Proposition
42).

I recommend that you read the note which starts at the bottom of page 342 about
“the godlike men of old.”

Proposition 45 This proposition allows us to transform any given (polygonal) area into
a rectangle with the same area, using ruler and compass alone.

Proposition 47 This is what most of Book I has been leading up to: Euclid’s proof
of the Pythagorean theorem. The ancient commentators seem to agree that this
proof is due to Euclid himself, which leads to the question of what Pythagoras’s
original proof was. The answer seems to be that Pythagoras’s original proof was the
same as the one in the course notes (using similar triangles). Between the time of
Pythagoras and Euclid the Greeks discovered irrational numbers, which made the
whole question of what is meant by “proportional sides” much more complicated—
this is why Euclid doesn’t mention similar triangles anywhere in Book I. Eventually
Euclid gives a full treatment of similarity (and proves our BF 4) in Book VI, but
he didn’t want to delay the Pythagorean theorem until then so he gives a more
“elementary” proof now.

Notice that in the diagram on page 349 the lines AD, FC and BK appear to be
concurrent—they are in fact concurrent and this can be proved by Theorem 35.

Proposition 48 This is the converse to the Pythagorean Theorem. Euclid’s proof uses
the fact that if two squares have equal area then their sides are equal. Notice that
he doesn’t give any justification for this, which is a mistake on his part (maybe
he was tired after the elaborate proof of Proposition 47). The missing statement
sounds like a common notion (similar to “equals added to equals are equal”) but in
fact it can be proved, and the editor gives a proof at the bottom of page 348. This
is a good example of how hard it can be to tell whether a simple-looking statement
can be proved by using even simpler statements.
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