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Linear Systems

A basic problem in linear algebra is that of solv-

ing the linear system

(1)























a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

This is a system of m linear equations in n un-

knowns. The aij ’s and the bj ’s are constants called,

respectively, the coefficients of the system and the

right-hand sides (or forcing terms). If bj = 0 for

1 ≤ j ≤ m, the system is homogeneous.

The locus of points satisfying the equation

ai1x1 + ai2x2 + · · · + ainxn = bi

is an (n− 1)-dimensional plane in the n-dimensional

space R
n.



Example: For m = n = 2, a system

{

x + y = 1

−x + y = 0

has a solution (x, y) = (1

2
, 1

2
), which is the intersec-

tion point of the lines x + y = 1 and x = y.

Example: For m = n = 3, a system











2x−y = 0

− x+2y−z = 1

−y +2z = 2

has a solution (x, y, z) = (1, 2, 2) which is the inter-

section point of the planes 2x−y = 0, −x+2y−z = 1

and −2y + z = 2.



In parametric form a line can be described by

one parameter (in a space of any number of dimen-

sions n)
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where
→

c = (c1, c2, . . . , cn)T is a vector in the direc-

tion of the line and
→

d = (d1, d2, . . . , dn)T is a point

on the line.



Similarly, a plane can be described by two pa-

rameters (in a space of any number of dimensions

n)
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Here
→

c = (c1, c2, . . . , cn)T and
→

d = (d1, d2, . . . , dn)T

are vectors in the plane with different directions, and
→

e = (e1, e2, . . . , en)T is a point on the plane.



Let us introduce the following notation for the

columns of the array (aij) and for the right-hand

sides in (1):

→

c i =

















a1i

a2i

·

·

·

ami

















, 1 ≤ i ≤ n,
→

b =
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Then, the system (1) can be re-written as

x1

→

c 1 + x2

→

c 2 + · · · + xn

→

c n =
→

b .

We immediately see that the system is consistent

(i.e., it admits solution) if and only if
→

b is a com-

bination of the columns of the array (aij) (algebraic

approach).

Looking at the rows of (1), we see the system

is consistent if, and only if the m planes intersect

(geometric approach).



Gaussian Elimination

Example: Consider in R
3 the three planes given by











x + 2y + 3z = 1

4x + 5y + 6z = 4

7x + 8y + 9z = 8

Then,










x + 2y + 3z = 1

0x − 3y − 6z = 0

0x − 6y − 12z = 1

and










x + 2y + 3z = 1

0x + y + 2z = 0

0x + y + 2z = −
1

6

We see the system is inconsistent since the second

and third equations cannot be satisfied simultane-

ously.



If we change the 8 on the right of the third equa-

tion to 7, then we have










x + 2y + 3z = 1

4x + 5y + 6z = 4

7x + 8y + 9z = 7

or










x + 2y + 3z = 1

0x − 3y − 6z = 0

0x − 6y − 12z = 0

and










x + 2y + 3z = 1

0x + y + 2z = 0

0x + y + 2z = 0

so that
{

x + 2y + 3z = 1

0x + y + 2z = 0

We now see the locus of solutions consists of the line

z = t, y = −2t, x = 1 + t.



Similarly, if the 9 in the original system were

changed to any other number r, then the intersection

of the three planes would be a single point:

z = 1

r−9
, y = −

2

r−9
, x = r−8

r−9
.

Gaussian elimination provides a systematic way

of doing such analysis.

This involves two distinct parts: elimination by

row operations, and back substitution.

Three types of elementary row operations are

permitted that produce equivalent systems (i.e. sys-

tems with exactly the same solutions):

• Interchanging two rows

• Multiplying a row by a non-zero number

• Replacing a row by itself plus a multiple of

another row


