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LU Decomposition

Remark: It is easy to “undo” what an elementary

matrix does.

PijPij = I
Ei(c)Ei(

1
c
) = I

Eij(c)Eij(−c) = I

Go back to the system
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = bm

It can be written using matrices as

Ax = b



where

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn

 ,

x =



x1

x2

·
·
·
xn

 , b =



b1
b2
·
·
·
bm

 .

Consider now Gaussian elimination applied to a

(square) n× n matrix A.

By elementary row operations, A can be brought

to upper triangular form
a11 a12 . . . a1n

0 ā22 . . . ā2n

. . . . . . . . . . . .

0 0 . . . ānn





Example: 1 2 3

4 5 6

7 8 9

 −→
 1 2 3

0 −3 −6

0 0 0


Using elementary matrices:

E32(−2)E31(−7)E21(−4)

 1 2 3

4 5 6

7 8 9


=

 1 2 3

0 −3 −6

0 0 0


Thus, 1 2 3

4 5 6

7 8 9


= E21(4)E31(7)E32(2)

 1 2 3

0 −3 −6

0 0 0





Remark: In our algorithm, we began with the top

row and worked our way down. This implies that

the elementary matrices E32(−2), E31(−7), E21(−4)

(and hence also E21(4), E31(7), E32(2)) are obtained

from I introducing no changes above the diagonal.

Therefore, their product, just like themselves, is

lower triangular:

L = E21(4)E31(7)E32(2)

=

 1 0 0

4 1 0

0 0 1

 1 0 0

0 1 0

7 0 1

 1 0 0

0 1 0

0 2 1



=

 1 0 0

4 1 0

7 2 1


Note that the entries l21, l31, l32 of L below the di-

agonal are exactly the multipliers 4, 7, and 2 in the

elementary matrices E21(4), E31(7), E32(2) above.



Therefore, if no row exchanges are needed, we may

write

A = LU

where L is lower triangular with 1’s on the diagonal

and U is upper triangular. This is the LU decompo-

sition of A.

From here we can derive a more symmetric fac-
torization of A. Suppose none of the coefficients on
the diagonal of U are zero. Then,

A =


1 0 . . . 0

l21 1 . . . 0
. . . . . . . . . . . .

ln1 ln2 . . . 1



d1 u12 . . . u1n

0 d2 . . . u2n

. . . . . . . . . . . .

0 0 . . . dn



=


1 0 . . . 0
l21 1 . . . 0
. . . . . . . . . . . .

ln1 ln2 . . . 1



d1 0 . . . 0
0 d2 . . . 0

. . . . . . . . . . . .

0 0 . . . dn




1 u12/d1 . . . u1n/d1

0 1 . . . u2n/d2

. . . . . . . . . . . .

0 0 . . . 1


This is the LDU decomposition of A.



Suppose now that we do need row exchanges.

These are accomplished multiplying by Pij matrices.

A product P of such elementary matrices is called a

permutation matrix.

Example:

A =

 1 1 1

1 1 3

2 5 8

→
 1 1 1

0 0 2

0 3 6

→
 1 1 1

0 3 6

0 0 2


We can do the necessary row exchanges first,

then the LU factorization:

P23A =

 1 1 1

2 5 8

1 1 3

→
 1 1 1

0 3 6

0 0 2


Showing the elimination steps:

E31(−1)E21(−2)P23A = U

Now PA = LU , where P = P23, L = E21(2)E31(1).

This can always be done since, for i, k, l > j,

PklEij(c) equals either Elj(c)Pkl, when k = i, or

Ekj(c)Pkl, when l = i, or else Eij(c)Pkl.



Definition: We say A is nonsingular if there is a

sequence of row operations on A that yields U with

nonzero coefficients on the diagonal. Otherwise A is

singular.

Suppose A is nonsingular. Then, there is a se-

quence of row operations taking A to U . Since the

coefficients on the diagonal of U are nonzero, we can

use them as pivots to make every coefficient above

the diagonal of U become zero using more elemen-

tary row operations (multiplication from the left by

upper triangular elementary matrices). Finally, di-

viding each row by the coefficient on the diagonal

(pivot), we can make all the coefficients on the diag-

onal equal to 1.

In summary: If A is nonsingular, there is a se-

quence of elementary row operations that take A to

the identity matrix.


