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The Solution of Ax = b

Consider first the linear system

(1)




a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . .

an1x1 + an2x2 + · · ·+ annxn = bn

This is a (square) system of n linear equations in
n unknowns, written in matrix form as

Ax = b.

When b = 0 the system is called homogeneous, and it
may have a unique solution (x = 0 ∈ R

n, the trivial
one) or infinitely many.



The set W of all solutions to the homogeneous
system is a subspace of V = R

n:

For any u, v ∈ V and any c ⊂ R,

A(u + v) = Au + Av = 0 + 0 = 0

A(cu) = cAu = c0 = 0

Therefore, when the homogeneous system has a non-
zero solution, u say, then all multiples of u are also
solutions and are all different; thus infinitely many
solutions do exist.



In the non-homogeneous case the set of all solu-
tions is not a vector space. It may be the empty set,
it may have exactly one vector, or infinitely many.

To see this, first observe that Ax = b may have
no solution (which is equivalent to saying b 6∈ C(A)),
leading to the first possibility. If the system does
have a solution, x say, we notice that for any other
solution of Ax = b, y say, the difference x − y is a
solution of the corresponding homogeneous system,
i.e. x− y = v ∈ N (A). In fact,

A(x− y) = Ax− Ay = b− b = 0.

This means that any solution of the non-homogeneous
system may be written in the form

y = x + v

for some v ∈ N (A). If N (A) = {0}, then x is the
only solution of the non-homogeneous system Ax =
b; if N (A) has infinitely many vectors, then so does
the solution set of the non-homogeneous system.

Remark: When A is nonsingular, Ax = b always
has a unique solution given explicitly as x = A−1b.



In the general case (m 6= n) the homogeneous
system may still have exactly one solution (the triv-
ial one) or infinitely many, and the non-homogeneous
system may still have no solution, exactly one so-
lution, or infinitely many. However, in this case
a unique solution cannot be expressed in the form
x = A−1b, since A−1 is not defined.

The algorithm to solve a general linear system
of m equations in n unknowns consists of apply-
ing Gaussian elimination to the augmented matrix
[ A | b ] until it reaches a so called row echelon form:




† . . . ∗ . . . . . . . . . . . . ∗
0 . . . 0 † . . . . . . . . . ∗
0 . . . 0 . . . 0 † . . . ∗
0 . . . 0 . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 . . . . . . . . . . . . 0




where the coefficients labeled † represent the pivots
and those labeled ∗ represent arbitrary real numbers.



The row echelon form is characterized by the fol-
lowing two conditions:

(i) the first non-zero coefficient in each row (pivot)
must appear in a column strictly to the right of the
pivot in the previous row;

(ii) every coefficient in a row below and in the
column of or to the left of a pivot must be zero.

Definition: The free variables are the unknowns
corresponding to the columns where no pivots are
located. The pivot variables are the unknowns cor-
responding to the columns where the pivots are lo-
cated.

The row echelon system is solved by back substi-
tution (from bottom up) assigning parameter values
(s, t, etc.) to the free variables and solving for the
pivot variables in term of the free.

In case the system is non-homogeneous, it is in-
consistent if, and only if the row echelon form of
the augmented matrix [ A | b ] has in its last nonzero
row only one nonzero coefficient, located on the last
(n + 1)−st column.



Example:


1 2 3 4
2 4 5 6
3 6 7 8







x1

x2

x3

x4


 =




1
3
5




First we find the row echelon form of the augmented
matrix [ A | b ].




1 2 3 4 | 1
2 4 5 6 | 3
3 6 7 8 | 5


 →




1 2 3 4 | 1
0 0 −1 −2 | 1
0 0 −2 −4 | 2




→



1 2 3 4 | 1
0 0 −1 −2 | 1
0 0 0 0 | 0




The pivots are 1 and -1, corresponding to the pivot
variables x1 and x3. The free variables are x2 and
x4, since the second and fourth columns of the row
echelon form do not contain pivots. We solve by
back substitution:

x4 = t, −x3 = 1 + 2x4 gives x3 = −2t− 1

x2 = s, x1 = 1− 2x2 − 3x3 − 4x4 = 4− 2s− 2t



Now we write the general solution:

x =




x1

x2

x3

x4


 = s




−2
1
0
0


 + t




−2
0
−2
1




xhomogeneous

+




4
0
−1
0




xparticular

Definition: The number of nonzero rows in the row
echelon form of a matrix A (which equals the number
of pivots) is called the (row) rank of the matrix.

Remark: A square row echelon matrix is always
upper triangular.

We can extend the concept of upper triangular
to m× n matrices A = (aij) that are not square, by
still requiring aij = 0 for j < i.



Just as we did for square matrices, we may real-
ize the elementary row operations that lead from A

to its row echelon form U through multiplication on
the left by elementary matrices. If no row exchanges
are needed, this leads to the factorization

A = LU,

where L ∈Mm×m is lower triangular with 1’s on the
diagonal, and U ∈Mm×n is a row echelon matrix.

If row exchanges are needed, they are done be-
fore the factorization by multiplying A on the left by
a permutation matrix P ∈Mm×m. This leads to

PA = LU.


