MA 511, Session 7

The Solution of Ax = b

Consider first the linear system

(a1121 + 1229 + -+ + a1px, = b1
211 + A22T2 + -+ - + a2, = bo

1) <

L An1T1 + Ap2T2 + - + AppTp = bn

This is a (square) system of n linear equations in

n unknowns, written in matrix form as
Ax =b.

When b = 0 the system is called homogeneous, and it

may have a unique solution (z = 0 € R™, the trivial
one) or infinitely many.



The set W of all solutions to the homogeneous
system is a subspace of V = R":

For any u,v € V and any ¢ C R,

Alu+v)=Au+Av=04+0=0
A(cu) = cAu=c0 =0

Therefore, when the homogeneous system has a non-
zero solution, u say, then all multiples of u are also
solutions and are all different; thus infinitely many
solutions do exist.



In the non-homogeneous case the set of all solu-
tions is not a vector space. It may be the empty set,
it may have exactly one vector, or infinitely many.

To see this, first observe that Az = b may have
no solution (which is equivalent to saying b & C(A)),
leading to the first possibility. If the system does
have a solution, x say, we notice that for any other
solution of Ax = b, y say, the difference x — y is a

solution of the corresponding homogeneous system,
ie.z —y=v € N(A). In fact,

Alx —y) =Ax— Ay=b—-b=0.

This means that any solution of the non-homogeneous
system may be written in the form

Yy=x+v
for some v € N(A). If N(A) = {0}, then x is the

only solution of the non-homogeneous system Az =
b; if N'(A) has infinitely many vectors, then so does
the solution set of the non-homogeneous system.

Remark: When A is nonsingular, Az = b always
has a unique solution given explicitly as z = A~1b.



In the general case (m # n) the homogeneous
system may still have exactly one solution (the triv-
ial one) or infinitely many, and the non-homogeneous
system may still have no solution, exactly one so-
lution, or infinitely many. However, in this case
a unique solution cannot be expressed in the form
r = A71b, since A™! is not defined.

The algorithm to solve a general linear system
of m equations in n unknowns consists of apply-
ing Gaussian elimination to the augmented matrix

| A | b] until it reaches a so called row echelon form:

o O O —+

S O O ¥

. o
—+

O *x *x K

\o .0 . . .0

where the coefficients labeled | represent the pivots
and those labeled * represent arbitrary real numbers.



The row echelon form is characterized by the fol-
lowing two conditions:

(i) the first non-zero coefficient in each row (pivot)
must appear in a column strictly to the right of the
pivot in the previous row;

(ii) every coefficient in a row below and in the
column of or to the left of a pivot must be zero.

Definition: The free variables are the unknowns

corresponding to the columns where no pivots are
located. The pivot variables are the unknowns cor-
responding to the columns where the pivots are lo-
cated.

The row echelon system is solved by back substi-
tution (from bottom up) assigning parameter values
(s,t, etc.) to the free variables and solving for the
pivot variables in term of the free.

In case the system is non-homogeneous, it is in-
consistent if, and only if the row echelon form of
the augmented matrix [ A | b] has in its last nonzero
row only one nonzero coefficient, located on the last
(n + 1)—st column.



Example:
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First we find the row echelon form of the augmented
matrix [A | b].

1 2 3 4|1 1 2 3 4
4 5 6 3] —10 0 -1 =2
3 6 7 8|9 0 0 -2 -4

1 2 3 4 1

—- (0 0 -1 -2 |1

0O 0 O 0 0
The pivots are 1 and -1, corresponding to the pivot
variables ;7 and x3. The free variables are z, and
x4, since the second and fourth columns of the row
echelon form do not contain pivots. We solve by

back substitution:

Tty =1, —x3=14+2x4 glves x3 = —2t—1

To=8, x1=1—2x9—3r3—4xry =4— 25— 2t



Now we write the general solution:

I —2 —2 4

- o _ 1 1t 0 4 0

|z | 0 —2 —1

Ty 0 1 0
Zhomogeneous Zparticular

Definition: The number of nonzero rows in the row
echelon form of a matrix A (which equals the number
of pivots) is called the (row) rank of the matrix.

Remark: A square row echelon matrix is always
upper triangular.

We can extend the concept of upper triangular
to m X n matrices A = (a;;) that are not square, by
still requiring a;; = 0 for 7 < 1.



Just as we did for square matrices, we may real-
ize the elementary row operations that lead from A
to its row echelon form U through multiplication on
the left by elementary matrices. If no row exchanges
are needed, this leads to the factorization

A=LU,

where L € M, «m is lower triangular with 1’s on the
diagonal, and U € M,,,«x, is a row echelon matrix.

If row exchanges are needed, they are done be-
fore the factorization by multiplying A on the left by
a permutation matrix P € M,,,«m. This leads to

PA=LU.



