MA 511, Session 10

The Four Fundamental Subspaces of a Matrix

Let A be a $m \times n$ matrix.

(i) The <u>row space</u> $\mathcal{C}(A^T)$ of A is the subspace of \mathbb{R}^n spanned by the rows of A.

(ii) The <u>null space</u> $\mathcal{N}(A)$ of A is the subspace of \mathbb{R}^n of solutions of Ax = 0.

(iii) The column space $\mathcal{C}(A)$ of A is the subspace of \mathbb{R}^m spanned by the columns of A.

(iv) The <u>left null space</u> $\mathcal{N}(A^T)$ of A is the subspace of \mathbb{R}^m of solutions of $A^T x = 0$.

Let us discuss how to find bases for these vector spaces and determine their dimensions. (i) We consider the row space first. Note that if B is obtained from A by elementary row operations, then the rows of B are linear combinations of the rows of A. Since the elementary row operations can all be reversed, we also have the rows of A are linear combinations of the rows of B, i.e. $C(A^T) = C(B^T)$. In particular, if we take A to its row echelon form U by elementary row operations, then the nonzero rows of U form a basis for its row space and hence for the row space of A. If we let $r = \operatorname{rank} A$, then

$$\dim \mathcal{C}(A^T) = r.$$

(ii) As for the null space, we can quickly see that elementary row operations do not change this space: if A = LU with L lower triangular with all coefficients on its diagonal equal to 1, then

$$Ax = 0 \iff Ux = 0.$$

Indeed,

$$Ax = 0 \iff LUx = 0 \iff L^{-1}LUx = L^{-1}0 = 0.$$

Then, a basis for $\mathcal{N}(A)$ is actually found as a basis for $\mathcal{N}(U)$ using the general method we described in session 9 from the free variables in the system Ux = 0. If rank A = r, then the number of pivots is r and the number of free variables is n - r. Thus,

$$\dim \mathcal{N}(A) = n - r.$$

(iii) We now turn to the column space. Since elementary row operations do change the column space, it is not obvious even that $\dim \mathcal{C}(A) = \dim \mathcal{C}(A^T)$. This follows from the following nontrivial observation:

Suppose that U is the row echelon form of A. Then U = EA, where E is a product of elementary matrices. Let us write this relation in terms of the columns of $U, u_1, \ldots, u_n \in \mathbb{R}^n$ and those of A, $v_1, \ldots, v_n \in \mathbb{R}^n$

$$(u_1 \quad u_2 \quad \dots \quad u_n) = E(v_1 \quad v_2 \quad \dots \quad v_n)$$

= $(Ev_1 \quad Ev_2 \quad \dots \quad Ev_n)$

that is, $Ev_j = u_j$ for $1 \leq j \leq n$. We shall prove below that invertible matrices transform linearly independent vectors into linearly independent vectors. Hence, as we know that the columns of U that contain the pivots are linearly independent, it follows that <u>the corresponding columns of A are also linearly</u> independent—and the other columns of A are dependent from these—so that they also span $\mathcal{C}(A)$ and thus they form a basis for this space. Hence,

$$\dim \mathcal{C}(A) = r.$$

Lemma: Assume E is a nonsingular matrix. Then,

$$v_1, \ldots, v_k$$
 l.i. $\iff Ev_1, \ldots, Ev_k$ l.i.

<u>Proof</u>: Necessity (only if): Let $c_1 Ev_1 + \cdots + c_k Ev_k = 0$. We must prove that $c_1 = \cdots = c_k = 0$. First note that $E(c_1v_1 + \cdots + c_kv_k) = 0$. Set $x = c_1v_1 + \cdots + c_kv_k$ and we immediately see that Ex = 0. Since E is nonsingular, this implies $0 = E^{-1}0 = E^{-1}Ex = x$, that is $x = c_1v_1 + \cdots + c_kv_k = 0$. Since v_1, \ldots, v_k are linearly independent, then $c_1 = \cdots = c_k = 0$, proving the linear independence of Ev_1, \ldots, Ev_k .

Sufficiency (if): Assume $u_1 = Ev_1, \ldots, u_k = Ev_k$ linearly independent and let $v_1 = E^{-1}u_1, \ldots, v_k = E^{-1}u_k$. We need to prove v_1, \ldots, v_k are linearly independent. We can reverse the roles of v_1, \ldots, v_k and Ev_1, \ldots, Ev_k in the necessity part and see (using E^{-1} in place of E) that u_1, \ldots, u_k linearly independent implies $E^{-1}u_1, \ldots, E^{-1}u_k$ linearly independent, which completes the proof.

(iv) As for the left null space $\mathcal{N}(A^T)$, it is clear that

$$\dim \mathcal{N}(A^T) = m - r,$$

since rank $A = \operatorname{rank} A^T$. To find a basis for $\mathcal{N}(A^T)$, we take A^T to its row echelon form and using the m - r free variables generate m - r basis vectors in the usual way (giving each free variable in turn the value 1 while all other independent variables take on the value 0). **Example:** Find bases and the dimensions of the four fundamental spaces of

$$A = \begin{pmatrix} 0 & 2 & 3 & 4 \\ 0 & 6 & 7 & 8 \\ 0 & 10 & 11 & 12 \end{pmatrix}$$

٠

Solution: We find the row echelon form of A:

$$\begin{pmatrix} 0 & 2 & 3 & 4 \\ 0 & 6 & 7 & 8 \\ 0 & 10 & 11 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & -4 & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(i) Basis for row space $\mathcal{R}(A^T)$: $\begin{pmatrix} 0 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ -2 \\ -4 \end{pmatrix}$.
(iii) Basis for column space $\mathcal{R}(A)$: $\begin{pmatrix} 2 \\ 6 \\ 10 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 7 \\ 11 \end{pmatrix}$.

(ii) Basis for $\mathcal{N}(A)$: We note that in solving Ux = 0the free variables are x_1 and x_4 . Using $x_1 = 0$ and $x_4 = 1$ we obtain $x_3 = -2$ and $x_2 = \frac{-3(-2)-4(1)}{2} = 1$, giving the vector $\begin{pmatrix} 0\\ 1\\ -2\\ 1 \end{pmatrix}$. Next we take $x_1 = 1$ and $x_4 = 0$, which give the vector $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$. Thus, basis for $\mathcal{N}(A)$: $\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

We have just established that

$$\dim \mathcal{R}(A^T) = \dim \mathcal{R}(A) = \dim \mathcal{N}(A) = 2.$$

(iv) Basis for $\mathcal{N}(A^T)$: Since dim $\mathcal{N}(A^T) = 3 - 2 = 1$, it follows that in order to find a basis for the left null space of A we only need one nonzero vector $x \in \mathbb{R}^3$ such that $A^T x = 0$. We take A^T to row echelon form:

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 6 & 10 \\ 0 & -2 & -4 \\ 0 & -4 & -8 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 6 & 10 \\ 0 & -2 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and now see that $x_3 = 1$ gives $x_2 = -2$ and $x_1 = 1$. Thus, basis for $\mathcal{N}(A^T)$: $\begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix}$.