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The Four Fundamental Subspaces of a Matrix

Let A be a m× n matrix.

(i) The row space C(AT ) of A is the subspace of Rn

spanned by the rows of A.

(ii) The null space N (A) of A is the subspace of Rn

of solutions of Ax = 0.

(iii) The column space C(A) of A is the subspace of

Rm spanned by the columns of A.

(iv) The left null space N (AT ) of A is the subspace

of Rm of solutions of ATx = 0.

Let us discuss how to find bases for these vector

spaces and determine their dimensions.



(i) We consider the row space first. Note that if B

is obtained from A by elementary row operations,

then the rows of B are linear combinations of the

rows of A. Since the elementary row operations can

all be reversed, we also have the rows of A are linear

combinations of the rows of B, i.e. C(AT ) = C(BT ).

In particular, if we take A to its row echelon form

U by elementary row operations, then the nonzero

rows of U form a basis for its row space and hence

for the row space of A. If we let r = rank A, then

dim C(AT ) = r.

(ii) As for the null space, we can quickly see that ele-

mentary row operations do not change this space: if

A = LU with L lower triangular with all coefficients

on its diagonal equal to 1, then

Ax = 0 ⇐⇒ Ux = 0.

Indeed,

Ax = 0 ⇐⇒ LUx = 0 ⇐⇒ L−1LUx = L−10 = 0.



Then, a basis for N (A) is actually found as a ba-

sis for N (U) using the general method we described

in session 9 from the free variables in the system

Ux = 0. If rank A = r, then the number of pivots is

r and the number of free variables is n− r. Thus,

dimN (A) = n− r.

(iii) We now turn to the column space. Since elemen-

tary row operations do change the column space, it is

not obvious even that dim C(A) = dim C(AT ). This

follows from the following nontrivial observation:

Suppose that U is the row echelon form of A.

Then U = EA, where E is a product of elemen-

tary matrices. Let us write this relation in terms of

the columns of U , u1, . . . , un ∈ Rn and those of A,

v1, . . . , vn ∈ Rn

(u1 u2 . . . un ) = E ( v1 v2 . . . vn )

= (Ev1 Ev2 . . . Evn )

that is, Evj = uj for 1 ≤ j ≤ n. We shall prove

below that invertible matrices transform linearly in-

dependent vectors into linearly independent vectors.



Hence, as we know that the columns of U that con-

tain the pivots are linearly independent, it follows

that the corresponding columns of A are also linearly

independent—and the other columns of A are depen-

dent from these—so that they also span C(A) and

thus they form a basis for this space. Hence,

dim C(A) = r.

Lemma: Assume E is a nonsingular matrix. Then,

v1, . . . , vk l.i. ⇐⇒ Ev1, . . . , Evk l.i.

Proof: Necessity (only if): Let c1Ev1 + · · · +
ckEvk = 0. We must prove that c1 = · · · = ck =

0. First note that E(c1v1 + · · · + ckvk) = 0. Set

x = c1v1 + · · · + ckvk and we immediately see that

Ex = 0. Since E is nonsingular, this implies 0 =

E−10 = E−1Ex = x, that is x = c1v1 + · · ·+ ckvk =

0. Since v1, . . . , vk are linearly independent, then

c1 = · · · = ck = 0, proving the linear independence

of Ev1, . . . , Evk.



Sufficiency (if): Assume u1 = Ev1, . . . , uk = Evk
linearly independent and let v1 = E−1u1, . . . , vk =

E−1uk. We need to prove v1, . . . , vk are linearly in-

dependent. We can reverse the roles of v1, . . . , vk
and Ev1, . . . , Evk in the necessity part and see (us-

ing E−1 in place of E) that u1, . . . , uk linearly in-

dependent implies E−1u1, . . . , E
−1uk linearly inde-

pendent, which completes the proof.

(iv) As for the left null space N (AT ), it is clear that

dimN (AT ) = m− r,

since rank A = rank AT . To find a basis for N (AT ),

we take AT to its row echelon form and using the

m− r free variables generate m− r basis vectors in

the usual way (giving each free variable in turn the

value 1 while all other independent variables take on

the value 0).



Example: Find bases and the dimensions of the

four fundamental spaces of

A =

 0 2 3 4

0 6 7 8

0 10 11 12

 .

Solution: We find the row echelon form of A: 0 2 3 4
0 6 7 8

0 10 11 12

→
 0 2 3 4

0 0 −2 −4

0 0 −4 −8

→
 0 2 3 4

0 0 −2 −4

0 0 0 0

 .

(i) Basis for row space R(AT ):


0

2

3

4

 ,


0

0

−2

−4

.

(iii) Basis for column space R(A):

 2

6

10

 ,

 3

7

11

.



(ii) Basis for N (A): We note that in solving Ux = 0

the free variables are x1 and x4. Using x1 = 0 and

x4 = 1 we obtain x3 = −2 and x2 = −3(−2)−4(1)
2 = 1,

giving the vector


0

1

−2

1

. Next we take x1 = 1 and

x4 = 0, which give the vector


1

0

0

0

. Thus,

basis for N (A):


0

1

−2

1

 ,


1

0

0

0

.

We have just established that

dimR(AT ) = dimR(A) = dimN (A) = 2.



(iv) Basis for N (AT ): Since dimN (AT ) = 3−2 = 1,
it follows that in order to find a basis for the left null
space of A we only need one nonzero vector x ∈ R3

such that ATx = 0. We take AT to row echelon
form:

0 0 0
2 6 10
3 7 11
4 8 12

→


2 6 10
0 −2 −4
0 −4 −8
0 0 0

→


2 6 10
0 −2 −4
0 0 0
0 0 0


and now see that x3 = 1 gives x2 = −2 and x1 = 1.

Thus, basis for N (AT ):

 1

−2

1

.


