
MA 511, Session 11

Graphs and Kirchhoff’s Laws

We’ll call a graph a set of points (called the

nodes) and oriented segments joining them (called

edges). A path is any sequence of consecutive edges.

We ’ll only consider graphs that are connected, i.e.

such that there is a path (not necessarily unique)

from any node to any other.

The Incidence Matrix: Consider a graph with n

nodes and m edges. We define the m× n edge-node

incidence matrix A row-by-row as follows: If the i-th

edge originates at node j and ends at node k, then

the i-th row of A = (ail) contains zeros in all its

components, except for aij = −1 and aik = 1.



Example: Consider a graph consisting of 4 nodes

and the following 5 edges, e12, e23, e34, e14, e13

(where eij means the edge that originates at the i-th

node and ends at the j-th node). Then, the edge-

node incidence matrix is

A =


−1 1 0 0

0 −1 1 0

0 0 −1 1

−1 0 0 1

−1 0 1 0

 .

We now turn to the calculation and interpreta-

tion of the four fundamental subspaces for the inci-

dence matrix.

1) Null Space: We immediately see that the column

vector with all its components equal to 1 is in the

null space since any row of A multiplied by it results

in (−1)1 + (1)1 = 0. It turns out that any vector

in the null space must be a multiple of this one and



thus dimN (A) = 1 and a basis for N (A) is


1

1

1

1

.

2) Column space: First recall that the column space

consists of all linear combinations of the columns of

A, i.e. all products Ac where c ∈ Rn. If we interpret

the graph as a circuit and the components of c as

potentials (e.g. electric potential) located at the cor-

responding nodes, then the structure of the rows of A

makes the product Ac have for components the dif-

ferences of potential across the edges, so that Ax = b

can be solved if, and only if these differences in po-

tential across edges satisfy the necessary constraints

to make b belong to the column space of A.

By direct observation of A we see that the sum

of the first and second rows gives the fifth row, and

the sum of the third and fifth rows gives the fourth

row. Thus, in order for b to be in the column space,

it must satisfy b1 + b2 = b5 and b3 + b5 = b4, or

equivalently, b1 + b2 − b5 = 0 and b3 − b4 + b5 = 0.



A basis for the solution space of this system is

v1 =


−1

1

0

0

0

 , v2 =


0

0

1

1

0

 , v3 =


1

0

−1

0

1

 ,

and dimC(A) = 3.

It is worth noting that v1 is the opposite of the

second column of A, v2 is the fourth column of A,

and v3 is the sum of the second and third columns

of A.

3) Left-Null Space:

Definition: A loop is a path that begins and ends

at the same node (irrespective of the orientation of

the edges involved).

We can write down any loop by just indicating

in order the nodes it goes through.

In the example we are examining, 1-2-3-1 is a

loop (since we have edges connecting nodes 1 and 2,



nodes 2 and 3, and nodes 3 and 1). Another loop is

1-3-4-1, and yet another one is 1-2-3-4-1. However,

this last one is just a superposition of the first two

loops mentioned. Let us now assign a column vector

to each loop as follows: if edge i is traversed in the

loop in the direction of its orientation, then the i-

th component of the column vector is 1; if edge i is

traversed in the loop in the direction opposite of its

orientation, then the i-th component of the column

vector is -1; if edge i is not in the loop, then the i-th

component of the column vector is 0.

Thus, loop 1-2-3 results in the column vector


1

1

0

0

−1



and loop 1-3-4 results in the column vector


0

0

1

−1

1

.

Note that these vectors, y1 and y2, have for compo-



nents precisely the coefficients in the two equations

for b we just solved to find the column space and

thus yTA = 0 for y = y1 and y = y2. Therefore,

y1, y2 form a basis for N (AT ) and dimN (AT ) = 2.

This is no coincidence. It is, in fact,

Kirchhoff’s Voltage Law: The sum of potential

differences around a loop must be zero.

4) Row Space: Rows in the edge-node incidence ma-

trix are independent if, and only if the edges they

correspond to contain no loops. So, it is very easy

to see from the graph that, e.g. the first three rows

are linearly independent since edges 1, 2, and 3 give

the path 1-2-3-4, which contains no loops.

Of course, in this example, the 3×4 matrix con-

sisting of the first three rows of A is in row echelon

form and thus its rows are linearly independent (for

“free”). At any rate,

x1 = (−1, 1, 0, 0), x2 = (0,−1, 1, 0), x3 = (0, 0,−1, 1)

form a basis for C(AT ) and dim C(AT ) = 3.



We finally note that a vector f is in the row space

of A (or, equivalently, in the column space of AT ) if,

and only if fTx = 0 for all x ∈ N (A), i.e. if, and

only if f1 + f2 + f3 + f4 = 0. The components of

f can be interpreted as the “current sources” at the

nodes.

It turns out that AT is the right matrix for cur-

rents, and all that this condition says is

Kirchhoff’s Current Law: The net current into

every node is zero.

Let us stress once more that, once we have an

edge-node incidence matrix, we can algebraically find

bases for and the dimensions of the four fundamen-

tal subspaces using the general methods we gave in

session 10. However, using the graph corresponding

to the matrix, many of those bases can be visually

deduced from Kirchhoff’s laws.


