MA 511, Session 12

Linear Transformations

Let V and W be real vector spaces.

Definition: A function f : V — W is a linear
transformation if, for any vectors vy, v, € V and any

scalar ¢ € R,
f(v1 +v2) = f(v1) + f(ve),
flevr) = cf(v1).
Equivalently, f(civ1 + cove) = c1f(v1) + co f(ve) for

any scalars cq1, co and any vectors vq, vs.

Example: Let f : P,, — P,,_2 be the second de-
rivative function,

f(p)=p".
Then, f is a linear transformation of V' = P, into
W =P, _o.
Proof: Let vi,v2 € P,, and c1,cy € R. Then,

f(c1v1 + covg) = (c1v1 + 62’02)”

= c1v] + vy = c1f(v1) + ca f(va2).



For example, if p(t) = 2t3 —t*> +4 and q¢ = f(p),
then q(t) = 12t — 2.

Example: Let L : C|0,1] — R be the definite inte-
gral

1
L) = | @
0
Then, L is a linear transformation of V' = C|0, 1] into

W = R.
Proof: Let vi,vs € C[0,1] and ¢y, co € R. Then,

1
L(cyvy + cav) = / (crv1 + covo)(£) dit
0

1 1
=C / U1 (t) dt -+ Co / Ug(t) dt
0 0
= ClL(’Ul) -+ CQL(’UQ).

For example, for f(z) = 22, L(f) = 3.



Example: Let T : C[0,1] — R be the evaluation

function at 1, T(f) = f(3). Then, T is a linear
transformation of V' = C|[0, 1] into W = R.

Proof: Let v1,vs € C[0,1] and ¢y, co € R. Then,

T(clm + 62’02) = (01’01 + C2U2)(%)
= 612}1(%) + 02'02(%)
— ClT(Ul) + CQT(’UQ).

Example: Let A be a m X n matrix, and let

L : R" — R™ be the transformation L(x) = Ax.
Then, L is a linear transformation of V = R" into
W =R"™,

Proof: Let v1,v9 € R™ and ¢1,co € R. Then,

L(Cl’Ul -+ CQUQ) = A(01U1 -+ CQUQ)
= clAvl + CQAUQ
= ClL(’Ul) -+ CQL(’UQ).



Theorem: Let A = (a;;) and B = (b;x) be m xn
and n X p matrices, and let L : R" — R™ and
M : RP — R" be the corresponding transforma-
tions L(x) = Az and M (y) = By. Then the com-
position L o M : RP — R™ of L and M, defined as
(Lo M)(y) = L(M(y)), corresponds to the product
AB of the matrices A and B.

Proof: For y = (y1,...,¥p), the components of x =
M(y) = By are ©; = >, _ bjryr. The components
of b= L(M(y)) = L(x) = Ax are

n n p p n
by = Zaijﬂfj = Zzaijbg’kyk = ;j Sjaijbjk Yk -
g=1 j=1

j=1 k=1 k=1

Hence b = ABy.



A linear transformation is entirely determined by
its action on a basis.

Suppose that B = {v,...,v,} is a basis for
V and B" = {wy,...,w,} is a basis for W. Let
L :V — W be a linear transformation. It follows
that, for x € V,

L(z) = L(civy + -+ - 4+ cpvn) = c1L(v1) + -+ - + e L(vy).

We can represent a linear transformation “via
bookkeeping” by a matrix. Let

L(vj) =a1jw1 + -+ @mjwm, 1<j<n.

We now say that the m x n matrix A = (a;;) is the
matrix of linear transformation L in the bases B.B’.

We use the following notation:

A= (L)gp

Then, A transforms the components of a vector v in
V' with respect to the basis B into the components
of L(v) in W with respect to the basis B’.



Since
mn
Uj = E 045 Vi
i=1

where 0;; is Kronecker’s symbol, we see that the com-
ponents of the vector v; in the basis B are given by
the j-th standard basis vector e; of R". Hence,

Aej — Cj,

the j-th column of A gives, by definition of the ma-
trix, the components of L(v;) with respect to the
basis B’. For an arbitrary vector v € V, the claim
follows by taking linear combinations of vq, ..., v,.

Example: Let V = P, and W = P3. Consider the
linear transformation T': V' — W given by T'(p) =
p'+p". Let B={1,t,t?,t3,t*} and B’ = {1,t,t%,t3}
be bases for V and W, respectively. Then, the ma-
trix representing 1" in these bases is

01 2 0 0
00 2 6 0
A= =10 o 0 3 12
0000 4



If p(t) = —2t* + 3t* — 6t + 7, then ¢ = T'(p) is
the cubic polynomial
q(t) = (=813 + 6t — 6) + (—24t% + 6) = —8t3 — 24t% + 6t.
To compute this using the matrix of the linear
transformation, we have to multiply it by the vector
of components of p in the basis B, i.e. (7,—6,3,0, —2)%.

We obtain
O 1 2 0 O (—76\ 0
O 0 2 6 0 5 B §
O 0 0 3 12 0 | —24
O 0 0 0 4 \_2) —8

This product gives the components or ¢ in the basis
B’, so that q(t) = (0)1 + (6)t + (—24)t* 4+ (—8)t° =
—8t3 — 24t? + 6t, just as the analytical result.

Example: Let V', W, and L be as in the last exam-
ple. Find the null space of A = (L)pp’ and interpret
it in terms of the vector space V.

Solution: The null space of A consists of the vectors
x € R" such that Ax = 0. Now, Ax = 0 if, and only
if L(v) =0, where v = 101 + -+ + T, U,.




We can find the general solution of the linear, ho-
mogeneous, ordinary differential equation with con-
stant coefficients

Lu)=u"+u =0

by writing the characteristic polynomial r? + r =
r(r + 1), and using its roots 0 and -1. We see that
the solution set S is a 2-dimensional subspace of
C?(—00,00) (a plane in that vector space),

u(t) = c1e% + coe 1 = ¢ + et

and the only functions in S that are also in V are
the constants u(t) = ¢;. Thus, the null space of L
consists of the constants (polynomials of degree 0).
Computing algebraically the solution set of Ax = 0,
we find that it is a line in R®, given parametrically

( 1 )
(1
I={s|o],ser}.

o)

This corresponds to the constant polynomials.

asS




Example: Plane rotations about the origin by any

angle « are linear transformations in V = W = R?,
represented by orthogonal matrices

Q) — (Cosa —sina) |

Sin o COS (x

Example: Projections onto a line are linear trans-
formations in V = W = R?, with

=y o) =g V),

representing, respectively, the projections onto the

x-axis and the y-axis.

Example: Reflections across a line are linear trans-
formations in V = W = R?, with

(Rrya) = ((1) é) :

representing the reflection across the line x = y.




