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Linear Transformations

Let V and W be real vector spaces.

Definition: A function f : V −→ W is a linear
transformation if, for any vectors v1, v2 ∈ V and any
scalar c ∈ R,

f(v1 + v2) = f(v1) + f(v2),

f(cv1) = cf(v1).

Equivalently, f(c1v1 + c2v2) = c1f(v1) + c2f(v2) for
any scalars c1, c2 and any vectors v1, v2.

Example: Let f : Pn −→ Pn−2 be the second de-
rivative function,

f(p) = p′′.

Then, f is a linear transformation of V = Pn into
W = Pn−2.

Proof: Let v1, v2 ∈ Pn and c1, c2 ∈ R. Then,

f(c1v1 + c2v2) = (c1v1 + c2v2)′′

= c1v
′′
1 + c2v

′′
2 = c1f(v1) + c2f(v2).



For example, if p(t) = 2t3 − t2 + 4 and q = f(p),
then q(t) = 12t− 2.

Example: Let L : C[0, 1] −→ R be the definite inte-
gral

L(f) =
∫ 1

0

f(t) dt.

Then, L is a linear transformation of V = C[0, 1] into
W = R.

Proof: Let v1, v2 ∈ C[0, 1] and c1, c2 ∈ R. Then,

L(c1v1 + c2v2) =
∫ 1

0

(c1v1 + c2v2)(t) dt

= c1

∫ 1

0

v1(t) dt + c2

∫ 1

0

v2(t) dt

= c1L(v1) + c2L(v2).

For example, for f(x) = x2, L(f) = 1
3 .



Example: Let T : C[0, 1] −→ R be the evaluation
function at 1

4 , T (f) = f( 1
4 ). Then, T is a linear

transformation of V = C[0, 1] into W = R.

Proof: Let v1, v2 ∈ C[0, 1] and c1, c2 ∈ R. Then,

T (c1v1 + c2v2) = (c1v1 + c2v2)( 1
4 )

= c1v1( 1
4 ) + c2v2( 1

4 )

= c1T (v1) + c2T (v2).

Example: Let A be a m× n matrix, and let
L : R

n −→ R
m be the transformation L(x) = Ax.

Then, L is a linear transformation of V = R
n into

W = R
m.

Proof: Let v1, v2 ∈ R
n and c1, c2 ∈ R. Then,

L(c1v1 + c2v2) = A(c1v1 + c2v2)

= c1Av1 + c2Av2

= c1L(v1) + c2L(v2).



Theorem: Let A = (aij) and B = (bjk) be m × n

and n × p matrices, and let L : R
n −→ R

m and
M : R

p −→ R
n be the corresponding transforma-

tions L(x) = Ax and M(y) = By. Then the com-
position L ◦M : R

p −→ R
m of L and M , defined as

(L ◦M)(y) = L(M(y)), corresponds to the product
AB of the matrices A and B.

Proof: For y = (y1, . . . , yp), the components of x =
M(y) = By are xj =

∑p
k=1 bjkyk. The components

of b = L(M(y)) = L(x) = Ax are

bi =
n∑

j=1

aijxj =
n∑

j=1

p∑
k=1

aijbjkyk =
p∑

k=1


 n∑

j=1

aijbjk


 yk.

Hence b = ABy.



A linear transformation is entirely determined by
its action on a basis.

Suppose that B = {v1, . . . , vn} is a basis for
V and B′ = {w1, . . . , wm} is a basis for W . Let
L : V −→ W be a linear transformation. It follows
that, for x ∈ V ,

L(x) = L(c1v1 + · · ·+ cnvn) = c1L(v1) + · · ·+ cnL(vn).

We can represent a linear transformation “via
bookkeeping” by a matrix. Let

L(vj) = a1jw1 + · · ·+ amjwm, 1 ≤ j ≤ n.

We now say that the m× n matrix A = (aij) is the
matrix of linear transformation L in the bases B,B′.
We use the following notation:

A = (L)BB′

Then, A transforms the components of a vector v in
V with respect to the basis B into the components
of L(v) in W with respect to the basis B′.



Since

vj =
n∑

i=1

δijvi,

where δij is Kronecker’s symbol, we see that the com-
ponents of the vector vj in the basis B are given by
the j-th standard basis vector ej of R

n. Hence,

Aej = Cj ,

the j-th column of A gives, by definition of the ma-
trix, the components of L(vj) with respect to the
basis B′. For an arbitrary vector v ∈ V , the claim
follows by taking linear combinations of v1, . . . , vn.

Example: Let V = P4 and W = P3. Consider the
linear transformation T : V −→ W given by T (p) =
p′+p′′. Let B = {1, t, t2, t3, t4} and B′ = {1, t, t2, t3}
be bases for V and W , respectively. Then, the ma-
trix representing T in these bases is

A = (T )BB′ =




0 1 2 0 0
0 0 2 6 0
0 0 0 3 12
0 0 0 0 4


 .



If p(t) = −2t4 + 3t2 − 6t + 7, then q = T (p) is
the cubic polynomial

q(t) = (−8t3 + 6t− 6) + (−24t2 + 6) = −8t3 − 24t2 + 6t.

To compute this using the matrix of the linear
transformation, we have to multiply it by the vector
of components of p in the basis B, i.e. (7,−6, 3, 0,−2)T .
We obtain




0 1 2 0 0
0 0 2 6 0
0 0 0 3 12
0 0 0 0 4







7
−6
3
0
−2


 =




0
6
−24
−8


 .

This product gives the components or q in the basis
B′, so that q(t) = (0)1 + (6)t + (−24)t2 + (−8)t3 =
−8t3 − 24t2 + 6t, just as the analytical result.

Example: Let V , W , and L be as in the last exam-
ple. Find the null space of A = (L)BB′ and interpret
it in terms of the vector space V .

Solution: The null space of A consists of the vectors
x ∈ R

n such that Ax = 0. Now, Ax = 0 if, and only
if L(v) = 0, where v = x1v1 + · · ·+ xnvn.



We can find the general solution of the linear, ho-
mogeneous, ordinary differential equation with con-
stant coefficients

L(u) = u′′ + u′ = 0

by writing the characteristic polynomial r2 + r =
r(r + 1), and using its roots 0 and -1. We see that
the solution set S is a 2-dimensional subspace of
C2(−∞,∞) (a plane in that vector space),

u(t) = c1e
0t + c2e

−1t = c1 + c2e
−t,

and the only functions in S that are also in V are
the constants u(t) = c1. Thus, the null space of L

consists of the constants (polynomials of degree 0).
Computing algebraically the solution set of Ax = 0,
we find that it is a line in R

5, given parametrically
as

l =




s




1
0
0
0
0


 , s ∈ R




.

This corresponds to the constant polynomials.



Example: Plane rotations about the origin by any
angle α are linear transformations in V = W = R

2,
represented by orthogonal matrices

(Qα) =
(

cosα − sinα

sinα cosα

)
.

Example: Projections onto a line are linear trans-
formations in V = W = R

2, with

(P0) =
(

1 0
0 0

)
, (Pπ/2) =

(
0 0
0 1

)
,

representing, respectively, the projections onto the
x-axis and the y-axis.

Example: Reflections across a line are linear trans-
formations in V = W = R

2, with

(Rπ/4) =
(

0 1
1 0

)
,

representing the reflection across the line x = y.


