
MA 511, Session 13

Review

Example 1: Let A ∈Mn×n. Then A is nonsingular
if, and only if

i) A−1 exists

ii) rank(A) = n

iii) AT is nonsingular

iv) Ax = 0 has only the trivial solution x = 0

v) Ax = b has a unique solution for every b ∈ R
n

vi) the rows of A are linearly independent

vii) the columns of A are linearly independent

viii) C(A) = R
n

ix) C(AT ) = R
n

x) the row echelon form of A has nonzero diago-
nal entries

xi) A is the product of elementary matrices



Example 2: Find a basis for the space W spanned
by 
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We put these vectors as rows of a matrix A and take
it to row echelon form:

A =

0
BB@

1 1 1 1
1 2 3 4
5 6 7 8
9 10 11 12

1
CCA→

0
BB@

1 1 1 1
0 1 2 3
0 1 2 3
0 1 2 3

1
CCA→

0
BB@

1 1 1 1
0 1 2 3
0 0 0 0
0 0 0 0

1
CCA

We see that a basis for the space W spanned by those
four vectors is 
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and therefore, dimW = 2.



Alternatively, put these vectors as columns of a
matrix AT :

AT =

0
BB@

1 1 5 9
1 2 6 10
1 3 7 11

1 4 8 12

1
CCA→

0
BB@

1 1 5 9
0 1 1 1
0 0 0 0

0 0 0 0

1
CCA

Columns 1 and 2 are the pivot columns. The corre-
sponding columns of AT form a basis of W :
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Example 3: Find bases and the dimensions of C(A)
and N (A) in the previous example.

Proof: A basis for C(A) is formed by the columns
that correspond to those of its row echelon form
which contain pivots:
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Alternatively, one can take nonzero rows of the row
echelon form of AT :
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A basis for N (A) is found by solving the system
x1+x2+x3+x4 = 0 and x2+2x3+3x4 = 0. We have
x3 and x4 as free variables so that dimN (A) = 2,
and a basis is, e.g.




2
−3
0
1







1
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0






Example 4: Let V = C[0, 1]. Which of the following
functions T : V −→ R are linear transformations?

T (f) =
∫ 1

0

f(x)ex dx(i)

T (f) =
∫ 1

0

f(x)2 dx(ii)

T (f) = f( 1
2 ) +

∫ 1

0

f(x) dx(iii)

T (f) = 1 +
∫ 1

0

f(x) dx(iv)

(i) and (iii) are linear transformations (since you can
check that T (c1f+c2g) = c1T (f)+c2T (g) for c1, c2 ∈
R and f, g ∈ V ), (ii) and (iv) are not (e.g., T (0) 6= 0
in (iv)).



Example 5: From session 12 we use V = P4, W =
P3, and T : V −→ W defined by T (p) = p′′ + p′.

Using the basis B = {1, t, t2, t3, t4} for V and
B′ = {1, t, t2, t3} for W , the matrix A for the linear
transformation T using these bases is

A =




0 1 2 0 0
0 0 2 6 0
0 0 0 3 12
0 0 0 0 4


 .

To find, for example, T (3t3 − 2t2 + 5), we multiply
the coefficient vector of p(t) = 3t3 − 2t2 + 5 in the
basis B, x = ( 5 0 −2 3 0 )T by A on the left,
and we obtain the coefficients of the T (p) in the basis
B′:

Ax =




0 1 2 0 0
0 0 2 6 0
0 0 0 3 12
0 0 0 0 4







5
0
−2
3
0


 =



−4
14
9
0


 .

Thus, T (p) = −4(1) + 14(t) + 9(t2), as is readily
verified by computing p′′ + p′.



Regarding N (A), we find immediately that
dimN (A) = 1, since A is in row echelon form. More-

over, a basis for N (A) consists of the vector




1
0
0
0
0


,

representing the polynomial 1, which coincides with
the fact that the only polynomials for which the sum
of the first and second derivative vanishes are those
of degree zero (constants):

We solve the differential equation u′′ + u′ = 0
from its characteristic polynomial

r2 + r = r(r + 1),

with characteristic roots 0 and -1. The general solu-
tion is

u(x) = c1 + c2e
−x,

and the only polynomials among these functions are
the constants.



Example 6: Write an LU decomposition for the
matrix A in Example 2.

The elimination process in Example 2 was

E42(−1)E32(−1)E41(−9)E31(−5)E21(−1)A

=




1 1 1 1
0 1 2 3
0 0 0 0
0 0 0 0


 .

Thus,

A = E21(1)E31(5)E41(9)E32(1)E42(1)




1 1 1 1
0 1 2 3
0 0 0 0
0 0 0 0




=




1 0 0 0
1 1 0 0
5 1 1 0
9 1 0 1







1 1 1 1
0 1 2 3
0 0 0 0
0 0 0 0


 .



Example 7: Let V be the set of all 2 × 2 singular
matrices. Is V a vector pace?

No, because
(

1 0
0 0

)
,

(
0 0
0 1

)
∈ V , but

(
1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
= I 6∈ V.

Example 8: Let V be a vector space and v1, v2, v3 ∈
V . Define

w1 = v1 − v2, w2 = v2 − v3, w3 = v3 − v1.

Prove that w1, w2, w3 are linearly dependent.

Proof: Note that

1w1+1w2+1w3 = (v1−v2)+(v2−v3)+(v3−v1) = 0,

and the coefficients in the linear combination are not
all zero (in fact, none of them are). Therefore, this
is a dependence relation.



Example 9: Let V = C2(−∞,∞) be the vector
space of functions having two continuous derivatives
at all t ∈ R, and let W = C(−∞,∞). Define the
linear transformation L : V −→ W as Lf = f ′′ − f .
Find a basis for N (L).

Solution: Note that N (L) is the set of all solutions
of the differential equation f ′′ − f = 0.

We know that the characteristic polynomial is
r2 − 1 = (r + 1)(r − 1), with roots -1 and 1. Thus,
the general solution is

f(t) = c1e
−t + c2e

t.

We see that dimN (L) = 2 and a basis for it consists
of the two vectors

f1(t) = e−t,

f2(t) = et.



Example 10: Let W = {p ∈ P3 :
∫ 1

0
p(t) dt = 0}.

Prove that W is a subspace of V = P3, and find a
basis for it.

Solution: (i) 0 ∈ W since
∫ 1

0
0 dt = 0.

(ii) Assume f, g ∈ W . Then,∫ 1

0
(f + g)(t) dt =

∫ 1

0
f(t) dt +

∫ 1

0
g(t) dt = 0 + 0 = 0.

(iii) Assume f ∈W and c ∈ R. Then,∫ 1

0
(cf)(t) dt = c

∫ 1

0
f(t) dt = c 0 = 0.

To find a basis, let us write the general vector in
V as

p(t) = a3t
3 + a2t

2 + a1t + a0,

and determine the necessary condition(s) for it to be
in W . We have

∫ 1

0

p(t) dt = a3
t4

4
+ a2

t3

3
+ a1

t2

2
+ a0t

∣∣∣∣
1

0

=
1
4
a3 +

1
3
a2 +

1
2
a1 + a0 = 0



This is one equation in three unknowns, and so we
see that dim W = 3 and a basis is found by taking
a1, a2, a3 as parameters and giving them in turns the
value 1 to each while the others take on the value 0.
Thus,

(− 1
2 1 0 0 ) ; (− 1

3 0 1 0 ) ; (− 1
4 0 0 1 )

give the coefficients of a basis for W in the selected
basis for V . Thus,

p1(t) = t− 1
2

p2(t) = t2 − 1
3

p3(t) = t3 − 1
4

form a basis for W .


