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Orthogonality

Definition: The (standard) inner product (also called

dot product) in R
n is the function R

n × R
n −→ R

given by

(u, v) → uT v =

n
∑

j=1

ujvj .

The norm (or length) of a vector is

‖v‖ =
√

vT v =

√

√

√

√

n
∑

j=1

v2

j =
√

v2

1
+ · · · + v2

n.

Definition: Two vectors u, v ∈ R
n are orthogonal

if uT v = 0.



Theorem: Let v1, . . . , vk ∈ R
n be pairwise orthog-

onal (i.e. vT
i vj = 0 for 1 ≤ i, j ≤ k) and assume none

of them is the zero vector (which means that their

lengths are positive, ‖vj‖ > 0). Then, v1, . . . , vk are

linearly independent.

Proof: Suppose c1v1 + · · ·+ckvk = 0. Take the inner

product of each side with v1 to obtain

vT
1
(c1v1 + · · · + ckvk) = vT

1
0,

that is

c1v
T
1

v1 + · · · + ckvT
1
vk = 0.

Using the pairwise orthogonality, the left-hand side

actually has only one term:

c1v
T
1
v1 = c1‖v1‖ = 0,

and, since ‖v1‖ 6= 0, we conclude c1 = 0. Now we

take the inner product of c1v1 + · · ·+ ckvk = 0 with

vj (2 ≤ j ≤ k) and, using the same argument as for

v1 we conclude that c1 = c2 = · · · = ck = 0, which

means that v1, . . . , vk are linearly independent.



The Triangle Inequality: for any vectors x, y we

have

‖x + y‖ ≤ ‖x‖ + ‖y‖.

In R
n this is just the statement that for any triangle

the length of one of its sides is less than the sum of

the lengths of the other two sides.

Remark: (Pythagorean Theorem) If x and y are

orthogonal, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Proof: Note that

‖x+y‖2 = (x+y)T (x+y) = xT x+xT y+yT x+yT y

= xT x + yT y = ‖x‖2 + ‖y‖2,

since xT y = yT x = 0.



Lemma: For any vectors x and y, we have

‖x − y‖ ≥
∣

∣

∣

∣

‖x‖ − ‖y‖
∣

∣

∣

∣

.

Proof: We need to show that ‖x − y‖ ≥ ‖x‖ − ‖y‖
and ‖x − y‖ ≥ ‖y‖ − ‖x‖. We’ll just prove the first

of these inequalities, since the other one is shown

exactly the same way. Using the triangle inequality,

‖x‖ = ‖y + (x − y)‖ ≤ ‖y‖ + ‖x − y‖

which gives

‖x − y‖ ≥ ‖x‖ − ‖y‖.

Remark: Note that, by definition, for any c ∈ R,

‖cx‖ = |c| ‖x‖,

so that

‖x − y‖ = ‖y − x‖.



Let V and W be subspaces of R
n.

Definition: V and W are orthogonal subspaces if

vT w = 0 for all v ∈ V and all w ∈ W .

Notation: V ⊥ W .

Example: Let V be the xy-plane in R
3 and W be

the yz-plane. Any nonzero vector on the y-axis be-

longs to both V and W and is not orthogonal to itself

(e.g. v = (0, 1, 0) ∈ V and w = (0, 1, 0) ∈ W , but

vT w = 1 6= 0). Hence, V and W are NOT orthogo-

nal subspaces, even though geometrically we would

say they are orthogonal planes (because, actually,

the orthogonality of planes in R
3 is considered by

the orthogonality of their perpendicular directions!).



Example: Let V be the xy-plane in R
3 and W

be the z-axis. Then, V and W are orthogonal sub-

spaces.

Note that
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We take v = (s, t, 0)T ∈ V and w = (0, 0, u)T ∈ W

and readily see that vT w = s0 + t0 + 0u = 0. Thus,

they are orthogonal.



Theorem: Let A be a m × n matrix. Then,

C(AT ) is orthogonal to N (A), and

C(A) is orthogonal to N (AT ).

Proof: It is sufficient to prove the first claim, since

the second one is the first applied to AT instead of

A. So, we need to show that every vector in the null

space of A is orthogonal to every vector in the row

space of A. Let x ∈ N (A). Then, Ax = 0, which

means that x is orthogonal to each row of A. It

follows that x is orthogonal to all linear combinations

of those rows, and therefore, to every vector in the

row space of A.



Definition: If V is a subspace of R
n, then

V ⊥ =
{

w ∈ R
n : wT v = 0 for all v ∈ V

}

is called the orthogonal complement of V .

Remark: V ∩V ⊥ = {0}. In fact, v ∈ V ∩V ⊥ implies

vT v = ‖v‖2 = 0 which means v = 0.

Theorem: Let v1, . . . , vk and w1, . . . , wl be bases

for V and W , respectively, where V and W are sub-

spaces of R
n. Then, V ⊥ W if, and only if vT

i wj = 0

for 1 ≤ i ≤ k and 1 ≤ j ≤ l.

Proof: The necessity (only if) is an immediate conse-

quence of the definition. The sufficiency (if) follows

by taking linear combinations: Given any v ∈ V

and any w ∈ W , there exist scalars c1, . . . , ck and

d1, . . . , dl such that v = c1v1 + · · · + ckvk and w =

d1w1 + · · · + dlwl. Then,

vT w = (c1v1 + · · · + ckvk)
T

(d1w1 + · · · + dlwl)

=

k
∑

i=1

l
∑

j=1

cidj(v
T
i wj) = 0.

Remark: This result says that orthogonality of sub-

spaces needs to be checked only for their bases.



Example: Using dim C(AT ) + dimN (A) = n for

any m × n matrix A, we see from the orthogonality

of those two subspaces of R
n (and the analogous one

for the column space and left-null space in R
m) that,

in fact,

C(AT ) = N (A)⊥, and C(A) = N (AT )⊥.

As a consequence, since we know that Ax = b

is solvable if, and only if b ∈ C(A), we may also say

Ax = b is solvable if, and only if b is orthogonal to

everything that is orthogonal to the columns of A:

Ax = b is solvable if, and only if

bT y = 0 whenever AT y = 0.



Finally, consider a m × n matrix A. We have a

decomposition of R
n into two fundamental orthog-

onal subspaces, C(AT ) and N (A), and also a de-

composition of R
m into two fundamental orthogonal

subspaces, C(A) and N (AT ).

Remark: Every v ∈ R
n can be (uniquely) written

as v = vr + vn with vr ∈ C(AT ) and vn ∈ N (A).

This fact is denoted by writing R
n = C(AT )⊕N (A).

Similarly, R
m = C(A) ⊕N (AT ).

Now A : R
n −→ R

m via v → Av, and we see

that Av = A(vr + vn) = Avr since Avn = 0. So,

A really maps its row space into its column space,

and this mapping is invertible: every w ∈ C(A) can

be uniquely written as w = Av with v ∈ C(AT ).

Indeed, let w = s1c1+· · ·+sncn, where s1, . . . , sn are

scalars and c1, . . . , cn are the columns of A. If we let

s = (s1, . . . , sn)T , it follows that As = w. Moreover,

suppose there are two such representations:

w = Avr = Av′r. It follows that A(vr − v′r) = 0,

which says that vr −v′r ∈ N (A). As vr −v′r ∈ C(AT )

too, it follows that vr − v′r = 0, i.e. vr = v′r.


