MA 511, Session 15

Inner Products and Projections

Recall from analytic geometry that, for a,b € R?,
a'b = |lal|[[b]| cos 6,

where 0 < 6§ < 7 is the angle between a and b.

We shall find now the closest point on a given
line to a given point outside the line. We shall use
the geometry of R? but the formulas are the same in
R"™.

Let a,b € R? be linearly independent, so that b
is not on the line | = {ca, c € R}. Clearly, the point
p on [ that is closest to b makes the segment (vector)
b — p perpendicular to [, i.e. a(b— p) = 0. Since
p € 1, it follows p = Za and, therefore, a’ (b—Za) = 0

T

gives a’'b = za’ a, so that



From this relation we derive Schwarz’s inequality,
[ab] < [lal[][b]-

Proof: Note that
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which implies 0 < b1'ba’a — (al'b)?, as needed.
We also see that equality holds if, and only if b
is a multiple of a.

We can easily write the matrix that represents
the projection onto the line [ of direction a with re-
spect to the standard basis of R™, B = {e1,...,en},
where (e;); = 0;; is the Kronecker symbol (i.e. the

standard basis of R"™ consists of the columns of the
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identity matrix): P = 27—

Indeed, we then have

Pb =

ala a



Example: Find the matrix P that projects R? onto
the line y = 3.

— — 1
We take a =1 + 37 :( ) Then,

Remark: Matrices P representing projections onto
lines have several important properties.

(i) P is symmetric

(ii) P? =P

(iii) rank P =1

(iv) C(P) is the line through a and the origin

(v) N(P) is the hyperplane (line if n = 2) or-
thogonal to that line



Remark: The identity a’'d = |la||||b]| cos @ is valid
for vectors in R™ since, when a and b are not parallel
they determine a plane through the origin, and 6 is
the angle between them in that plane. When a and
b are parallel, the relation holds automatically, since
60 = 0 makes cosf = 1, and 8 = m makes cosf = —1.

We shall use the notion of projection for least
squares approximation. Suppose we have a “model”
for a physical process which is linear

Axr =0

and we want to determine the value of x € R™ by
collecting data for the coefficients of A and for b. As-
sume that the measurements are affected by errors,
so that the resulting system may be inconsistent. We
would then like to find a “solution” x that best fits
the data in some sense.



Suppose for a moment that z is a scalar quantity.
The problem then looks like

( a1 = b1
Ao = b2
\
| amT = b,
The numbers aq,...,a,, and bq,...,b, may be

thought of as observations, and the objective is to
find the number x that best fits these observations.
The most common way to do this is to use the mean
square error [,
E? = (a1x — b1)* + -+ + (amT — byn)? = |lax — b
Taking the derivative with respect to x to find the
value of x that minimizes F, we obtain

2(a1x — b1)ar + -+ + 2(amx — b)) =0
which implies

a101% + -+ + @@ = a1by + - - + a0,y
We now see that the optimal value of x is given as

a’b

r = ——.
ala



Let us look at the general case. Now A isa mXxXn
matrix, with m > n corresponding to having many
rows of data corresponding to lots of experimental
measurements. Assume that the system Ax = b is
inconsistent, but assume also that A is of full rank,
i.e. rank A = n. To find the best “solution” z € R"
to Ax = b, we again minimize the error

E = ||Ax — b||.

Geometrically, we see that the minimum value for
|Az — b|| is attained when Ax is the (orthogonal)
projection of b onto the column space of A. This
means we need & € R” such that b — Az 1 C(A),
that is b — A7 € N (A1), so that AT(b — Az) = 0.
Finally, we obtain the normal equation

AT Az = ATb,

which is uniquely solvable when A has full rank, since

then the n x n matrix A7 A has the same rank, n.
Then,
T=(A"A)"tATY,

and the projection of b onto C(A) is
Az = A(AT A1 ATD.



