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Orthogonal Matrices

Definition: Suppose v1, . . . , vk ∈ R
n. We say the

vectors are orthonormal if vT
i vj = δij , the Kronecker

symbol.

This means that they are pairwise orthogonal,
and their norms are equal to 1 (normal).

Example: The standard basis of R
n, e1, . . . , en is

orthonormal.

Example:

v1 =


 1/

√
2

0
1/
√

2


 , v2 =


 1/

√
2

0
−1/

√
2


 , v3 =


 0

1
0




are orthonormal.



Definition: A n × n matrix Q is orthogonal if the
columns of Q are orthonormal vectors in R

n.

Theorem: Let Q be orthogonal. Then,

(i) QT = Q−1

(ii) the rows of Q are orthonormal

(iii) Q preserves lengths, i.e. ‖Qx‖ = ‖x‖ for all
x ∈ R

n

(iv) Q preserves inner products, i.e. (Qx)T Qy =
xT y for all x, y ∈ R

n

Proof: (i) follows from the definition: QT Q = I

(ii) Follows from (i): I = QQ−1 = QQT

(iii) ‖Qx‖2 = (Qx)T Qx = xT QT Qx = xT
Ix = ‖x‖2

(iv) (Qx)T Qy = xT QT Qy = xT
Iy = xT y

Example: The rotation matrix
(

cosα − sinα

sinα cosα

)

is orthogonal (sin2 α + cos2 α = 1).



Suppose now that a m×n matrix Q has orthonor-
mal columns, with m ≥ n, and let b ∈ C(Q). Then,
the unique solution of

Qx = b

is given by
x = QT b,

since x = Ix = QT Qx = QT b, as we are assuming
QT Q = In even though the matrix Q is not orthog-
onal unless m = n.

Remark: Assume the problem Qx = b is inconsis-
tent (m > n). Then, the least squares solution is
also x̄ = QT b. Therefore,

(i) p = Qx̄ = QQT b is the orthogonal projection
of b onto the column space of Q, and P = QQT is
the projection matrix

(ii) p = p1 + · · ·+pn where pj = (qT
j b)qj are pro-

jections of b onto the lines spanned by the columns
qj of Q



Example: Straight Line Approximation.

Let us try to fit the data

b =


 b1

b2

b3


 at times


 t1

t2
t3




to the linear model C + Dt = b. Then,


 1 t1

1 t2
1 t3


(

C

D

) 
 b1

b2

b3


 .

Note that the coefficient matrix

A =


 1 t1

1 t2
1 t3




has orthogonal columns (though not orthonormal) if
t1 + t2 + t3 = 0.



Let

T =


 t1

t2
t3




satisfy this relation. Then, the least squares solution
is given by

AT A

(
C̄

D̄

)
= AT b,

where

AT A =
(

1 1 1
t1 t2 t3

) 
 1 t1

1 t2
1 t3


 =

(
3 0
0 t21 + t22 + t23

)

and(
3 0
0 t21 + t22 + t23

) (
C̄

D̄

)

=
(

1 1 1
t1 t2 t3

)
b =

(
b1 + b2 + b3

b1t1 + b2t2 + b3t3

)
,

finally giving

C̄ =
( 1 1 1 ) b

3
, D̄ =

T T b

‖T‖2 .



In the general case,



1 t1
1 t2

. . . . . .

1 tm




(
C̄

D̄

)
=




b1

b2

. . .

bm


 = b,

has the least squares solution

T =




t1
t2
. . .

tm


 , C̄ =

b1 + · · ·+ bm

m
, D̄ =

T T b

‖T‖2 ,

if t1 + t2 + · · ·+ tm = 0.

Since these formulas are computationally so sim-
ple, it is always advantageous to make a preliminary
change of variable t̂ = t − t̄, where t̄ = t1+···+tm

m

is the average of the values t1, . . . , tm. In this way
t̂1 + t̂2 + · · ·+ t̂m = 0. Then the model becomes

b = C + Dt̂,

that is,
b = C + D(t− t̄).



Gram-Schmidt Orthonormalization Method

Since orthonormal vectors are easier to work with,
we need an algorithm to change vectors a1, . . . , ak

by linear combinations to an orthonormal set. The
Gram-Schmidt method produces orthonormal vec-
tors q1, . . . , qk such that the span of q1, . . . , qj is the
same as the span of a1, . . . , aj for 1 ≤ j ≤ k.

We do this by iteratively subtracting off projec-
tions onto previous subspaces:

a′j = aj − pj−1 = aj − (qT
1 aj)q1− · · · − (qT

j−1aj)qj−1,

where pj−1 is the projection of aj onto the sub-
space spanned by q1, . . . , qj−1. Subsequently a′j is
discarded if it is 0, or normalized if it is not:

qj =
a′j
‖a′j‖

.

If a1, . . . , ak are linearly independent, we do not need
to worry about discarding any vectors, they will be
linearly independent and thus, a fortiori, nonzero.



Example: Apply the Gram-Schmidt method to

a1 =


 3

4
0


 , a2 =


 0

1
2


 , a3 =


 3

5
2


 .

Solution: q1 = 1
5


 3

4
0


. Next,

a′2 =


 0

1
2


− ( 3

5
4
5 0 )


 0

1
2







3
5
4
5

0




=


 0

1
2


− 4

5




3
5
4
5

0


 =


− 12

25
9
25

2


 gives

q2 =
1√
109


− 12

5
9
5

10


 .



Finally,

a′3 =


 3

5
2


− ( 3

5
4
5 0 )


 3

5
2







3
5
4
5

0




− 1
109 (− 12

5
9
5 10 )


 3

5
2





− 12

5
9
5

10




=


 3

5
2


− 29

25


 3

4
0


− 1

5


− 12

5
9
5

10




=


 0

0
0


 ,

which was to be expected since a3 is a linear combi-
nation of a1 and a2 (a1 + a2 = a3); this means that
the projection of a3 onto the subspace spanned by
a1 and a2 is a3 itself, and this is what we subtract
from a3 to create a′3. Therefore, the Gram-Schmidt
method produces only 2 vectors, and it eliminates
the third.



The QR Decomposition of a Matrix.

Let A be a m×n matrix with m ≥ n and assume
rank (A) = n. We shall produce a factorization A =
QR, where Q is a m × n matrix with orthonormal
columns, and R is an upper triangular n×n matrix.

Since the n columns of A, C1, . . . , Cn, are lin-
early independent vectors in R

m, we can apply the
Gram-Schmidt method to them and produce n or-
thonormal vectors q1, . . . , qn ∈ R

m that will be the
columns of the matrix Q. The coefficients of R are
the projections of the columns of A onto the lines of
direction q1, . . . , qn. From the Gram-Schmidt method
we have (for n = 3)

`
C1 C2 C3

´
=

`
q1 q2 q3

´
0
B@

qT
1 C1 qT

1 C2 qT
1 C3

0 qT
2 C2 qT

2 C3

0 0 qT
3 C3

1
CA ,

since

C1 = qT
1 C1q1

C2 = qT
1 C2q1 + qT

2 C2q2

C3 = qT
1 C3q1 + qT

2 C3q2 + qT
3 C3q3.


