MA 511, Session 18

Orthogonal Bases and Function Spaces

We recall that $\mathcal{C}[a, b]$ is the vector space of real continuous functions on the interval $[a, b]$, and $\mathcal{C}^{k}[a, b]$, $k=1,2, \ldots$ are the subspaces of functions with k continuous derivatives, so that

$$
\cdots \subset \mathcal{C}^{2}[a, b] \subset \mathcal{C}^{1}[a, b] \subset \mathcal{C}[a, b] .
$$

These are abstract vector spaces, and we shall now consider an inner product in them: for any $f, g \in$ $\mathcal{C}[a, b]$,

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

Just like the Euclidean inner product $x^{T} y$ in \mathbb{R}^{n}, this inner product has some basic (defining) properties:
(i) $(f, g+h)=(f, g)+(f, h)$
(ii) $(f, g)=(g, f)$
(iii) $(f, f) \geq 0$, and $(f, f)=0 \Longleftrightarrow f=0$

Definition: For $f \in \mathcal{C}[a, b]$ the norm is

$$
\|f\|=\sqrt{(f, f)}=\sqrt{\int_{a}^{b} f(x)^{2} d x}
$$

The integrand is always greater than or equal to zero and the integral can only be 0 when the integrand is identically equal to zero, i.e. $f=0$.

Definition: $f, g \in \mathcal{C}[a, b]$ are orthogonal if

$$
(f, g)=0
$$

Example: Let $[a, b]=[0,2 \pi]$. Then, the functions $1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots$ are orthogonal. To see this, we use the following identities:

$$
\begin{aligned}
\sin m x \cos n x & =\frac{1}{2}(\sin (m+n) x+\sin (m-n) x) \\
\sin m x \sin n x & =\frac{1}{2}(\cos (m-n) x-\cos (m+n) x) \\
\cos m x \cos n x & =\frac{1}{2}(\cos (m+n) x+\cos (m-n) x)
\end{aligned}
$$

Then, for example,
$(\sin x, \cos 2 x)=\int_{0}^{2 \pi} \sin x \cos 2 x d x=\frac{1}{2} \int_{0}^{2 \pi}(\sin 3 x-\sin x) d x=0$

A (trigonometric) Fourier Series is
$y(x)=a_{0}+a_{1} \cos x+b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x+\ldots$
We can use orthogonality to determine the coefficients. Suppose we want to find b_{2}. Then, we take the inner product of both sides with $\sin 2 x$:

$$
(y, \sin 2 x)=\left(b_{2} \sin 2 x, \sin 2 x\right)
$$

that is

$$
b_{2} \int_{0}^{2 \pi} \sin ^{2} 2 x d x=\int_{0}^{2 \pi} y(x) \sin 2 x d x
$$

and

$$
b_{2}=\frac{1}{\pi} \int_{0}^{2 \pi} y(x) \sin 2 x d x
$$

since

$$
\int_{0}^{2 \pi} \sin ^{2} 2 x d x=\frac{1}{2} \int_{0}^{2 \pi}(1-\cos 4 x) d x=\pi
$$

A partial sum $a_{0}+a_{1} \cos x+b_{1} \sin x+\cdots+a_{n} \cos n x+$ $b_{n} \sin n x$ of the trigonometric Fourier series is called a trigonometric polynomial of degree n.

What trigonometric polynomial of degree n gives the best approximation to a function $y(x)$ on $[0,2 \pi]$ in the sense of least squares, i.e. it minimizes

$$
\left\|y-p_{n}\right\|
$$

where p_{n} is a trigonometric polynomial of degree n $\alpha_{0}+\alpha_{1} \cos x+\beta_{1} \sin x+\cdots+\alpha_{n} \cos n x+\beta_{n} \sin n x ?$

Solution: The coefficients of p_{n} must be the Fourier coefficients

$$
\begin{aligned}
& \alpha_{0}=a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} y(x) d x \\
& \alpha_{k}=a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} y(x) \cos n x d x, \quad k \geq 1 \\
& \beta_{k}=b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} y(x) \sin n x d x, \quad k \geq 1
\end{aligned}
$$

To see this we note that

$$
E^{2}=\left\|y-p_{n}\right\|^{2}=(y, y)-2\left(y, p_{n}\right)+\left(p_{n}, p_{n}\right)
$$

Now,

$$
\left(p_{n}, p_{n}\right)=\pi\left(2 \alpha_{0}^{2}+\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}+\beta_{1}^{2}+\cdots+\beta_{n}^{2}\right)
$$

and $\left(y, p_{n}\right)=$

$$
\pi\left(2 \alpha_{0} a_{0}+\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}+\beta_{1} b_{1}+\cdots+\beta_{n} b_{n}\right)
$$

so that

$$
\begin{aligned}
E^{2}=(y, y)-2 \pi(& \left.2 \alpha_{0} a_{0}+\sum_{k=1}^{n} \alpha_{k} a_{k}+\beta_{k} b_{k}\right) \\
& +\pi\left(2 \alpha_{0}^{2}+\sum_{k=1}^{n}\left(\alpha_{k}^{2}+\beta_{k}^{2}\right)\right)
\end{aligned}
$$

If we use P_{n}, the trigonometric polynomial with the Fourier coefficients, we obtain the error

$$
E^{* 2}=(y, y)-\left(P_{n}, P_{n}\right)=(y, y)-\pi\left(2 a_{0}^{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)
$$

Thus, $E^{2}-E^{* 2}=$

$$
2 \pi\left(\alpha_{0}-a_{0}\right)^{2}+\pi \sum_{k=1}^{n}\left(\left(\alpha_{k}-a_{k}\right)^{2}+\left(\beta_{k}-b_{k}\right)^{2}\right)
$$

so that $E^{2}>E^{* 2}$ unless $p_{n}=P_{n}$.

Example: What is the best approximation of $\cos x$ on the interval $[0,2 \pi]$ by $a \sin x+b \sin 2 x$?

Solution: $a=b=0$ since $\cos x$ is orthogonal to both $\sin x$ and $\sin 2 x$ on the interval $[0,2 \pi]$.

Example: What is the best straight line approximation of $\cos x$ on $[-\pi / 2, \pi / 2]$?
Solution: Since 1 and x are orthogonal on that interval, we can use the projections onto those directions to easily find the best line:

$$
\begin{aligned}
C+D x & =\frac{(\cos x, 1)}{(1,1)} 1+\frac{(\cos x, x)}{(x, x)} x \\
& =\frac{\int_{-\pi / 2}^{\pi / 2} \cos x d x}{\pi}+\frac{\int_{-\pi / 2}^{\pi / 2} x \cos x d x}{\int_{-\pi / 2}^{\pi / 2} x^{2} d x} x \\
& =\frac{2}{\pi}+0 x
\end{aligned}
$$

Legendre Polynomials

Since it is easier to work with orthogonal polynomials, the Legendre polynomials are a simple set thus designed on the interval $[-1,1]$. Since x is an odd function, we can start with $v_{0}=1$ and $v_{1}=x$. We then use Gram-Schmidt (without normalization) on the sequence $1, x, x^{2}, x^{3}, \ldots$:

$$
v_{2}=x^{2}-\frac{\left(1, x^{2}\right)}{(1,1)} 1-\frac{\left(x, x^{2}\right)}{(x, x)} x=x^{2}-\frac{1}{3} .
$$

The polynomials $v_{0}, v_{1}, v_{2}, v_{3}, \ldots$ generated this way are the Legendre polynomials. They are orthogonal on the interval $[-1,1]$:

$$
\left(v_{i}, v_{j}\right)=\int_{-1}^{1} v_{i}(x) v_{j}(x) d x=\frac{2}{2 i+1} \delta_{i j}, \quad 1 \leq i, j .
$$

