MA 511, Session 21

The Fast Fourier Transform (FFT)

We have seen that the first step to compute the
truncated Fourier series from a sampled digital signal
digital sampling of signal —— truncated Fourier series

(in complex form)

[0 [)

\yu_s / \e, ./

as well as the recovery of a signal from its Fourier
coefficients are very fast:

c:F_ly, y = Flc,

since F and F~! can be determined by just finding
the powers of a primitive n-th root of unity.

However, in order for this method to be so good,
the multiplications F~!y and F'c must be very fast.
There is indeed a super fast algorithm when n is a
power of 2.

Assume n = 2! for some positive integer [, and let
no_

2
components, respectively indicated by superscripts

m = 2!=1. We now split ¢ into its even and odd

prime and double prime:

(e (o

C3

\cn._gj \Cn.—lj

The Fast Fourier Transform is an algorithm based
on using 2 systems of half the size,

/ / 17, 17,
y:cha Y :cha

whose components can be combined to recover the
components of the original system.

Let

W = e27m/n

be a primitive n-th root of unity. It follows that

2 _ 6471'2'/77, 21w/ m

W = e is a primitive m-th root of

unity, and also
(Yo + Yo \
Y1 + wyy’

Yo
/ ' \ m—1, /1

Y1 + W Ym—1
Yo — Yo

\y. ./ =

m—1,,//

NT— ym_1)

Example: For n = 2 we have w = €™ = —1 and

o= ()= (0) () =(210),

Example: For n = 4 we have w = €™/2 =4 and

r_(w_ (1 1 ¢\ _ (cote

Y Y] 1 —1 c co—Cz)’
"no_ y(/)/ _ 1 1 06' _ C1 + C3

Y Yy 1 -1 cf cp—c3 /)

It follows that

Yo Co+c1+co+c3
Y1 co +1c1 — Co —1C3
y — —
Y2 Co —C1+C2—cC3
Y3 Co — €1 — C2 +1c3
Yo + Yo (co 4+ c2) + (c1 + ¢3)

_ (CO — (32) + ’i(Cl — 03)
Yo — Yo (Co + 02) - (Cl + 63)
Y1 — wWyi (co — c2) —i(c1 — c3)

Example: Compute y = Fyc by FFT for

Solution: We let

0 1 1 1
/ 1"
= = by = :
c (O)’ © (1)’ ’ (1 —1)

We quickly obtain

- (3)- () von(D)-(2)

We finally use w = ¢ to obtain

042 2
CJo+io| | o
Y=l o—2 | 7| =2

0 — 10 0

