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The Fast Fourier Transform (FFT)

We have seen that the first step to compute the
truncated Fourier series from a sampled digital signal
digital sampling of signal —— truncated Fourier series

(in complex form)
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as well as the recovery of a signal from its Fourier
coefficients are very fast:

c:F_ly, y = Flc,

since F and F~! can be determined by just finding
the powers of a primitive n-th root of unity.



However, in order for this method to be so good,
the multiplications F~!y and F'c must be very fast.
There is indeed a super fast algorithm when n is a
power of 2.

Assume n = 2! for some positive integer [, and let
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components, respectively indicated by superscripts

m = 2!=1. We now split ¢ into its even and odd

prime and double prime:
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The Fast Fourier Transform is an algorithm based
on using 2 systems of half the size,
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whose components can be combined to recover the
components of the original system.



Let

W = e27m/n

be a primitive n-th root of unity. It follows that
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W = e is a primitive m-th root of

unity, and also
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Example: For n = 2 we have w = €™ = —1 and
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Example: For n = 4 we have w = €™/2 =4 and
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It follows that
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Example: Compute y = Fyc by FFT for

Solution: We let
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We quickly obtain
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We finally use w = ¢ to obtain
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