
MA 511, Session 21

The Fast Fourier Transform (FFT)

We have seen that the first step to compute the

truncated Fourier series from a sampled digital signal

digital sampling of signal −→ truncated Fourier series

(in complex form)

y =


y0

·
·
·

yn−1

 −→ c =


c0
·
·
·

cn−1

 ,

as well as the recovery of a signal from its Fourier

coefficients are very fast:

c = F−1y, y = Fc,

since F and F−1 can be determined by just finding

the powers of a primitive n-th root of unity.



However, in order for this method to be so good,

the multiplications F−1y and Fc must be very fast.

There is indeed a super fast algorithm when n is a

power of 2.

Assume n = 2l for some positive integer l, and let

m = n
2 = 2l−1. We now split c into its even and odd

components, respectively indicated by superscripts

prime and double prime:

c′ =



c0
c2
·
·
·

cn−2

 , c′′ =



c1
c3
·
·
·

cn−1

 .

The Fast Fourier Transform is an algorithm based

on using 2 systems of half the size,

y′ = Fmc
′, y′′ = Fmc

′′,

whose components can be combined to recover the

components of the original system.



Let

ω = e2πi/n

be a primitive n-th root of unity. It follows that

ω2 = e4πi/n = e2πi/m is a primitive m-th root of

unity, and also

y =


y0

·
·
·

yn−1

 =



y′0 + y′′0
y′1 + ωy′′1
·
·
·

y′m−1 + ωm−1y′′m−1

y′0 − y′′0
y′1 − ωy′′1
·
·
·

y′m−1 − ωm−1y′′m−1



.

Example: For n = 2 we have ω = eπi = −1 and

y =

(
y0

y1

)
=

(
1 1

1 −1

)(
c0
c1

)
=

(
c0 + c1
c0 − c1

)
.



Example: For n = 4 we have ω = eπi/2 = i and

y′ =

(
y′0
y′1

)
=

(
1 1

1 −1

)(
c′0
c′1

)
=

(
c0 + c2
c0 − c2

)
,

y′′ =

(
y′′0
y′′1

)
=

(
1 1

1 −1

)(
c′′0
c′′1

)
=

(
c1 + c3
c1 − c3

)
.

It follows that

y =


y0

y1

y2

y3

 =


c0 + c1 + c2 + c3
c0 + ic1 − c2 − ic3
c0 − c1 + c2 − c3
c0 − ic1 − c2 + ic3



=


y′0 + y′′0
y′1 + ωy′′1
y′0 − y′′0
y′1 − ωy′′1

 =


(c0 + c2) + (c1 + c3)

(c0 − c2) + i(c1 − c3)
(c0 + c2)− (c1 + c3)

(c0 − c2)− i(c1 − c3)

 .



Example: Compute y = F4c by FFT for

c =


0

1

0

1

 .

Solution: We let

c′ =

(
0

0

)
, c′′ =

(
1

1

)
, F2 =

(
1 1

1 −1

)
.

We quickly obtain

y′ = F2

(
0

0

)
=

(
0

0

)
, y′′ = F2

(
1

1

)
=

(
2

0

)
.

We finally use ω = i to obtain

y =


0 + 2

0 + i0

0− 2

0− i0

 =


2

0

−2

0

 .


