
MA 511, Session 22

More on Vector Subspaces

Let V and W be subspaces of U , and let us define
their sum,

V + W = {u = v + w ∈ U, where v ∈ V, w ∈W}.

It is easy to see that the intersection of V and
W , V ∩W , is a subspace of U , while, in general, their
union, V ∪W in not. For example, let U = R

2, V

the x-axis and W the y-axis. Then V ∪W is not a
subspace since (1, 0)T and (0, 1)T are in V ∪W but
their sum (1, 1)T is not.

Theorem: V ∩W is a subspace of U .

Proof: (i) Assume u1, u2 ∈ V ∩W . Then, u1, u2 ∈
V ⇒ u1 + u2 ∈ V and u1, u2 ∈ W ⇒ u1 + u2 ∈ W .
Hence, u1 + u2 ∈ V ∩W .

(ii) Assume u ∈ V and c ∈ R. Then, cu ∈ W

and cu ∈W . Hence, cu ∈ V ∩W .



Example: Let V = M3×3 be the vector space of
3 × 3 matrices with real coefficients. Let L be the
subspace of lower triangular matrices and U be the
subspace of upper triangular matrices. Then,

L ∩ U = {diagonal matrices},
L + U =M3×3.

Example: Let U = R
4, V be the subspace of vectors

with fourth component equal to the sum of the first
two components, and W be the subspace of vectors
with fourth component equal to the sum of the first
and third components. Then, V + W = R

4.



Proof: Note that

V =







x

y

z

x + y


 , x, y, z ∈ R




W =







a

b

c

a + c


 , a, b, c ∈ R




and then, as the system

x + a = b1

y + b = b2

z + c = b3

x + y + a + c = b4

is solvable (consistent) for any b ∈ R
4, it follows

that V + W = R
4.



Example: Let now A be a k × n matrix and B be
a l × n matrix. Consider now V = C(AT ) and W =
C(BT ). Then,

dim(V + W ) = rank C,

where C is the (k + l)× n matrix
(

A

B

)
.

Proof: By definition, the row space of C consists of
all linear combinations of rows of A and rows of B,
which is V +W (sums of linear combinations of rows
of A with linear combinations of rows of B). Also,
dim C(CT ) = dim C(C) = rankC is the number of
linearly independent rows (and columns) in C, and
thus dim(V + W ) = rank C.

Example: Similarly, let A be a m × k matrix and
B be a m× l matrix. Consider V = C(A) and W =
C(B). Then,

dim(V + W ) = rank D,

where D is the m× (k + l) matrix (A B ).



Suppose now that V and W are subspaces of R
m

of dimensions k and l, respectively. Let v1, . . . , vk be
a basis for V and w1, . . . , wl be a basis for W . Let

D = ( v1 . . . vk w1 . . . wl ),

a m× (k + l) matrix. We just saw that

dim(V + W ) = rank D.

Theorem: (Dimension formula)
dim(V + W ) + dim(V ∩W ) = dim V + dim W .

Proof: Let us prove that dim(V ∩W ) = dimN (D).

To see this, let x ∈ N (D) ⊂ R
k+l. Then, Dx = 0

means
x1v1 + · · ·+ xkvk + xk+1w1 + · · ·+ xk+lwl = 0,

that is,
y = x1v1 + · · ·+ xkvk = −xk+1w1 − · · · − xk+lwl.

Then y ∈ V ∩W and we have a one-to-one corre-
spondence

x ∈ N (D)←→ y ∈ V ∩W.



This correspondence defines linear transforma-
tions L : N (D) → V ∩W and T : V ∩W → N (D)
such that LT and TL are identity transformations
of N (D) and V ∩W , respectively. Choosing bases in
N (D) and V ∩W , one can represent L and T by ma-
trices A and B so that AB = I and BA = I. Hence
A and B are invertible square matrices. This shows
that dim(V ∩W ) = dimN (D), as needed. Finally,
dim C(D) + dimN (D) = k + l = dim V + dim W

completes the proof.



Example: Let V and W be as in the previous ex-
ample in R

4. Then,

V = C




1 0 0
0 1 0
0 0 1
1 1 0


 and W = C




1 0 0
0 1 0
0 0 1
1 0 1


 .

It follows that

dim(V + W ) = 4 = rank




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 0 1 0 1


 ,

and dim(V ∩W ) = dimV +dimW−dim(V +W ) = 2.
A basis for V ∩W is, e.g. (1, 0, 0, 1)T , (0, 1, 1, 1)T .



Theorem: Let A be a m × n matrix and B be a
n× p matrix. Then,

N (B) ⊂ N (AB),(i)

C(AB) ⊂ C(A),(ii)

N (AT ) ⊂ N (
(AB)T

)
,(iii)

C((AB)T
) ⊂ C(BT ).(iv)

Proof: (i) Let x ∈ N (B). Then, Bx = 0 ⇒ ABx =
A0 = 0, that is x ∈ N (AB).

(ii) The columns of AB are linear combinations of
the columns of A.

(iii) and (iv) are analogous, working with the
transposes of A, B, AB.

Corollary: Taking dimensions, we immediately see
that

(i) rank (AB) ≤ rank A,

(ii) rank (AB) ≤ rankB,

(iii) dimN (AB) ≥ dimN (B).



Definition: Given a m × n matrix A, and positive
integers k, l such that 1 ≤ k ≤ m and 1 ≤ l ≤ n,
a (k × l) submatrix of A is obtained by deleting any
m− k rows and any n− l columns of A.

Theorem: Suppose A is of rank r. Then,

(i) Every submatrix of A has rank ≤ r.

(ii) At least one r × r submatrix of A has rank r.

Example: Find the rank and a largest invertible

submatrix of A =


 1 2 3 4

5 6 7 8
9 10 11 12


.

Solution: We take A to its row echelon form.
 1 2 3 4

5 6 7 8
9 10 11 12


 −→


 1 2 3 4

0 −4 −8 −12
0 0 0 0


 .

We see that rank A = 2 and the largest invertible
submatrix is 2 × 2. Any 2 × 2 submatrix of A is
invertible, for example(

1 2
5 6

)
.


