MA 511, Session 22

More on Vector Subspaces

Let V and W be subspaces of U, and let us define their <u>sum</u>,

 $V + W = \{ u = v + w \in U, w \in V, w \in W \}.$

It is easy to see that the intersection of V and $W, V \cap W$, is a subspace of U, while, in general, their union, $V \cup W$ in not. For example, let $U = \mathbb{R}^2$, V the *x*-axis and W the *y*-axis. Then $V \cup W$ is not a subspace since $(1,0)^T$ and $(0,1)^T$ are in $V \cup W$ but their sum $(1,1)^T$ is not.

Theorem: $V \cap W$ is a subspace of U.

<u>Proof</u>: (i) Assume $u_1, u_2 \in V \cap W$. Then, $u_1, u_2 \in V \Rightarrow u_1 + u_2 \in V$ and $u_1, u_2 \in W \Rightarrow u_1 + u_2 \in W$. Hence, $u_1 + u_2 \in V \cap W$.

(ii) Assume $u \in V$ and $c \in \mathbb{R}$. Then, $cu \in W$ and $cu \in W$. Hence, $cu \in V \cap W$. **Example:** Let $V = \mathcal{M}_{3\times 3}$ be the vector space of 3×3 matrices with real coefficients. Let L be the subspace of lower triangular matrices and U be the subspace of upper triangular matrices. Then,

$$L \cap U = \{ \text{diagonal matrices} \},\$$

 $L + U = \mathcal{M}_{3 \times 3}.$

Example: Let $U = \mathbb{R}^4$, V be the subspace of vectors with fourth component equal to the sum of the first two components, and W be the subspace of vectors with fourth component equal to the sum of the first and third components. Then, $V + W = \mathbb{R}^4$. <u>Proof</u>: Note that

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ x+y \end{pmatrix}, x, y, z \in \mathbb{R} \right\}$$
$$W = \left\{ \begin{pmatrix} a \\ b \\ c \\ a+c \end{pmatrix}, a, b, c \in \mathbb{R} \right\}$$

and then, as the system

$$x + a = b_1$$
$$y + b = b_2$$
$$z + c = b_3$$
$$x + y + a + c = b_4$$

is solvable (consistent) for **any** $b \in \mathbb{R}^4$, it follows that $V + W = \mathbb{R}^4$.

Example: Let now A be a $k \times n$ matrix and B be a $l \times n$ matrix. Consider now $V = \mathcal{C}(A^T)$ and $W = \mathcal{C}(B^T)$. Then,

$$\dim(V+W) = \operatorname{rank} C,$$

where C is the $(k+l) \times n$ matrix $\begin{pmatrix} A \\ B \end{pmatrix}$.

<u>Proof</u>: By definition, the row space of C consists of all linear combinations of rows of A and rows of B, which is V + W (sums of linear combinations of rows of A with linear combinations of rows of B). Also, $\dim \mathcal{C}(C^T) = \dim \mathcal{C}(C) = \operatorname{rank} C$ is the number of linearly independent rows (and columns) in C, and thus $\dim(V + W) = \operatorname{rank} C$.

Example: Similarly, let A be a $m \times k$ matrix and B be a $m \times l$ matrix. Consider V = C(A) and W = C(B). Then,

$$\dim(V+W) = \operatorname{rank} D,$$

where D is the $m \times (k+l)$ matrix $(A \quad B)$.

Suppose now that V and W are subspaces of \mathbb{R}^m of dimensions k and l, respectively. Let v_1, \ldots, v_k be a basis for V and w_1, \ldots, w_l be a basis for W. Let $D = (v_1 \ \ldots \ v_k \ w_1 \ \ldots \ w_l),$

a $m \times (k+l)$ matrix. We just saw that

$$\dim(V+W) = \operatorname{rank} D.$$

Theorem: (Dimension formula)

 $\dim(V+W) + \dim(V \cap W) = \dim V + \dim W.$

<u>Proof</u>: Let us prove that $\dim(V \cap W) = \dim \mathcal{N}(D)$.

To see this, let $x \in \mathcal{N}(D) \subset \mathbb{R}^{k+l}$. Then, Dx = 0 means

 $x_1v_1 + \dots + x_kv_k + x_{k+1}w_1 + \dots + x_{k+l}w_l = 0,$ that is,

 $y = x_1v_1 + \dots + x_kv_k = -x_{k+1}w_1 - \dots - x_{k+l}w_l.$ Then $y \in V \cap W$ and we have a one-to-one correspondence

$$x \in \mathcal{N}(D) \longleftrightarrow y \in V \cap W.$$

This correspondence defines linear transformations $L: \mathcal{N}(D) \to V \cap W$ and $T: V \cap W \to \mathcal{N}(D)$ such that LT and TL are identity transformations of $\mathcal{N}(D)$ and $V \cap W$, respectively. Choosing bases in $\mathcal{N}(D)$ and $V \cap W$, one can represent L and T by matrices A and B so that $AB = \mathbb{I}$ and $BA = \mathbb{I}$. Hence A and B are invertible square matrices. This shows that $\dim(V \cap W) = \dim \mathcal{N}(D)$, as needed. Finally, $\dim \mathcal{C}(D) + \dim \mathcal{N}(D) = k + l = \dim V + \dim W$

completes the proof.

Example: Let V and W be as in the previous example in \mathbb{R}^4 . Then,

$$V = \mathcal{C} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \text{and} \quad W = \mathcal{C} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

It follows that

$$\dim(V+W) = 4 = \operatorname{rank} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix},$$

and $\dim(V \cap W) = \dim V + \dim W - \dim(V + W) = 2$. A basis for $V \cap W$ is, e.g. $(1, 0, 0, 1)^T$, $(0, 1, 1, 1)^T$. **Theorem:** Let A be a $m \times n$ matrix and B be a $n \times p$ matrix. Then,

(i)
$$\mathcal{N}(B) \subset \mathcal{N}(AB),$$

(ii) $\mathcal{C}(AB) \subset \mathcal{C}(A),$

- (iii) $\mathcal{N}(A^T) \subset \mathcal{N}((AB)^T),$
- (iv) $\mathcal{C}((AB)^T) \subset \mathcal{C}(B^T).$

<u>Proof</u>: (i) Let $x \in \mathcal{N}(B)$. Then, $Bx = 0 \Rightarrow ABx = A0 = 0$, that is $x \in \mathcal{N}(AB)$.

(ii) The columns of AB are linear combinations of the columns of A.

(iii) and (iv) are analogous, working with the transposes of A, B, AB.

Corollary: Taking dimensions, we immediately see that

(i) $\operatorname{rank}(AB) \leq \operatorname{rank} A$,

(ii) $\operatorname{rank}(AB) \leq \operatorname{rank} B$,

(iii) $\dim \mathcal{N}(AB) \ge \dim \mathcal{N}(B)$.

Definition: Given a $m \times n$ matrix A, and positive integers k, l such that $1 \leq k \leq m$ and $1 \leq l \leq n$, a $(k \times l)$ submatrix of A is obtained by deleting any m - k rows and any n - l columns of A.

Theorem: Suppose A is of rank r. Then,

(i) Every submatrix of A has rank $\leq r$.

(ii) At least one $r \times r$ submatrix of A has rank r.

Example: Find the rank and a largest invertible submatrix of $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$. Solution: We take A to its row echelon form.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -4 & -8 & -12 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

We see that rank A = 2 and the largest invertible submatrix is 2×2 . Any 2×2 submatrix of A is invertible, for example

$$\begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}.$$