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Diagonalization

Let A be a n× n matrix. Suppose that A has n

linearly independent eigenvectors, v1, . . . , vn, corre-
sponding to the eigenvalues λ1, . . . , λn, respectively.

Let us define the eigenvalue matrix Λ and an
eigenvector matrix S as follows:

Λ =




λ1 0 . . . 0
0 λ2 . . . 0

·
·
·

0 0 . . . λn




, S = ( v1 . . . vn ) .

The eigenvalues may be repeated, and may be real or
complex. Also, since the columns of S are assumed
independent, S is invertible and we have

Theorem: A = SΛS−1, that is, if A has n linearly
independent eigenvectors, then A is diagonalizable.

Proof: Since Avj = λjvj , 1 ≤ j ≤ n, it follows that
AS = SΛ.



We say that A has been diagonalized by S. Not
all matrices can be diagonalized. The matrix A from
last session is (trivially) diagonalizable since it is al-
ready diagonal, but B and C are not diagonalizable.

To better understand this concept, let us in-
troduce the concepts of algebraic multiplicity and
geometric multiplicity of an eigenvalue λ of A. The
former is the multiplicity of λ as root of the charac-
teristic polynomial p(λ); the latter is the dimension
of the eigenspace Sλ, which is always less than or
equal to the former.

Remark: By definition, when λ is an eigenvalue of
A, a nonzero solution of Ax = λx exists and, there-
fore, dimSλ is at least 1. As a consequence, it fol-
lows immediately that, when all n eigenvalues of A

are distinct, each of the corresponding eigenspaces
have dimension exactly equal to 1.



Example: Consider the following three matrices:

Ã =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2


 B̃ =




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 2




C̃ =




1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 2




All three share the same characteristic polynomial
p(λ) = (1 − λ)3(2 − λ), and the same eigenvalues,
λ1 = λ2 = λ3 = 1, λ4 = 2. This means that
the algebraic multiplicity of λ = 1 is 3 in all cases,
and that of λ = 2 is 1 in all cases. Concerning the
eigenspaces, S2 is the line spanned by (0, 0, 0, 1)T in
all cases. However, S1 is quite different in the three
cases: it is a 3-dimensional subspace of R

4 for Ã,
spanned by (1, 0, 0, 0)T , (0, 1, 0, 0)T and (0, 0, 1, 0)T ,
it is a 2-dimensional subspace of R

4 (a plane) for B̃,
spanned by (1, 0, 0, 0)T and (0, 0, 1, 0)T , and it is a
1-dimensional subspace of R

4 (a line) for C̃, spanned
by (1, 0, 0, 0)T .



Theorem: Let v1, . . . , vk be eigenvectors of A corre-
sponding to different eigenvalues λ1, . . . , λk, respec-
tively. Then, v1, . . . , vk are linearly independent.

Proof: By contradiction, assume there is a nontrivial
linear combination

(*) c1v1 + · · ·+ ckvk = 0.

Since at least one of the coefficients must be different
from zero, we may assume c1 6= 0 (otherwise, change
the order of the vectors and renumber them). Now

(**)

0 = A0 = A(c1v1 + · · ·+ ckvk)

= c1A(v1) + · · ·+ ckA(vk)

= λ1c1v1 + · · ·+ λkckvk.

Multiplying (*) by λk we obtain the relation
λkc1v1 + · · ·+ λkckvk = 0,

which, subtracted from (**) leads to
(λ1 − λk)c1v1 + · · ·+ (λk−1 − λk)ck−1vk−1 = 0.



Repeating this process k − 1 times we arrive at the
relation

(λ1 − λk)(λ1 − λk−1) . . . (λ1 − λ2)c1v1 = 0,

which implies c1 = 0, since all the other factors are
different from zero by assumption. This is a con-
tradiction and thus, there cannot exist a nontrivial
linear combination of v1, . . . , vk that produces the
zero vector, i.e. they are linearly independent.

The process of diagonalization is very useful in
making changes of variables. When we do this later,
the following observation will be very important.

Remark: Let x be an eigenvector of A correspond-
ing to an eigenvalue λ. Then,
Akx = Ak−1Ax = λAk−1x = λ2Ak−2x = · · · = λkx,

that is, x is also an eigenvector of Ak corresponding
to the eigenvalue λk. Moreover, if S diagonalizes A

(i.e. S−1AS = Λ), then
Λk = (S−1AS)(S−1AS) . . . (S−1AS) = S−1AkS,

that is, S diagonalizes Ak too.


