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Linear Systems of ODEs and Matrix Exponentials

Let A be a n × n matrix. We want to solve the

linear, homogeneous system of ODEs with constant

coefficients
dx

dt
= Ax.

Assume A is diagonalizable, S−1AS = Λ. We want

to show that a simple change of variables makes the

system decoupled.

Define

y = S−1x, i.e. x = Sy.

Then the system becomes

S
dy

dt
= ASx, i.e.

dy

dt
= S−1ASy = Λy.

Thus,
dyj
dt

= λjyj , for 1 ≤ j ≤ n.



The solutions are yj = cje
λjt, 1 ≤ j ≤ n. In vector

form,

y(t) = c1e
λ1t


1
0
·
·
·
0

+ c2e
λ2t


0
1
·
·
·
0

+ · · ·+ cne
λnt


0
0
·
·
·
1



=


eλ1t 0 . . . 0

0 eλ1t . . . 0
·
·
·

0 0 . . . eλnt





c1
c2
·
·
·
cn


We see that the initial value problem dx

dt
= Ax, x(0) =

x0 becomes dy
dt

= Λy, y(0) = y0 = S−1x0, and the

solution is

y(t) =



eλ1t 0 . . . 0

0 eλ2t . . . 0

·
·
·

0 0 . . . eλnt





y0
1

y0
2

·
·
·
y0
n

 ,



where 

y0
1

y0
2

·
·
·
y0
n

 = S−1x0.

Another approach to solving this system is using ma-

trix exponentials.

Recall that, for any number x,

ex =

∞∑
k=0

xk

k!
.

Definition: Given a n × n matrix A, the matrix

exponential for A is

eA =
∞∑
k=0

Ak

k!
= I+A+

A2

2
+ . . . .

If t is a scalar variable, then

eAt =
∞∑
k=0

Aktk

k!
= I+At+

A2t2

2
+ . . . .



Assume now that S diagonalizes A, i.e. A = SΛS−1.

Then

eAt = I+ SΛtS−1 +
SΛt2S−1

2
+ . . .

= S(I+ Λt+
Λ2t2

2
+ . . . )S−1

= SeΛtS−1.

Note that, for a diagonal matrix Λ, we have

Λk =



λk1 0 . . . 0

0 λk2 . . . 0

·
·
·

0 0 . . . λkn


and thus

eΛt =



eλ1t 0 . . . 0

0 eλ2t . . . 0

·
·
·

0 0 . . . eλnt

 .



Example: Given A =

(
−2 1

1 −2

)
, find eAt.

Solution: We find the characteristic polynomial of A:

p(λ) = (−2−λ)2− 1 = λ2 + 4λ+ 3 = (λ+ 3)(λ+ 1).

The eigenvalues of A are λ1 = −3 and λ2 = −1.

Since A is 2× 2 and it has two distinct eigenvalues,

we know that the dimension of each eigenspace is

exactly 1 (a line).

For λ = −3, we solve

(
1 1

1 1

)(
x1

x2

)
=

(
0

0

)
and

find that S−3 = span

{(
1

−1

)}
.

For λ = −1, we solve

(
−1 1

1 −1

)(
x1

x2

)
=

(
0

0

)
and find that S−1 = span

{(
1

1

)}
.

Then, we set

S =

(
1 1
−1 1

)
, Λ =

(
−3 0
0 −1

)
, S−1 =

1

2

(
1 −1
1 1

)
,

and

eAt = S

(
e−3t 0

0 e−t

)
S−1 =

1

2

(
e−3t + e−t e−t − e−3t

e−t − e−3t e−3t + e−t

)
.



Properties of eA:

(i) If A is the zero matrix, then eA = e0 = I:

e0 = I+ 0 +
02

2
+ · · · = I.

(ii) eAe−A = I: Note that

eAe−A =

(
I+A+

A2

2
+
A3

6
+ . . .

)(
I−A+

A2

2
− A3

6
+ . . .

)
= I,

since A and −A commute (all the infinitely many

terms in the product cancel when collecting like

terms, except for the first one, just as when we do

the product with numbers rather than matrices).

Definition: A fundamental matrix X for the system
dx
dt

= Ax is a n×n matrix whose columns are linearly

independent solutions to the system.

Remark: If X is a fundamental matrix for the sys-

tem dx
dt

= Ax, then X itself satisfies the system:

dX

dt
= AX.



The general solution is then Xc, where c =


c1
·
·
·
cn

.

Theorem: eAt is a fundamental matrix for dx
dt

= Ax.

Proof: First note that eAt is always invertible, thanks

to property (ii). Thus, its columns are linearly inde-

pendent. Next,

d

dt
eAt =

d

dt
(I+ At+

A2t2

2
+
A3t3

6
+ . . . )

= A+At2 +
A3t2

2
+
A4t3

6
+ . . . )

= A(I+At+
A2t2

2
+
A3t3

6
+ . . . )

= AeAt,

as needed.

Remark: Note that, since eA0 = I, the solution of

the initial value problem du
dt

= Au, u(0) = u0, is

u(t) = eAtu0.



Remark: A n-th order linear ODE with constant

coefficients, any
(n) + an−1y

(n−1) + · · · + a0y = 0,

can be rewritten as a system by introducing n new

unknowns: With

u1 = y, u2 = y′, u3 = y′′, . . . , un = y(n−1),
we have

du1

dt
= u2

du2

dt
= u3

·
·
·

dun−1

dt
= un

dun

dt
= −an−1

an
un −

an−2

an
un−1 − · · · −

a0

an
u1.

In matrix form,

d

dt


u1

·
·
·
un

 =



0 1 0 . . . 0

0 0 1 . . . 0
·
·
·

0 0 0 . . . 1

− a0
an

. . . − an−1

an




u1

·
·
·
un

 .


