MA 511, Session 29

Linear Systems of ODEs and Matrix Exponentials

Let A be a n x n matrix. We want to solve the
linear, homogeneous system of ODEs with constant
coefficients

dx

— = Azx.
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Assume A is diagonalizable, ST1AS = A. We want
to show that a simple change of variables makes the

system decoupled.
Define

y=S"1z, ie. x = Sy.

Then the system becomes

dy : dy —1
—_— = .e. - = A — A .
Sdt ASz, i.e 7 S Sy Y

Thus,

dy; :
d—;:)\jyj, for 1 <5 <n.



The solutions are y; = cjekjt, 1 <35 <n. In vector
form,
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We see that the initial value problem 2 = Az, z(0) =
dy

xo becomes 2 = Ay, y(0) =y’ = S~ 'z, and the
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solution is
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Another approach to solving this system is using ma-
trix exponentials.

Recall that, for any number x,
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Definition: Given a n x n matrix A, the matrix
exponential for A is

2

Ak A
A
et = g T —]I—|—A—|——2 4+ ...
k=0

If ¢t is a scalar variable, then
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Assume now that S diagonalizes A4, i.e. A = SAS™!.
Then
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Note that, for a diagonal matrix A, we have
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Solution: We find the characteristic polynomial of A:
pPA)=(—2=-X)?=1=X+42+3=(A+3)(A+1).
The eigenvalues of A are Ay = —3 and Ay = —1.

Example: Given A = ( ), find e4?.

Since A is 2 x 2 and it has two distinct eigenvalues,
we know that the dimension of each eigenspace is
exactly 1 (a line).
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For A = —3, we solve (1 1) (2) = (8) and
1
find that S_3 = span {(_1)}
—1 1 I 0
= — 1 —
For A\ 1, we solve ( 1 _1) (332) (0)
1
and find that S_1 = span {(1)}

Then, we set
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and



Properties of e?:

(i) If A is the zero matrix, then e = e¥ =1I:
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(ii) eAe~4 =I: Note that
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since A and —A commute (all the infinitely many
terms in the product cancel when collecting like
terms, except for the first one, just as when we do
the product with numbers rather than matrices).

Definition: A fundamental matrix X for the system
d

at
independent solutions to the system.

= Ax is a n Xxn matrix whose columns are linearly

Remark: If X is a fundamental matrix for the sys-

tem fl—f = Ax, then X itself satisfies the system:

dX
— = AX.
dt
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The general solution is then Xe¢, where ¢ =

e,

At 15 a fundamental matrix for % — Ax.

Theorem: e
Proof: First note that e is always invertible, thanks
to property (ii). Thus, its columns are linearly inde-
pendent. Next,

%eAt:%(H+At+AZt2+AZt3 -
:A+At2+AZt2+AZt3 )
242 343
—A(I[+At+A2t A6t )
— Ae/t,
as needed.

A

Remark: Note that, since e*? = I, the solution of

the initial value problem %% = Au, u(0) = wug, is

dt
u(t) = eMuyg.



Remark: A n-th order linear ODE with constant
coefficients, any(") + an_ly(”_l) + -+ agy = 0,
can be rewritten as a system by introducing n new
unknowns: With

_ I " _ n—1
uy =Y, uQ—y,u;g—y,...,un—y( )7
we have
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In matrix form,

ul O O ]. S 0 u]_

&

__ao _an_—l)



