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Stability of Solutions of Linear Systems of ODEs

Let A be a n × n matrix. Then eAt is a funda-
mental matrix for du

dt = Au. Any solution of this
system has the form

u(t) = eAtc.

If A is diagonalizable, the components of any so-
lution are linear combinations of exponentials eλkt,
where λk is an eigenvalue of A.

Definition: The system is stable if <λ < 0 for all
eigenvalues λ of A. In this case all solutions of the
system decay to 0 as t → ∞. (Usually this case is
called asymptotically stable)

Definition: The system is neutrally stable if <λ ≤
0 for all eigenvalues λ of A, but <λ = 0 for some
eigenvalue λ.

Definition: The system is unstable if <λ > 0 for
some eigenvalue λ of A. In this case, some solutions
of the system are unbounded.



Example: Consider the system du
dt = Au, where

A =
(−2 1

1 −2

)
.

Then, the eigenvalues are λ1 = −3 and λ2 = −1 and
the system is stable.

The general solution is

u(t) = c1e
−3t

(
1
−1

)
+ c2e

−t

(
1
1

)
,

which all tend to
(

0
0

)
as t→∞.

In physics these equations represent a flow on

the xy-plane. If we let u(t) =
(

x(t)
y(t)

)
represent the

coordinates of a particle at time t, then du
dt =

( dx
dt
dy
dt

)

is the velocity vector at time t. The graph of any
solution of the system from the parametric equations
x(t) = c1e

−3t + c2e
−t, y(t) = c1e

−3t − c2e
−t is

called a trajectory of the system. In this example, all
trajectories point to the origin and, in fact, converge
to it as t→∞.



Example: Consider the system du
dt = Au, where

A =
(

0 −1
1 0

)
.

Then, the eigenvalues are λ = ±i and the system is
neutrally stable.

We now look for eigenvectors for λ = i. We solve the

system
(−i −1

1 −i

) (
x1

x2

)
=

(
0
0

)
, and easily find

that Si = span
{(

1
−i

)}
.

Similarly, to find the eigenvectors for λ = i, we solve

the system
(

i −1
1 i

) (
x1

x2

)
=

(
0
0

)
, and easily

find that S−i = span
{(

1
i

)}
.

Thus, the general solution of the system is

u(t) = c1e
it

(
1
−i

)
+ c1e

−it

(
1
i

)
.

To write the general real-function solution, we note
that the real and the imaginary parts of solutions



are themselves solutions. Let us determine them:

eit

„
1
−i

«
= (cos t + i sin t)

„
1
−i

«

= cos t

„
1
0

«
+ sin t

„
0
1

«
+ i

„
sin t

„
1
0

«
− cos t

„
0
1

««

=

„
cos t
sin t

«
+ i

„
sin t
− cos t

«

Thus,
(

cos t

sin t

)
and

(
sin t

− cos t

)
are solutions of the

system, and the general (real) solution is

u(t) = c1

(
cos t

sin t

)
+ c2

(
sin t

− cos t

)
.

We see that all these solutions are periodic, with
period 2π. The trajectories are circles centered at
the origin, called orbits.

For plane flows we have p(λ) = λ2 − trA λ + detA,

λ =
trA ±√

(trA)2 − 4 detA

2

and so, we may summarize the stability properties
of the system in a trace-determinant diagram that



represents the parabola x = 4y2 in the xy-plane,
with x = trA and y = detA. Then,

I) In the first quadrant, both λ are real positive
below the parabola and complex conjugates with
positive real part above the parabola, so that in
both cases the system is unstable. Similarly, on the
parabola in the first quadrant, there is a double, real,
positive eigenvalue and the system is still unstable.

II) In the second quadrant the system is always sta-
ble. Both λ are real negative below the parabola,
they coincide and are negative on the parabola, and
they are complex conjugates with negative real part
above the parabola.

III) In the third and fourth quadrants the eigenval-
ues are real, one positive and one negative, and thus
the system is unstable.

IV) On the positive x-axis, one eigenvalue is 0 and
the other positive so that the system is unstable,
while on the negative x-axis, one eigenvalue is 0 and
the other negative so that the system is neutrally
stable.



V) On the positive y-axis the eigenvalues are pure
imaginary, so that the system is neutrally stable.

Remark: We see that, if the system is stable, then
necessarily trA < 0, detA > 0.

Example: Consider the system du
dt = Au, where

A =
(

1 2
−2 1

)
.

Then, the characteristic polynomial is p(λ) = (1 −
λ)2+4 = λ2−2λ+5 and the eigenvalues are λ = 1±2i
and the system is unstable.

We now look for eigenvectors for λ = 1−2i. We solve

the system
(

2i 2
−2 2i

) (
x1

x2

)
=

(
0
0

)
, and easily

find that S1−2i = span
{(

i

1

)}
.

Thus, a complex solution of the system is

u(t) = e(1−2i)t

(
i

1

)
= et(cos 2t− i sin 2t)

(
i

1

)
,

that gives the two real solutions

u1(t) = et

(
sin 2t
cos 2t

)
, u2(t) = et

(
cos 2t

− sin 2t

)
.



We see that the trajectories spiral towards the ori-
gin (counterclockwise) as t → −∞ and they spiral
outward (clockwise) unboundedly as t→∞.

Example: Let us consider the second order equa-
tion that corresponds to the dynamics of a mass-
spring system that undergoes damped harmonic mo-
tion. Let L0 be the natural length of the spring
and x represent the displacement from equilibrium
along a horizontal line (so that gravity effects are
not present). Then, the forces acting on the mass
are Fs = −kx and Ff = −cdx

dt , respectively the re-
active force of the spring and the damping (dissipa-
tive) force due to friction, where k > 0 is the elastic
constant of the spring and c > 0 the damping con-
stant. It follows from Newton’s law that the sum
of all forces must equal md2x

dt2 , where m is the mass
attached to the spring. Thus,

m
d2x

dt2
+ c

dx

dt
+ kx = 0

and x(0) = x0 and x′(0) = v0 represent, respectively,



the initial displacement and initial velocity imparted
to start the motion.

As a system, u1 = x and u2 = dx
dt = x′, and

du1

dt
= u2,

du2

dt
= − c

m
u2 − k

m
u1.

In matrix form

du

dt
=

(
0 1
− k

m − c
m

)
u.

We see that detA = k
m ≥ 0 and trA = − c

m ≤ 0.
Thus the system is stable if c > 0 (damped harmonic
motion) and neutrally stable if c = 0 (undamped
harmonic motion).


