MA 511, Session 31

Complex Matrices

Let us recall that the <u>conjugate</u> of the complex number z = a + bi is the complex number $\overline{z} = a - bi$, and its <u>modulus</u> or <u>absolute value</u> is the non-negative real number $|z| = \sqrt{a^2 + b^2}$.

A number of the form $\frac{\alpha+i\beta}{\gamma+i\delta}$ can be put in the form a + bi by multiplying and dividing by $\gamma - i\delta$:

$$\frac{\alpha + i\beta}{\gamma + i\delta} \frac{\gamma - i\delta}{\gamma - i\delta} = \frac{\alpha\gamma + \beta\delta}{\gamma^2 + \delta^2} + i \frac{\beta\gamma - \alpha\delta}{\gamma^2 + \delta^2}.$$

The inner product for vectors $x, y \in \mathbb{C}^n$ is $(x, y) = \bar{x}^T y.$

Example: Given $x = \begin{pmatrix} 1+i \\ 2 \end{pmatrix}$, $y = \begin{pmatrix} i \\ 1+i \end{pmatrix}$, find (x, y). Solution:

$$(x, y) = \bar{x}^T y = (1 - i)(i) + (2)(1 + i)$$

= $i + 1 + 2 + 2i = 3 + 3i$.

Definition: The <u>norm</u> or <u>length</u> of a complex vector $x \in \mathbb{C}^n$ is

$$\|x\| = \sqrt{(x,x)} = \sqrt{\bar{x}^T x}.$$

Remark: Note that, whether x is a real or complex vector,

$$||x|| = \sqrt{|x_1|^2 + \dots + |x_n|^2}.$$

Definition: Given a $m \times n$ complex matrix A, its <u>Hermitian transpose</u> is the $n \times m$ matrix

$$A^H = \overline{A^T} = (\overline{A})^T.$$

Example: Given $A = \begin{pmatrix} 1+i & 2\\ 3+i & 1+2i \end{pmatrix}$, we have $A^{H} = \begin{pmatrix} 1-i & 3-i\\ 2 & 1-2i \end{pmatrix}$.

Remark: The inner product in \mathbb{C}^n can be written $(x, y) = x^H y$. Also, Hermitian transposition satisfies $(AB)^H = B^H A^H$ whenever the product AB exists.

Definition: A $n \times n$ matrix A is <u>Hermitian</u> if $A^H = A$. It is <u>skew-Hermitian</u> if $A^H = -A$.

Remark: A real matrix A is Hermitian when it is symmetric.

Theorem: If A is a $n \times n$ Hermitian matrix, then $x^{H}Ax$ is real for all $x \in \mathbb{C}^{n}$.

<u>Proof</u>: $(x^H A x)^H = x^H A^H (x^H)^H = x^H A x$. That is, the number $x^H A x$ is equal to its conjugate. Thus, it is real.

Theorem: If A is a $n \times n$ Hermitian matrix, then all its eigenvalues are real. In particular, all real symmetric matrices have real eigenvalues.

<u>Proof</u>: Let λ be an eigenvalue of A and x a corresponding eigenvector. Then, $Ax = \lambda x$ and $x^H Ax = x^H \lambda x = \lambda ||x||^2$. Since the left side is real and so is $||x||^2$, it follows that λ is real too.

Theorem: Let λ_1 and λ_2 be distinct eigenvalues of a Hermitian matrix A, and let x_1 and x_2 be corresponding eigenvectors. Then, $x_1^H x_2 = 0$ (i.e. eigenvectors corresponding to different eigenvalues of a Hermitian matrix are orthogonal)

<u>Proof</u>: Note that, since λ_1 is real,

 $\lambda_1(x_1^H x_2) = (\lambda_1 x_1)^H x_2 = (A x_1)^H x_2 = x_1^H A^H x_2 = x_1^H \lambda_2 x_2 = \lambda_2(x_1^H x_2).$ Thus, $(\lambda_1 - \lambda_2)(x_1^H x_2) = 0$ implies that $x_1^H x_2 = 0$, as needed.

Definition: Given a $n \times n$ complex matrix U, we say U is <u>unitary</u> if its columns are orthonormal in \mathbb{C}^n . This is equivalent to saying $U^H = U^{-1}$ (i.e. its inverse is its Hermitian transpose).

Remark: A real matrix U is unitary if, and only if it is orthogonal.

Theorem: (Spectral Theorem) If A is a $n \times n$ Hermitian matrix, then A is diagonalizable by a unitary matrix U, i.e. $U^H A U = \Lambda$ is diagonal. In this case we say that A is <u>unitarily similar</u> to a diagonal matrix. In particular, all real symmetric matrices are diagonalizable (in fact, by orthogonal matrices).

<u>Proof</u>: We only give the proof here for matrices that have distinct eigenvalues. These have a full set of eigenvectors and, by the last theorem, these eigenvectors are orthogonal.

Example: Diagonalize
$$A = \begin{pmatrix} 7 & -16 & -8 \\ -16 & 7 & 8 \\ -8 & 8 & -5 \end{pmatrix}$$
 by an orthogonal matrix O

an orthogonal matrix Q.

Solution: The characteristic polynomial is

$$p(\lambda) = -(\lambda^3 - 9\lambda^2 - 405\lambda - 2187)$$
with roots $\lambda_1 = \lambda_2 = -9$ and $\lambda_3 = 27$. We can
easily find that $S_{-9} = \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \right\}$ and
 $S_{27} = \text{span} \left\{ \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} \right\}$. Since these three vectors
are orthogonal, we may normalize them and put
them as columns of $Q = \begin{pmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{6} \\ \frac{1}{3} & 0 & \frac{2\sqrt{2}}{3} \\ -\frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{6} \end{pmatrix}$. Then,
 $Q^T = Q^{-1}$ and we see that indeed

$$Q^T A Q = \begin{pmatrix} -9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 27 \end{pmatrix}.$$

Theorem: If U is unitary, then $x^H y = (Ux)^H (Uy)$ for all $x, y \in \mathbb{C}^n$. In particular, ||x|| = ||Ux||. <u>Proof</u>: $(Ux)^H (Uy) = x^H U^H Uy = x^H \mathbb{I} y = x^H y$.

Theorem: If λ is an eigenvalue for a unitary matrix U, then $|\lambda| = 1$.

<u>Proof</u>: Let x be an eigenvector of U corresponding to λ . Then,

 $|\lambda|^2 (x^H x) = (\lambda x)^H (\lambda x) = (Ux)^H (Ux) = x^H x$ and necessarily $|\lambda| = 1$.

Theorem: If U is unitary, then it is unitarily similar to a diagonal matrix.

Questions: (i) Can a Hermitian matrix be singular? Yes, 0 is Hermitian.

(ii) Can a unitary matrix be singular? No, $U^H = U^{-1}$. (iii) Can a real symmetric matrix have non-real eigenvalues? No (theorem).

(iv) Can an orthogonal matrix have non-real eigenvalues? Yes, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ does.

(v) What is det U for unitary U? det $U = z \in \mathbb{C}$ where |z| = 1, since it is the product of the eigenvalues of U—all of which lie on the unit circle.

Example: If F_n is the $n \times n$ Fourier matrix, then $\frac{1}{\sqrt{n}} F_n$ is unitary.