MA 511, Session 32

Similarity Transformations

Let A be a n x n matrix. If S is a nonsingu-
lar n x m matrix, then A — S!1AS is called a
similarity transformation.

We saw that this related, e.g. to changes of vari-

ables in systems of differential equations: Suppose
B = S71AS, then with y = S~ !z,

dA B
- — Ax is equivalent to I = By.

Definition: Is B = S~'AS, we say that A and B

are similar.

Remark: Similarity of matrices is an equivalence
relation, i.e. it is reflexive, symmetric, and transitive.

Theorem: Similar matrices have the same eigenval-
ues.

Proof: The result will follow after we show that they
actually have the same characteristic polynomial.



p(A) = det(B — M) = det(S™tAS — Al
= det(S71AS — ASTLS)
= det(S™'(A — AI)S)
= (det S~')(det(A — AI))(det S)
= det(A — ).

Similarity and Change of Basis

1 0 0
The standard basis in R*is [0 |, 1], 0|,
0 0 1

x
and when we see a vector | y | we take it as repre-

z
sented in this basis:



However, we can take another basis, for example
0 1 0

11,101, 0 |,andthenthe same point would
0 0 1

Y
be represented by the (different) triple | « | (note

z
that even the ordering of the basis vectors is impor-

tant, not just what vectors they are!).

Let now 1T' : V — V be a linear transforma-
tion from the vector space V into itself, and let
B ={vy,...,v,} be a basis for V. Then, T is en-
tirely determined by its action on (8 and this is sum-
marized in the matrix of 1" with respect to the basis

B, (T3 = A = (a;j). Recall that this means

( T(v1) =a11v1 + -+ + ap1vy, = w1

\ T(Un) = A1pV1 + -+ AppUn = Wn,,

and A transforms coordinates of vectors in the basis
[ into coordinates of the transformed vector in the



same basis . For example, if © = cyv1 + - - + ¢, v,
then
T(x) =crwi + - + cpwn,

has coordinates Ac in the basis J3.

If we change the basis 3 to another basis B =
{01,...,0,}, the representation of the linear trans-
formation changes, though the transformation itself
does not. If

(V] = M1101 + -+ Mp10yp

\ Un = M1nV1 + -0 MynUn,

then the matrix M = (m,;;) represents the identity
transformation (id: V. — V, id(z) = z) in the
bases [ and B in that order. This means that
M = (id )ﬂﬁ and also M~ = (id )Bﬂ Let D = (T)BB
be the representation of 1" with respect to the basis

3.

The vector ¢ of coordinates of x in the basis 3 is
now given by ¢ = Mc (i.e. M~1¢ = ¢). Indeed, let



B=(v; ... vp)and B=(%; ... %y,). Then,
B = BM (that is BM~' = B) and

T(x) = BAc= BAM~'¢ = BMAM ¢,
which means that
(T)BB =D = ]\414]\4_1 — (ld )ﬁﬁ(T)ﬁﬁ(id )Bﬁ

We see again a similarity transformation from A to
D that now represents the change of basis from (3 to
g.

Theorem: If U;, U, are unitary n X n matrices, then
so 1s U1 U,.

Proof: (UlUQ)H(UlUQ) = U2HU1HU1U2 — U2HU2 = [

Theorem: For any n xXn matrix A, there is a unitary
n x n matrix U such that U AU is upper triangular.

Proof: Let A\; be an eigenvalue of A and x; a corre-
sponding eigenvector of unit length, ||x1]| = 1. Let
now U; be a n X n unitary matrix having x; as first
column. It follows that AU; = U; Ay, where A, has



its first column equal to A\jeq, that is A; = Ul_lAUl
has the first column as desired.

Next, consider the (n — 1) x (n — 1) matrix A,
obtained from A; by removing the first row and first
column, and let Ay be an eigenvalue for it with a cor-
responding associated eigenvector x5 € R"™!. Let
U, be any (n — 1) x (n — 1) unitary matrix having
x9 for first column and define the n X n unitary ma-
trix U with e; as first column and (eq)’ as first
row, and U, for the remaining rows and columns.
It follows that Ay, = U, '(U; ' AU,)U; has for first
column Aje; and for second column ce; + Aseq, as
desired.

Repeating this process n — 1 times, we have uni-
tary matrices Uy, ...,U,_1 such that
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We now define the n X n unitary matrix

U=U,...U, 1,

and it follows that U ' AU is upper triangular.

We can now prove the spectral theorem we stated
in the last session for Hermitian matrices

Corollary: If A is Hermitian, it is unitarily similar
to a diagonal matrix.

Proof: Take a unitary U such that U? AU = T is
upper triangular. Now, (U AU = TH is lower
triangular, but it is also (U7 AU)Y = UR AU = T.
Thus, T is actually diagonal.



Corollary: If A is unitary, it is unitarily similar to

a diagonal matrix.

Proof: Take a unitary U such that U? AU = T is up-
per triangular. Since the product of unitary matri-

ces is unitary, 7" is unitary. This means TH = T-1,

Thus,
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which, using the last row of T', gives the relations
twn|* =1, and t;, = 0 for 1 < j < n. Then, using
the penultimate row of T', we see that ¢;,_1 = 0 for
1<j<n-—1,and |[t,_1,-1|* = 1. Repeating this
process, we see that T is diagonal (and also |t;;]* = 1

for 1 < j <n).



Example: Find the eigenvalues and eigenspaces of
the operator 71" defined on V = C(—o0,00) by T'(f) =

[y F(t)dt.
Solution: We want scalars A such that
T(f) = [y f@t)dt =X f(z), —00 < T < 00

for some nonzero function f € V.

It follows from the fundamental theorem of calculus
that

f(z) =Af"(2).
If A\ =0, then f = 0 says there is no eigenvector

(eigenvectors are nonzero by definition). Thus, 0 is

not an eigenvalue.
/
1
If A # 0, then 7 = and, by elementary ODEs
we know f(z) = cex® for some constant ¢. But at
r = 0 we have T'f(0) = 0 = Ac which implies ¢ = 0
and thus f = 0 cannot be an eigenvector. Therefore,

this operator 1" has no eigenvalues.



Example: Show that all real numbers are eigenval-
ues of the operator T defined on V = C?(—o00, o) by

T(f) = f", and find all the eigenspaces.
Solution: We want scalars )\ such that

T(f)=f"=Af(z), —oco<z<oo

for some nonzero function f € V.

There are three different cases, A < 0, A = 0, and

A > 0. In any case, the characteristic polynomial of
the ODE is 72 — \.

(i) In the first case, there is a pair of complex con-
jugate roots r = v/ —A ¢ and the general solution is

f(x) = cpcosvV—=Ax + cosiny/—Ax.

(ii) In the second case there is a double root r = 0
and the general solution is f(x) = ¢1 + cox.

(iii) In the third case its roots are real, 7 = +v/\ and
the general solution is f(z) = c1eV>® + coe™ VA7,

As for the eigenspaces, they are all 2-dimensional
planes), with the following bases:

(
(i) A <0, S\ =span{cosv—Az,sinv—Az}.
(i) A=0, S\ =span{l,x}.

(iii) A > 0, S\ = span {eV*® e~ VA7),



