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Similarity Transformations

Let A be a n × n matrix. If S is a nonsingu-
lar n × n matrix, then A −→ S−1AS is called a
similarity transformation.

We saw that this related, e.g. to changes of vari-
ables in systems of differential equations: Suppose
B = S−1AS, then with y = S−1x,

dA

dt
= Ax is equivalent to

dB

dt
= By.

Definition: Is B = S−1AS, we say that A and B

are similar.

Remark: Similarity of matrices is an equivalence
relation, i.e. it is reflexive, symmetric, and transitive.

Theorem: Similar matrices have the same eigenval-
ues.

Proof: The result will follow after we show that they
actually have the same characteristic polynomial.



p(λ) = det(B − λI) = det(S−1AS − λI)

= det(S−1AS − λS−1
IS)

= det
(
S−1(A− λI)S

)

= (detS−1)
(
det(A− λI)

)
(detS)

= det(A− λI).

Similarity and Change of Basis

The standard basis in R
3 is




1
0
0


 ,




0
1
0


 ,




0
0
1


,

and when we see a vector




x

y

z


 we take it as repre-

sented in this basis:




x

y

z


 = x




1
0
0


 + y




0
1
0


 + z




0
0
1


 .



However, we can take another basis, for example


0
1
0


 ,




1
0
0


 ,




0
0
1


, and then the same point would

be represented by the (different) triple




y

x

z


 (note

that even the ordering of the basis vectors is impor-
tant, not just what vectors they are!).

Let now T : V −→ V be a linear transforma-
tion from the vector space V into itself, and let
β = {v1, . . . , vn} be a basis for V . Then, T is en-
tirely determined by its action on β and this is sum-
marized in the matrix of T with respect to the basis
β, (T )ββ = A = (aij). Recall that this means




T (v1) = a11v1 + · · ·+ an1vn = w1

·
·
·

T (vn) = a1nv1 + · · ·+ annvn = wn,

and A transforms coordinates of vectors in the basis
β into coordinates of the transformed vector in the



same basis β. For example, if x = c1v1 + · · ·+ cnvn,
then

T (x) = c1w1 + · · ·+ cnwn,

has coordinates Ac in the basis β.

If we change the basis β to another basis β̃ =
{ṽ1, . . . , ṽn}, the representation of the linear trans-
formation changes, though the transformation itself
does not. If




v1 = m11ṽ1 + · · ·+ mn1ṽn

·
·
·

vn = m1nṽ1 + · · ·+ mnnṽn,

then the matrix M = (mij) represents the identity
transformation (id : V −→ V, id (x) = x) in the
bases β and β̃ in that order. This means that
M = (id )ββ̃ and also M−1 = (id )β̃β . Let D = (T )β̃β̃

be the representation of T with respect to the basis
β̃.

The vector c̃ of coordinates of x in the basis β̃ is
now given by c̃ = Mc (i.e. M−1c̃ = c). Indeed, let



B = ( v1 . . . vn ) and B̃ = ( ṽ1 . . . ṽn ). Then,
B = B̃M (that is BM−1 = B̃) and

T (x) = BAc = BAM−1c̃ = B̃MAM−1c̃,

which means that

(T )β̃β̃ = D = MAM−1 = (id )ββ̃(T )ββ(id )β̃β .

We see again a similarity transformation from A to
D that now represents the change of basis from β to
β̃.

Theorem: If U1, U2 are unitary n×n matrices, then
so is U1U2.

Proof: (U1U2)H(U1U2) = UH
2 UH

1 U1U2 = UH
2 U2 = I.

Theorem: For any n×n matrix A, there is a unitary
n×n matrix U such that UHAU is upper triangular.

Proof: Let λ1 be an eigenvalue of A and x1 a corre-
sponding eigenvector of unit length, ‖x1‖ = 1. Let
now U1 be a n× n unitary matrix having x1 as first
column. It follows that AU1 = U1A1, where A1 has



its first column equal to λ1e1, that is A1 = U−1
1 AU1

has the first column as desired.

Next, consider the (n − 1) × (n − 1) matrix Ã1

obtained from A1 by removing the first row and first
column, and let λ2 be an eigenvalue for it with a cor-
responding associated eigenvector x2 ∈ R

n−1. Let
Ũ2 be any (n − 1) × (n − 1) unitary matrix having
x2 for first column and define the n×n unitary ma-
trix U2 with e1 as first column and (e1)

T as first
row, and Ũ2 for the remaining rows and columns.
It follows that A2 = U−1

2 (U−1
1 AU1)U2 has for first

column λ1e1 and for second column ce1 + λ2e2, as
desired.

Repeating this process n− 1 times, we have uni-
tary matrices U1, . . . , Un−1 such that

U−1
n−1 . . . U−1

1 AU1 . . . Un−1 =




λ1 ∗ . . . ∗
0 λ2 . . . ∗

·
·

·
0 0 . . . λn






We now define the n× n unitary matrix
U = U1 . . . Un−1,

and it follows that U−1AU is upper triangular.

We can now prove the spectral theorem we stated
in the last session for Hermitian matrices

Corollary: If A is Hermitian, it is unitarily similar
to a diagonal matrix.

Proof: Take a unitary U such that UHAU = T is
upper triangular. Now, (UHAU)H = T H is lower
triangular, but it is also (UHAU)H = UHAU = T .
Thus, T is actually diagonal.



Corollary: If A is unitary, it is unitarily similar to
a diagonal matrix.

Proof: Take a unitary U such that UHAU = T is up-
per triangular. Since the product of unitary matri-
ces is unitary, T is unitary. This means TH = T−1.
Thus,




t11 t12 . . . t1n

0 t22 . . . t2n

·
·

·
0 0 . . . tnn







t̄11 0 . . . 0
t̄12 t̄22 . . . 0

·
·

·
t̄1n t̄2n . . . t̄nn




= In,

which, using the last row of T , gives the relations
|tnn|2 = 1, and tjn = 0 for 1 ≤ j < n. Then, using
the penultimate row of T , we see that tj,n−1 = 0 for
1 ≤ j < n − 1, and |tn−1,n−1|2 = 1. Repeating this
process, we see that T is diagonal (and also |tjj |2 = 1
for 1 ≤ j ≤ n).



Example: Find the eigenvalues and eigenspaces of
the operator T defined on V = C(−∞,∞) by T (f) =∫ x

0
f(t) dt.

Solution: We want scalars λ such that
T (f) =

∫ x

0
f(t) dt = λ f(x), −∞ < x < ∞

for some nonzero function f ∈ V .

It follows from the fundamental theorem of calculus
that

f(x) = λf ′(x).

If λ = 0, then f ≡ 0 says there is no eigenvector
(eigenvectors are nonzero by definition). Thus, 0 is
not an eigenvalue.

If λ 6= 0, then
f ′

f
=

1
λ

and, by elementary ODEs

we know f(x) = ce
1
λ x for some constant c. But at

x = 0 we have Tf(0) = 0 = λc which implies c = 0
and thus f ≡ 0 cannot be an eigenvector. Therefore,
this operator T has no eigenvalues.



Example: Show that all real numbers are eigenval-
ues of the operator T defined on V = C2(−∞,∞) by
T (f) = f ′′, and find all the eigenspaces.
Solution: We want scalars λ such that

T (f) = f ′′ = λ f(x), −∞ < x < ∞
for some nonzero function f ∈ V .

There are three different cases, λ < 0, λ = 0, and
λ > 0. In any case, the characteristic polynomial of
the ODE is r2 − λ.

(i) In the first case, there is a pair of complex con-
jugate roots r = ±√−λ i and the general solution is
f(x) = c1 cos

√−λx + c2 sin
√−λx.

(ii) In the second case there is a double root r = 0
and the general solution is f(x) = c1 + c2x.

(iii) In the third case its roots are real, r = ±√λ and
the general solution is f(x) = c1e

√
λx + c2e

−√λx.

As for the eigenspaces, they are all 2-dimensional
(planes), with the following bases:

(i) λ < 0, Sλ = span {cos
√−λx, sin

√−λx}.
(ii) λ = 0, Sλ = span {1, x}.
(iii) λ > 0, Sλ = span {e

√
λx, e−

√
λx}.


