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Review

1) Let us revisit the coefficients of the characteristic
polynomial. We have
p(λ) = det(A− λI) = anλn + an−1λ

n−1 + · · ·+ a0,

and we already know that
an = (−1)n, an−1 = (−1)n−1trA, a0 = detA.

We also know that we can factor a polynomial us-
ing its roots, the eigenvalues of A in this case. Let
λ1, . . . , λn denote the eigenvalues (that may be re-
peated and/or complex). Then, we may also write

(∗) p(λ) = (−1)n(λ− λ1) . . . (λ− λn).

Using elementary algebra we are led to the relation
an−1 = (−1)n−1(λ1 + · · ·+ λn). Hence,

trA = λ1 + · · ·+ λn,

that is, a11 + · · ·+ ann = λ1 + · · ·+ λn.

We can also obtain from (∗) a useful identity for a0:
a0 = (−1)n(−1)nλ1 . . . λn = λ1 . . . λn.

Hence,
detA = λ1 . . . λn.



2) Given the symmetric matrix A =

0
@ 1 1 1

1 1 1
1 1 1

1
A, find

an orthogonal matrix Q such that QT AQ is diagonal.
Solution: The characteristic polynomial of A is

p(λ) =

˛̨̨
˛̨̨ 1− λ 1 1

1 1− λ 1
1 1 1− λ

˛̨̨
˛̨̨ =

˛̨̨
˛̨̨ 1− λ 1 1

1 1− λ 1
0 λ −λ

˛̨̨
˛̨̨

=

˛̨̨
˛̨̨ 1− λ 1 2

1 1− λ 2− λ
0 λ 0

˛̨̨
˛̨̨ = −λ [(1− λ)(2− λ)− 2]

= −λ(λ2 − 3λ) = −λ2(λ− 3).

The eigenvalues of A are λ1 = λ2 = 0 and λ3 = 2.
Since A is Hermitian (symmetric), it is diagonaliz-
able and necessarily dimS0 = 2. We find a pair of
orthogonal eigenvectors in S0 by solving Ax = 0, i.e.
x1 + x2 + x3 = 0. Similarly, we solve (A− 3I)x = 0
to find an eigenvector for λ = 3. We see that

S0 = span

8<
:

0
@ 1

1
−2

1
A ,

0
@ 1

−1
0

1
A

9=
; , S3 = span

8<
:

0
@ 1

1
1

1
A

9=
; .



We now normalize these three vectors and thus
obtain the 3 columns of Q.

Q =




1√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

− 2√
6

0 1√
3




It is now immediate to check that QT AQ =

0
@ 0 0 0

0 0 0
0 0 3

1
A.

3) Cayley-Hamilton Theorem: Let A be a n× n

matrix, and let
p(λ) = det(A− λI) = anλn + an−1λ

n−1 + · · ·+ a0,

be its characteristic polynomial. Then, p(A) = 0,
that is, A is a matrix root of its characteristic poly-
nomial. Let us see this in the 3× 3 case.

To do this, let U be a unitary matrix such that
UHAU = T is upper triangular with the eigenvalues
of A on its main diagonal. Let us see that p(T ) = 0.
As indicated earlier, p(λ) = −(λ−λ1)(λ−λ2)(λ−λ3),
so that

p(T ) = −(T − λ1I)(T − λ2I)(T − λ3I).



Note that
(T − λ1I)(T − λ2I)

= −
0
@ 0 t12 t13

0 λ2 − λ1 t23
0 0 λ3 − λ1

1
A

0
@ λ1 − λ2 t12 t13

0 0 t23
0 0 λ3 − λ2

1
A

=

0
@ 0 0 ∗

0 0 ∗
0 0 ∗

1
A

and thus

p(T ) =


 0 0 ∗

0 0 ∗
0 0 ∗


 (T − λ3I)

=


 0 0 ∗

0 0 ∗
0 0 ∗





 λ1 − λ3 t12 t13

0 λ2 − λ3 t23
0 0 0




=


 0 0 0

0 0 0
0 0 0




Finally, using An = (UTUH)n = UTnUH , we ob-
tain from p(A) = a3A

3 + a2A
2 + a1A + a0I that

p(A) = Up(T )UH = U0UH = 0, as claimed.



4) Let A be a 2× 2 matrix and consider the system
du
dt = Au. If A is diagonalizable, then the general
solution is u(t) = c1e

λ1tu1 + c2e
λ2tu2, where u1, u2

are linearly independent eigenvectors corresponding
to the (possibly equal or complex) eigenvalues λ1, λ2.

• The system is stable means that all solutions
u(t) → 0 as t →∞.

• The system is neutrally stable means that no
solution is unbounded and some solutions do not go
to zero as t →∞.

• The system is unstable means that some solu-
tions u(t) →∞ as t →∞.

Suppose now that A is non-diagonalizable. In any
case (even n × n) the columns of eAt are linearly
independent solutions of the system (eAt is a funda-
mental matrix). Now λ = λ1 = λ2 and let Sλ =
span {u1}. Then, u(t) = eλtu1 is a non-trivial solu-
tion of the system. We need a second linearly inde-
pendent one.

By Cayley-Hamilton we know (A−λI)2 = 0. Let
us exploit this fact as follows: (we use the fact that



eA+B = eAeB when A and B commute)

eAt = eλIte(A−λI)t

= eλt

[
I + (A− λI)t +

(A− λI)2t2

2
+ . . .

]
,

where all terms past the second are zero and, there-
fore,

eAt = eλt [I + (A− λI)t],

is a fundamental matrix.

Example: Solve the system du
dt =

(
0 1
−9 6

)
u using

matrix exponentials.
Solution: The characteristic polynomial is p(λ) =
−λ(6−λ)+9 = (λ− 3)2. We easily find that S3 has
dimension 1 and, therefore, A is defective. We use
the formula just derived to find

eAt = e3t

»„
1 0
0 1

«
+

»„
0 1
−9 6

«
− 3

„
1 0
0 1

«–
t

–

= e3t

»„
1 0
0 1

«
+

„−3 1
−9 3

«
t

–

= e3t

„
1− 3t t

−9t 1 + 3t

«
.



Thus, a pair of independent solutions is

e3t

(
1− 3t

−9t

)
, e3t

(
t

1 + 3t

)
.

A simpler basis for the solution set is

e3t

(
1
3

)
, e3t

(
t

1 + 3t

)
.

5) (page 427, B3) For the matrix B =


 0 1 2

0 0 0
0 0 0


,

use MeJtM−1 to compute the matrix exponential
eBt, and compare it with the power series

I + Bt + (Bt)2

2 + . . . .

Solution: We have B2 = 0 so that

eBt = (I + (A− λI)t)

=


 1 0 0

0 1 0
0 0 1


 +


 0 1 2

0 0 0
0 0 0


 t + 0

=


 1 t 2t

0 1 0
0 0 1


 .



On the other hand, we know from last session that

M =


 1 0 0

0 1 2
0 0 −1


 , M−1 =


 1 0 0

0 1 2
0 0 −1


 ,

gives M−1BM = J =


 0 1 0

0 0 0
0 0 0


. Also, since

J2 = 0,

eJt = I +


 0 t 0

0 0 0
0 0 0




and, therefore, we find again that

MeJtM−1 =


 1 0 0

0 1 2
0 0 −1





 1 t 0

0 1 0
0 0 1





 1 0 0

0 1 2
0 0 −1




=


 1 t 2t

0 1 0
0 0 1


 .



6) Lagrange interpolation (A. Khovanskii).

Let P (x) = (x−λ1) · · · (x−λn) be a polynomial, and
Q(x) a function (e.g., another polynomial or exp(x)).

If all λj are distinct, Lagrange interpolation of Q on
the roots of P is a polynomial R(x) of degree less
than n such that R(λj) = Q(λj) for all j. If Q is a
polynomial, R is the remainder of division of Q by
P . There is a simple formula for R:

R(x) = Q(λ1)Pλ1(x) + · · ·+ Q(λn)Pλn(x),

where Pλ(x) =
P (x)

P ′(λ)(x− λ)
.

The polynomial Pλj (x) equals 1 at x = λj and van-
ishes at λk when k 6= j.

Theorem: Let P (x) be the characteristic polyno-
mial of A, or any polynomial such that P (A) = 0.
If Q(x) is a polynomial, then R(A) = Q(A). If
Q(x) = exp(xt) then R(A) = exp(At).

This follows from the Cayley-Hamilton Theorem.



If P (x) has roots λ1, . . . , λk with multiplicities
n1, . . . , nk, the theorem still holds, but Lagrange
interpolation with multiplicities requires that R(x)
and Q(x) have the same Taylor polynomial of or-
der nj − 1 at x = λj , for each j. This gives n =
n1 + · · · + nk equations for the n unknown coeffi-
cients of R.

Example: Let P (x) = (x− λ)2. Then

R(x) = Q(λ) + Q′(λ)(x− λ), hence

exp(At) = eλt
I + teλt(A− λI).

Example: Let P (x) = (x−1)2(x+1), Q(x) = ext.
Find R(x) = ax2 + bx + c.

R(1) = a + b + c = Q(1) = et

R′(1) = 2a + b = Q′(1) = tet

R(−1) = a− b + c = Q(−1) = e−t

Hence b = (et−e−t)/2, a = tet/2−(et−e−t)/4, c =
3et/4 + e−t/4− tet/2. If P is a characteristic poly-
nomial of A, then exp(At) =

2tet − et + e−t

4
A2 +

et − e−t

2
A +

3et + e−t − 2tet

4
I.


