MA 511, Session 34

Review

1) Let us revisit the coefficients of the characteristic
polynomial. We have
p(A\) = det(A — M) = ap, A" + a1 AL+ + ag,
and we already know that

anp = (—1)", ap_1 = (=1)""ltr A, ag=detA.
We also know that we can factor a polynomial us-
ing its roots, the eigenvalues of A in this case. Let
A1, ..., A, denote the eigenvalues (that may be re-
peated and/or complex). Then, we may also write

(*) p(A) = (=1)"(A = A1) ... (A= An).

Using elementary algebra we are led to the relation

an_1 = (—=1)""1(\{ +---+\,). Hence,

trA:)\1+"'+)\n,

that is, a11 +- -+ apn = A1+ -+ A\

We can also obtain from (x) a useful identity for ag:
apg = (—1)"(=1)"A\1... Ay = A1... A

Hence,

det A= A...\,.
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2) Given the symmetric matrix A = (1 1 1) , find

1 1 1

an orthogonal matrix () such that Q7 AQ is diagonal.

Solution: The characteristic polynomial of A is
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The eigenvalues of A are A\y = Ay = 0 and A3 = 2.
Since A is Hermitian (symmetric), it is diagonaliz-
able and necessarily dim Sg = 2. We find a pair of
orthogonal eigenvectors in Sy by solving Ax = 0, i.e.
1 + 22 + x3 = 0. Similarly, we solve (A — 3[)z = 0
to find an eigenvector for A = 3. We see that
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We now normalize these three vectors and thus
obtain the 3 columns of ().
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Q— 1 1 1
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It is now immediate to check that QT AQ = (
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3) Cayley-Hamilton Theorem: Let A be an xn
matrix, and let

p(A\) =det(A — M) = ap, A" + ap_ A"+ -+ ag,
be its characteristic polynomial. Then, p(A) = 0,
that is, A is a matriz root of its characteristic poly-
nomial. Let us see this in the 3 x 3 case.

To do this, let U be a unitary matrix such that
U AU = T is upper triangular with the eigenvalues
of A on its main diagonal. Let us see that p(T") = 0.
Asindicated earlier, p(A) = —(A—=A1)(A—=A2)(A—A3),
so that
p(T) = —(T" = MI)(T = AD)(T" — A3l).



Note that
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Finally, using A" = (UTUH)" = UT"U#, we ob-
tain from p(A) = azA® + asA? + a1 A + agl that
p(A) = Up(T)UH = UOU* =0, as claimed.



4) Let A be a 2 x 2 matrix and consider the system
Ccll—;" = Au. If A is diagonalizable, then the general
solution is u(t) = cretuy + cae*?tuy, where uq, uo
are linearly independent eigenvectors corresponding

to the (possibly equal or complex) eigenvalues A1, As.

e The system is stable means that all solutions
u(t) — 0 as t — oc.

e The system is neutrally stable means that no

solution is unbounded and some solutions do not go
to zero as t — oo.

e The system is unstable means that some solu-

tions u(t) — oo as t — oo.

Suppose now that A is non-diagonalizable. In any
case (even m x n) the columns of e/! are linearly
independent solutions of the system (e“? is a funda-
mental matrix). Now A = A1 = Ay and let S, =
span {u;}. Then, u(t) = e*u; is a non-trivial solu-
tion of the system. We need a second linearly inde-
pendent one.

By Cayley-Hamilton we know (A—AI)? = 0. Let
us exploit this fact as follows: (we use the fact that



eAtB = e4eP when A and B commute)

oAt _ At (A=At

A — \I)?¢?
— M I[+(A—)\I[)t+( 2) +]

where all terms past the second are zero and, there-
fore,

el = M1+ (A — M),

is a fundamental matrix.
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Example: Solve the system ‘fﬁ = (_ 9 6) u using

matrix exponentials.

Solution: The characteristic polynomial is p(\) =
—X(6—X)+9 = (A—3)?%. We easily find that S5 has
dimension 1 and, therefore, A is defective. We use
the formula just derived to find
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Thus, a pair of independent solutions is

1 — 3t !
3t 3t
© ( —9t)’ ¢ <1+3t)'

A simpler basis for the solution set is

1 ¢
3t 3t
c (3) ¢ (1+3t>‘

5) (page 427, B3) For the matrix B =

I 2
0 0],
0 0 O

use Me/*M~! to compute the matrix exponential

o Bt
I+ Bt+ B 4
Solution: We have B? = 0 so that
ePt = (I+ (A — M)t
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, and compare it with the power series
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On the other hand, we know from last session that

1 0 0 1 0
M={0 1 2 |, (O 1
0 0 -1 0 0
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gives M™'BM = J = [0 0 O) Also, since
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and, therefore, we find again that
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6) Lagrange interpolation (A. Khovanskii).

Let P(z) = (x— A1) -+ (x—\,) be a polynomial, and
Q) (x) a function (e.g., another polynomial or exp(x)).

If all A\; are distinct, Lagrange interpolation of () on
the roots of P is a polynomial R(x) of degree less
than n such that R(\;) = Q()\;) for all j. If Q) is a
polynomial, R is the remainder of division of () by
P. There is a simple formula for R:

R(z) = Q(A1) Py, (z) + -+ - + Q(An) P, (),

P
PN~ A)

where Py (x)

The polynomial Py, (x) equals 1 at x = \; and van-
ishes at A\ when k # J.

Theorem: Let P(z) be the characteristic polyno-
mial of A, or any polynomial such that P(A) = 0.
If Q(z) is a polynomial, then R(A) = Q(A). If
Q(x) = exp(xt) then R(A) = exp(At).

This follows from the Cayley-Hamilton Theorem.



If P(z) has roots A1, ..., \r with multiplicities
ni,...,Nnk, the theorem still holds, but Lagrange

interpolation with multiplicities requires that R(x)
and Q(x) have the same Taylor polynomial of or-
der n; — 1 at © = \;, for each j. This gives n =
n1 + --- + ng equations for the n unknown coeffi-
cients of R.

Example: Let P(z) = (z — \)?. Then

R(z) =Q(\) + Q' (M) (x —\), hence
exp(At) = eI + te (A — Al).

Example: Let P(z) = (z—1)%*(z+1), Q(x)= e .
Find R(z) = az?® + bx + .
R(l)=a+b+c=Q(1) =€
R(1)=2a+b=0Q' (1) =te
R(-1)=a—b+c=Q(—-1)=c¢7"
Hence b = (e' —e7%)/2, a=te!/2— (et —e 1) /4, c =
3¢t /4 + e t/4 —tet /2. If P is a characteristic poly-
nomial of A, then exp(At) =

el _ ot —t t_ ,—t 3¢l —t _ 9tet
e Z—I—e A2—|—6 26 AL e—l—e4 B]I.




