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Quadratic Forms

In multivariate calculus, an important problem is to
find maxima and minima of a function of several
variables. Let us consider the case where the func-
tion F' depends on 2 variables:

z = F(x,y).

We want to understand the condition(s) under which
F has a local extreme value at (zg,y9). By consid-
ering F'(x + xo,y + yo) we may take this point to be
(0,0). Then, by replacing F' by F' — F'(0,0) we may
assume F'(0,0) = 0.

In multivariate calculus we also study Taylor se-
ries in several variables.

Suppose F(z,y) has a Taylor series at (0,0):
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The higher order terms involve products of powers
of x and y so they go to 0 faster near (0,0) and usu-
ally do not influence the local behavior of F' (we’ll
see later when the higher order terms cannot be ne-
glected).

Now, if (0,0) is a candidate for a local extreme
value (i.e. a critical point), then F, and F, are 0 at
the point, i.e. a;9 = agp; = 0. Thus, the problem
of understanding if F' has a local maximum or mini-
mum (or neither) comes down to understanding the
quadratic terms alone.

For this reason we shall focus on quadratic forms
f(z,y) = az?® + 2bxy + cy?.

Some possibilities are

e A local minimum; in this case f(x,y) > 0 for
all (z,y) # (0,0) and the quadratic form is positive
definite.

e A local maximum; in this case f(x,y) < 0 for
all (x,y) # (0,0) and the quadratic form is negative
definite.

e A saddle point; in this case f(z,y) < 0 for



some (x,y) and f(x,y) > 0 for others; the quadratic
form is indefinite.

We can write the quadratic form using matrices
and vectors:

f(z,y) = (x y)(i 2)(;).

This is a 2-dimensional quadratic form.

Conversely, given a n X n matrix A, we can define
a n-dimensional quadratic form by

f(z) =2t Ax = Z Zawx r;, x€R™
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The central problem is now to determine conditions
on A which tell us that the form is positive definite,
1.e.

rl Az > 0 for any z # 0.
Let us examine first the case n = 2. First note that
a =0 gives f(1,0) = 0 so that f cannot be positive
definite if a = 0. Completing squares (a # 0),

_ b )2 b2\ , 2
f@w%—a@+;y)+(0—;)y-
From here we can read necessary and sufficient con-
ditions:



f is positive definite < a > 0 and ac — b* > 0.

This gives the familiar second derivative test for
F(z,y) in multivariate calculus when F, = 0 and
F, = 0 at the point. If

Fpz >0 and Fpo Fyy — F7, > 0,

then F' has a local minimum at the point. Note also
that, if F,, <0 and F,,.Fy, —Fa?y > (0, then we have
a local maximum and, if Fy, Fy, — F;, < 0, then it is
a saddle point. In case F,,F,, — ny = 0 we cannot
decide what kind of a point (xg, yo) is (it depends on

the higher order terms in the Taylor series of F').

Returning now to the n X n case, suppose that

flx1,...,xpn) = Z Zawaz r; =zl Ax,
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where A = (a;;). Since symmetric matrices have
many useful properties, we would like to make A
symmetric. This is accomplished by replacing a;;

AijTajq
2

and aj; by their average . This change does

not alter the form f at all since

floe, ... m,) = Zamx + Z > (aij + aji)xizy.
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Thus, we may represent any quadratic real form f
by 2! Az, where A is a symmetric matrix.

Example: Decide what kind of critical point (2,0)
is for F(z,y) = (2% — 4x)(e¥ — v).

Solution: First we check that (2, 0) is indeed a critical

point:

F.(2,0) = (2x —4)(e¥ — y)|(2,0) =0,
F,(2,0) = (22 — 42)(e" — 1) o) = 0.

Now, we also see that
wa(2a O) — 2(ey - y)‘(Q,O) = 2,

Fyy(2,0) = (2° — 4z)e¥|(2,0) = —4

Fry(2,0) = (22 — 4)(e¥ — 1)|(2,0) = 0,

so that F, Fy, — F;, < 0 at (2,0) and thus it is a
saddle point.



