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Quadratic Forms

In multivariate calculus, an important problem is to
find maxima and minima of a function of several
variables. Let us consider the case where the func-
tion F depends on 2 variables:

z = F (x, y).

We want to understand the condition(s) under which
F has a local extreme value at (x0, y0). By consid-
ering F (x + x0, y + y0) we may take this point to be
(0, 0). Then, by replacing F by F − F (0, 0) we may
assume F (0, 0) = 0.

In multivariate calculus we also study Taylor se-
ries in several variables.

Suppose F (x, y) has a Taylor series at (0, 0):

F (x, y) = a10 x + a01 y + a20 x2 + a11 xy + a02 y2

+ higher order tems

Then, a10 = Fx(0, 0), a01 = Fy(0, 0),

a20 =
Fxx(0, 0)

2
, a11 = Fxy(0, 0), a02 =

Fyy(0, 0)
2

.



The higher order terms involve products of powers
of x and y so they go to 0 faster near (0, 0) and usu-
ally do not influence the local behavior of F (we’ll
see later when the higher order terms cannot be ne-
glected).

Now, if (0, 0) is a candidate for a local extreme
value (i.e. a critical point), then Fx and Fy are 0 at
the point, i.e. a10 = a01 = 0. Thus, the problem
of understanding if F has a local maximum or mini-
mum (or neither) comes down to understanding the
quadratic terms alone.

For this reason we shall focus on quadratic forms
f(x, y) = ax2 + 2bxy + cy2.

Some possibilities are

• A local minimum; in this case f(x, y) > 0 for
all (x, y) 6= (0, 0) and the quadratic form is positive
definite.

• A local maximum; in this case f(x, y) < 0 for
all (x, y) 6= (0, 0) and the quadratic form is negative
definite.

• A saddle point; in this case f(x, y) < 0 for



some (x, y) and f(x, y) > 0 for others; the quadratic
form is indefinite.

We can write the quadratic form using matrices
and vectors:

f(x, y) = ( x y )
(

a b

c d

) (
x

y

)
.

This is a 2-dimensional quadratic form.

Conversely, given a n×n matrix A, we can define
a n-dimensional quadratic form by

f(x) = xT Ax =
n∑

i=1

n∑
j=1

aijxixj , x ∈ R
n.

The central problem is now to determine conditions
on A which tell us that the form is positive definite,
i.e.

xT Ax > 0 for any x 6= 0.

Let us examine first the case n = 2. First note that
a = 0 gives f(1, 0) = 0 so that f cannot be positive
definite if a = 0. Completing squares (a 6= 0),

f(x, y) = a
(
x + b

a y
)2

+
(
c− b2

a

)
y2.

From here we can read necessary and sufficient con-
ditions:



f is positive definite ⇔ a > 0 and ac− b2 > 0.

This gives the familiar second derivative test for
F (x, y) in multivariate calculus when Fx = 0 and
Fy = 0 at the point. If

Fxx > 0 and FxxFyy − F 2
xy > 0,

then F has a local minimum at the point. Note also
that, if Fxx < 0 and FxxFyy−F 2

xy > 0, then we have
a local maximum and, if FxxFyy−F 2

xy < 0, then it is
a saddle point. In case FxxFyy −F 2

xy = 0 we cannot
decide what kind of a point (x0, y0) is (it depends on
the higher order terms in the Taylor series of F ).

Returning now to the n× n case, suppose that

f(x1, . . . , xn) =
n∑

i=1

n∑
j=1

aijxixj = xT Ax,

where A = (aij). Since symmetric matrices have
many useful properties, we would like to make A

symmetric. This is accomplished by replacing aij

and aji by their average aij+aji

2 . This change does
not alter the form f at all since

f(x1, . . . , xn) =
n∑

i=1

aiix
2
i +

n∑
i=1

∑
j<i

(aij + aji)xixj .



Thus, we may represent any quadratic real form f

by xT Ax, where A is a symmetric matrix.

Example: Decide what kind of critical point (2, 0)
is for F (x, y) = (x2 − 4x)(ey − y).

Solution: First we check that (2, 0) is indeed a critical
point:

Fx(2, 0) = (2x− 4)(ey − y)|(2,0) = 0,

Fy(2, 0) = (x2 − 4x)(ey − 1)|(2,0) = 0.

Now, we also see that

Fxx(2, 0) = 2(ey − y)|(2,0) = 2,

Fyy(2, 0) = (x2 − 4x)ey|(2,0) = −4

Fxy(2, 0) = (2x− 4)(ey − 1)|(2,0) = 0,

so that FxxFyy − F 2
xy < 0 at (2, 0) and thus it is a

saddle point.


