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The Finite Element Method

We have been studying positive definite forms
F (x) = xT Ax = (x, Ax), x ∈ R

n, A symmetric.

We have seen that in abstract vector spaces we have
linear operators and scalar products. Thus, if V is
an abstract vector space and L : V −→ V a linear
operator, we say a quadratic form on V is

F (v) =
(
v, L(v)

)
.

We say the form is positive if(
v, L(v)

)
> 0 for all v ∈ V, v 6= 0.

L is symmetric (or self-adjoint) if
(u, L(v)) = (L(u), v) for all u, v ∈ V .

Example: An important example of this in physics
is the following. Let C2

0(D) be the vector space
of functions having two continuous derivatives on a
bounded domain D and taking on the value zero on
the boundary of the domain, ∂D. Then, the opera-
tor

−∆v = −
(

∂2v
∂x2 + ∂2v

∂y2

)



(called minus the Laplacian) is a positive self-adjoint
operator (in analogy with a positive definite symmet-
ric matrix). Here the inner product is

(u, v) =
∫∫
D

u(x, y) v(x, y) dx dy.

By Green’s theorem in multivariate calculus,∫∫
D

(Px + Qy) dx dy =
∫

∂D

(P dy −Q dx),

applied to P = u vx and Q = u vy,
(u,−∆v) = −∫∫

D

u ∆v dx dy =
∫∫
D

(uxvx + uyvy) dx dy.

Hence −∆ is self-adjoint, (u,−∆v) = (−∆u, v), and
F (v) = (v,−∆v) =

∫∫
D

|∇v|2 dx dy,

is positive unless v is the zero function.

To keep things simple, we shall consider the one
dimensional version only. Let D = [0, 1] and L(v) =
− d2v

dx2 be defined on
V = {v : D −→ D, v ∈ C2(D) and v(0) = v(1) = 0},
so that

F (v) = −
∫ 1

0

v(x) v′′(x) dx =
∫ 1

0

v′(x)2 dx > 0

unless v ≡ 0.



We want to show now that the problem of solving

(∗) Ax = b, A symmetric,

(or, in an abstract setting, −∆u = f(x, y) or −d2u
dx2 =

f(x)) is related to the seemingly unrelated problem
of finding the vector x for which the quadratic form

P (x) = 1
2xT Ax− xT b is minimized

(or, in an abstract setting,∫ ∫

D

(−1
2
u(x, y)∆u(x, y)− u(x, y)f(x, y)

)
dx dy

or

(∗∗)
∫ 1

0

(− 1
2u(x) u′′(x)− u(x) f(x)

)
dx

are minimized). The connection between the two
problems is given by the following.

Theorem: Let L be a self-adjoint linear transforma-
tion of V , and

(
x, L(x)

)
a positive form. Then, for

f ∈ V ,
P (x) = 1

2

(
x, L(x)

)− (x, f)

has its minimum when
L(x) = f .



Proof: Suppose L(x) = f . Then, for any y ∈ V ,

P (y)− P (x) = 1
2

(
y, L(y)

)− (y, f)− 1
2

(
x, L(x)

)
+ (x, f)

= 1
2

(
y, L(y)

)− (
y, L(x)

)
+ 1

2

(
x, L(x)

)

= 1
2

(
(y − x), L(y − x)

)
> 0

unless y = x. Here we used (x, L(y)) = (L(x), y).

Simple Approximation Problem:

Consider the 2-point boundary value problem
−u′′ = f in the interval [0, 1], with u(0) = u(1) = 0.
Instead of finding the exact solution in V = C2

0 [0, 1],
we seek an approximate solution in a finite dimen-
sional subspace W . Let {v1, . . . , vn} be a basis of W .
Let y1, . . . , yn be unknown scalars to minimize (∗∗)
for u = y1v1 + · · · + ynvn ∈ W rather than u ∈ V .
Note that

P (u) = 1
2

∫ 1

0

(y1v
′
1 + · · ·+ ynv′n)2 dx

−
∫ 1

0

(y1v1 + · · ·+ ynvn) f(x) dx.



Let

aij =
∫ 1

0

v′i(x) v′j(x) dx, bj =
∫ 1

0

vj(x) f(x) dx,

and define the n×n matrix A = (aij) and the vectors
b, y ∈ R

n with components b1, . . . , bn and y1, . . . , yn,
respectively. Then, the minimum of P for u ∈ W

corresponds to the minimum of the quadratic form
1
2yT Ay − yT b for y ∈ R

n which, by our theorem
is minimized by the solution of the linear system
Ay = b.

Example: (Finite Element Method) Let n be a pos-
itive integer and consider the partition of [0, 1] into
n uniform subintervals Ij = [xj−1, xj ] (1 ≤ j ≤ n)
of length h = 1

n given by the nodes xk = kh for
0 ≤ k ≤ n. For 1 ≤ j ≤ n − 1 define now the “roof
top” functions

vj(x) =




1
h (x− xj−1), xj−1 ≤ x ≤ xj ,

1
h (xj+1 − x), xj ≤ x ≤ xj+1,

0 elsewhere.



These functions are linear on each subinterval, con-
tinuous over the whole interval [0, 1], and they take
the value 1 at the node with the same index as the
function and the value 0 at all other nodes, that is
vj(xk) = δjk. Note that the slopes of the line seg-
ments in their graphs are equal to ±n. Then, inte-
grating the products that define the coefficients aij ,
we find that A is tridiagonal,

aij =




∫ xi

xi−1

n2 dx +
∫ xi+1

xi

(−n)2 dx = 2n, i = j,

∫ max{xi,xj}

min{xi,xj}
(n)(−n) dx = −n, |i− j| = 1,

0, otherwise.

Let us choose now f(x) = −x2 and n = 4. Then,

b =

0
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and the approximation is y1v1(x)+y2v2(x)+y3v3(x),
where y ∈ R

3 is the solution of
 8 −4 0
−4 8 −4
0 −4 8





 y1

y2

y3


 =


− 1

96

− 1
48

− 1
32


 = − 1

96


 1

2
3


.

The exact solution is u(x) = 1
12 x4 − 1

12 x, and the
approximation is its (orthogonal) projection into the
3-dimensional subspace of V spanned by v1, v2, v3.
The solution of this linear system is

y = − 1
768


 5

8
7


 .


