MA 511, Session 38

The Finite Element Method

We have been studying positive definite forms $F(x) = x^T A x = (x, A x), \quad x \in \mathbb{R}^n, \quad A \text{ symmetric.}$ We have seen that in abstract vector spaces we have linear operators and scalar products. Thus, if V is an abstract vector space and $L: V \longrightarrow V$ a linear operator, we say a <u>quadratic form</u> on V is

$$F(v) = (v, L(v)).$$

We say the form is <u>positive</u> if

$$(v, L(v)) > 0$$
 for all $v \in V, v \neq 0$.

L is symmetric (or self-adjoint) if (u, L(v)) = (L(u), v) for all $u, v \in V$.

Example: An important example of this in physics is the following. Let $C_0^2(D)$ be the vector space of functions having two continuous derivatives on a bounded domain D and taking on the value zero on the boundary of the domain, ∂D . Then, the operator

$$-\Delta v = -\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

(called minus the <u>Laplacian</u>) is a positive self-adjoint operator (in analogy with a positive definite symmetric matrix). Here the inner product is

$$(u,v) = \iint_D u(x,y) v(x,y) \, dx \, dy.$$

By Green's theorem in multivariate calculus,

$$\iint_{D} \left(P_x + Q_y \right) dx \, dy = \int_{\partial D} \left(P \, dy - Q \, dx \right),$$

applied to $P = u v_x$ and $Q = u v_y$, $(u, -\Delta v) = -\iint_D u \Delta v \, dx \, dy = \iint_D (u_x v_x + u_y v_y) \, dx \, dy.$ Hence $-\Delta$ is self-adjoint, $(u, -\Delta v) = (-\Delta u, v)$, and

F(v) =
$$(v, -\Delta v) = \iint_D |\nabla v|^2 dx dy$$
,

is positive unless v is the zero function.

To keep things simple, we shall consider the one dimensional version only. Let D = [0, 1] and $L(v) = -\frac{d^2v}{dx^2}$ be defined on $V = \{v : D \longrightarrow D, v \in \mathcal{C}^2(D) \text{ and } v(0) = v(1) = 0\},\$ so that

$$F(v) = -\int_0^1 v(x) \, v''(x) \, dx = \int_0^1 v'(x)^2 \, dx > 0$$

unless $v \equiv 0$.

We want to show now that the problem of solving (*) Ax = b, A symmetric, (or, in an abstract setting, $-\Delta u = f(x, y)$ or $-\frac{d^2 u}{dx^2} = f(x)$) is related to the seemingly unrelated problem of finding the vector x for which the quadratic form $P(u) = \frac{1}{2}u^T A u = u^T b$ is univirual

$$P(x) = \frac{1}{2}x^T A x - x^T b$$
 is minimized

(or, in an abstract setting,

$$\iint_{D} \left(-\frac{1}{2} u(x, y) \Delta u(x, y) - u(x, y) f(x, y) \right) dx \, dy$$

or

(**)
$$\int_0^1 \left(-\frac{1}{2}u(x)\,u''(x) - u(x)\,f(x)\right)\,dx$$

are minimized). The connection between the two problems is given by the following.

Theorem: Let L be a self-adjoint linear transformation of V, and (x, L(x)) a positive form. Then, for $f \in V$,

$$P(x) = \frac{1}{2} \left(x, L(x) \right) - \left(x, f \right)$$

has its minimum when

$$L(x) = f.$$

<u>Proof</u>: Suppose L(x) = f. Then, for any $y \in V$,

$$P(y) - P(x) = \frac{1}{2} (y, L(y)) - (y, f) - \frac{1}{2} (x, L(x)) + (x, f)$$
$$= \frac{1}{2} (y, L(y)) - (y, L(x)) + \frac{1}{2} (x, L(x))$$
$$= \frac{1}{2} ((y - x), L(y - x)) > 0$$

unless y = x. Here we used (x, L(y)) = (L(x), y).

<u>Simple Approximation Problem</u>:

Consider the 2-point boundary value problem -u'' = f in the interval [0, 1], with u(0) = u(1) = 0. Instead of finding the exact solution in $V = C_0^2[0, 1]$, we seek an approximate solution in a finite dimensional subspace W. Let $\{v_1, \ldots, v_n\}$ be a basis of W. Let y_1, \ldots, y_n be unknown scalars to minimize (**) for $u = y_1v_1 + \cdots + y_nv_n \in W$ rather than $u \in V$. Note that

$$P(u) = \frac{1}{2} \int_0^1 (y_1 v_1' + \dots + y_n v_n')^2 dx$$
$$- \int_0^1 (y_1 v_1 + \dots + y_n v_n) f(x) dx.$$

Let

$$a_{ij} = \int_0^1 v'_i(x) \, v'_j(x) \, dx, \qquad b_j = \int_0^1 v_j(x) \, f(x) \, dx,$$

and define the $n \times n$ matrix $A = (a_{ij})$ and the vectors $b, y \in \mathbb{R}^n$ with components b_1, \ldots, b_n and y_1, \ldots, y_n , respectively. Then, the minimum of P for $u \in W$ corresponds to the minimum of the quadratic form $\frac{1}{2}y^T Ay - y^T b$ for $y \in \mathbb{R}^n$ which, by our theorem is minimized by the solution of the linear system Ay = b.

Example: (Finite Element Method) Let n be a positive integer and consider the partition of [0, 1] into n uniform subintervals $I_j = [x_{j-1}, x_j]$ $(1 \le j \le n)$ of length $h = \frac{1}{n}$ given by the nodes $x_k = kh$ for $0 \le k \le n$. For $1 \le j \le n - 1$ define now the "roof top" functions

$$v_{j}(x) = \begin{cases} \frac{1}{h}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j}, \\ \frac{1}{h}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1}, \\ 0 & \text{elsewhere.} \end{cases}$$

These functions are linear on each subinterval, continuous over the whole interval [0, 1], and they take the value 1 at the node with the same index as the function and the value 0 at all other nodes, that is $v_j(x_k) = \delta_{jk}$. Note that the slopes of the line segments in their graphs are equal to $\pm n$. Then, integrating the products that define the coefficients a_{ij} , we find that A is tridiagonal,

$$a_{ij} = \begin{cases} \int_{x_{i-1}}^{x_i} n^2 \, dx + \int_{x_i}^{x_{i+1}} (-n)^2 \, dx = 2n, \quad i = j, \\ \int_{\max\{x_i, x_j\}}^{\max\{x_i, x_j\}} (n)(-n) \, dx = -n, \quad |i - j| = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Let us choose now $f(x) = -x^2$ and n = 4. Then,

$$b = \begin{pmatrix} 4\int_{0}^{\frac{1}{4}} x^{3} dx - 4\int_{\frac{1}{4}}^{\frac{1}{2}} (x - \frac{1}{2})x^{2} dx \\ 4\int_{\frac{1}{4}}^{\frac{1}{2}} (x - \frac{1}{4})x^{2} dx - 4\int_{\frac{1}{2}}^{\frac{3}{4}} (x - \frac{3}{4})x^{2} dx \\ 4\int_{\frac{1}{2}}^{\frac{3}{4}} (x - \frac{1}{2})x^{2} dx - 4\int_{\frac{3}{4}}^{1} (x - 1)x^{2} dx \end{pmatrix} = \begin{pmatrix} -\frac{1}{96} \\ -\frac{1}{48} \\ -\frac{1}{32} \end{pmatrix},$$

and the approximation is $y_1v_1(x) + y_2v_2(x) + y_3v_3(x)$, where $y \in \mathbb{R}^3$ is the solution of

$$\begin{pmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{96} \\ -\frac{1}{48} \\ -\frac{1}{32} \end{pmatrix} = -\frac{1}{96} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

The exact solution is $u(x) = \frac{1}{12}x^4 - \frac{1}{12}x$, and the approximation is its (orthogonal) projection into the 3-dimensional subspace of V spanned by v_1, v_2, v_3 . The solution of this linear system is

$$y = -\frac{1}{768} \begin{pmatrix} 5\\8\\7 \end{pmatrix}.$$