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The Finite Element Method

We have been studying positive definite forms
F(z) =27 Az = (z,Az), x € R", A symmetric.
We have seen that in abstract vector spaces we have
linear operators and scalar products. Thus, if V is
an abstract vector space and L : V — V a linear
operator, we say a quadratic form on V is

F(v) = (v, L(v)).

We say the form is positive if
(v, L(v)) > 0 for allv e V, v #0.

L is symmetric (or self-adjoint) if
(u, L(v)) = (L(u),v) for all u,v € V.

Example: An important example of this in physics
is the following. Let CZ(D) be the vector space
of functions having two continuous derivatives on a
bounded domain D and taking on the value zero on
the boundary of the domain, 0D. Then, the opera-
tor

_ (9% &%v
—Av = (—8332 + 8y2)



(called minus the Laplacian) is a positive self-adjoint
operator (in analogy with a positive definite symmet-
ric matrix) Here the inner product is

ff v(z,y)dr dy.

By Green’s theorem in multivariate calculus,

ff : +Qy)dedy = [ (Pdy—Qdx),

oD
apphed to P =uv, and QQ = uv,,
(u, —Aw) —ff uAvdx dy = ff Uz Vg + UyVy ) d dy.

Hence —A is self—ad301nt, (u, —Av) = (—Awu,v), and
F(v) = (v,—Av) = [[ |Vv|* dz dy,
D

is positive unless v is the zero function.

To keep things simple, we shall consider the one
dimensional version only. Let D = [0,1] and L(v) =
—% be defined on
V={v:D — D,veC?D) and v(0) = v(1) = 0},
so that

Flo) = — /01 v(z)v" (z) dz = /01 V' (2)%da > 0

unless v = 0.



We want to show now that the problem of solving

() Ax =b, A symmetric,

(or, in an abstract setting, —Au = f(x,y) or —% —

f(x)) is related to the seemingly unrelated problem

of finding the vector = for which the quadratic form
1

P(z) = sz’ Az — 2"'b is minimized

(or, in an abstract setting,
1
[ [ (- u@naut.y) - ute.y)s (@) dedy
D

or

(s4) /O (—Lu(z) u"(z) — ulx) f(z)) da

are minimized). The connection between the two
problems is given by the following.

Theorem: Let L be a self-adjoint linear transforma-
tion of V, and (x, L(z)) a positive form. Then, for
fev,

P(z) = 3(z, L(2)) — (=, f)
has its minimum when

L(x)=f.



Proof: Suppose L(x) = f. Then, for any y € V,

P(y) — P(x) = 5(y, L)) — (v, ) — 5 (z, L(x)) + (z, f)
= 2(v,L(y)) — (v, L(2)) + 5 (=, L(z))
=s((y—x),Lly—=x)) >0

unless y = x. Here we used (z, L(y)) = (L(x),y).

Simple Approximation Problem:

Consider the 2-point boundary value problem
—u' = f in the interval [0, 1], with «(0) = u(1) = 0.
Instead of finding the exact solution in V' = C3[0, 1],
we seek an approximate solution in a finite dimen-
sional subspace W. Let {v1,...,v,} be a basis of W.
Let y1,...,y, be unknown scalars to minimize ()
for u = y1v1 + -+ + ypv, € W rather than u € V.
Note that

1
Pw)=} [ (ol +-o+ o)) do

1
—/ (101 + - + ynon) f(x) de.
0



a;; = /01 vi () vi(x) de, b; = /01 vi(z) f(x) de,

and define the nxn matrix A = (a;;) and the vectors
b,y € R™ with components b1,...,b, and y1,...,Yn,
respectively. Then, the minimum of P for u € W
corresponds to the minimum of the quadratic form
%yTAy — yT'bh for y € R™ which, by our theorem
is minimized by the solution of the linear system

Ay =b.

Example: (Finite Element Method) Let n be a pos-
itive integer and consider the partition of [0, 1] into
n uniform subintervals I; = [z;_1,2;] (1 < j < n)
of length h = % given by the nodes x;, = kh for
0<k<n. Forl <j<n—1 define now the “roof
top” functions

(a@—2jm1),  wj <o <ay,
vi(e) = q (@i —2),  a; <z <,
\ 0 elsewhere.



These functions are linear on each subinterval, con-
tinuous over the whole interval [0, 1], and they take
the value 1 at the node with the same index as the
function and the value 0 at all other nodes, that is
vi(xk) = 0. Note that the slopes of the line seg-
ments in their graphs are equal to £n. Then, inte-
grating the products that define the coefficients a;;,
we find that A is tridiagonal,

( T; Li+1
/ n? dz + / (—=n)?dx =2n, i=j,

1—1

L max{x;,z;}
7 (n)(—n)dz = —n, |i—j|=1,

min{xi,xj}

\ 0, otherwise.
Let us choose now f(x) = —2? and n = 4. Then,
e ; ) 1
4/ xgdw—4/1 (x—%)w2dx (_%
0 a
1 3
b= 4/;(x—%)w2dx—4/l4(x—%)dex = —%
4 2
s 1
\4/1 (w—%)dew—ZL/é(w—l)xde) \_3_12)
2

4



and the approximation is y1v1 () +y2v2 () +ysv3 (),
where y € R? is the solution of

8 —4 0 U1 _9_16 1

—4 8 —A|lw|l=-x%|=-35]2

0 -4 38 Y3 — = 3
The exact solution is u(z) = 5 2* — -5z, and the

approximation is its (orthogonal) projection into the
3-dimensional subspace of V' spanned by vy, vs, vs.
The solution of this linear system is



