MA 511, Session 39

Review

1) The matrix exponential: Let A be a n X n matrix.
Then,

OOAn
eA:H+A+A72+"':Z_

n=0

(A° =1).

n!

It follows that e*e~4 =1 so that e is nonsingular.

A_B A+B

We also have e“e” = ¢ of A and B commute.

Otherwise this is not true.

The system % = Az has e?! as fundamental
matrix, which means its columns are n linearly in-
dependent solutions of the system, and hence a basis
for the solution space. All of this is true even for de-

fective martrices.

Suppose A is real symmetric. Then, its eigen-
values are real, \1,..., A\, (repeated by multiplicity)
and A can be diagonalized



/)\1 0o ... O\

0 XA ... O
S—1AS = — A, ie. A=SAS L.

\0 0 ... A,/

Then, from its definition e? is also symmetric and
e 0 ... 0
A_gergiog| O O g
0 0 . ern

Therefore, since similarity transformations preserve
eigenvalues, we see that the eigenvalues of e’ are

erMt .. e*t and so e must be positive definite.
2 2 -1

2) Given A= | -1 -1 1 |, find M such that
-1 -2 2

M~1AM = J is a Jordan canonical form for A.

Solution: The characteristic polynomial is p(\) =
—(X —1)3, so that the only eigenvalue of A is A =1
with algebraic multiplicity 3. Next we look for lin-

early independent eigenvectors.



The system (A —1)x = 0 has 2 free variables and
we easily find that

1 0
S1 = span 01],[1
1 2

It follows that J must consist of 2 Jordan blocks,
necessarily one of size 2 and one of size 1. Let now
x1, X9, x3 denote the columns of M. Then,

1 1 0
(371 L2 333) 0O 1 O :A(le L2 333).
0 0 1

As always, Axy = A1x1 (A1 = 1 here), that is, x; is
an eigenvector

1 0
1 — C 0 + Co 1
1 2

The second column gives Axy = x1 + Azo, which is
the same as (A — Al)zy = 1, that is x5 is a general-
ized eigenvector, solution of

1 2 -1 C1

-1 -2 1 Ty = Co ,

-1 -2 1 c1 + 2¢o



that is, with zo = (z, v, Z)Ta
( T+ 2y—z=c

{ —x—2y+x=co

|~ — 2y +x =c1 + 2co.

Using row operations (Gaussian elimination), we find

(x+ 2y — 2 =cy
< 0= C1 + Co
\ 0= 261 + 262,
which requires ¢c; = —cy for solutions to exist. We
chose c; =1, cg = —1 and then y = z = 0. Thus we
obtain | |
L1 — —1 , L9 — 0
—1 0
Finally, for x3 we need an eigenvector that is linearly
1
independent with x1, for example x3 = | 0 |. Thus,
1
1 1 1
M=1|-1 0 0],
-1 0 1

and it is immediate to see that AM = M J indeed.



3) Let us find now an orthogonal matrix @) such that
QT AQ = T is upper triangular, for the matrix A
from last example.

Solution: First, we take a unit eigenvector as the

first column of an orthogonal matrix ()1, and take
another two columns orthonormal with it:

1 0
V2 V2
Qi=1 0 1 0
1 90 L
V2 V2
Then,
1 1 1 1
2z 0 BN [(n " »x
QiAQ: =] -1 -1 1 0 1 0
3 4 _ 3 19 _L
V2 V2 V2 V2 V2
1 0 0
2
(453
0 7 3
1 -2
Next, we let Ay = ( 4 2 ) Its characteristic
7 3

polynomial is



pA) =(=1=-XNB=-N)+4=X-22+1=(A-1)2
We need an eigenvector of A5, that is a nontrivial
solution of —2x; — %azg — 0. We choose it to be

1
1
7 (_ \/5) Then we define an orthogonal 2 x 2

matrix Qo with this vector as first column, for ex-

~ ) 1 V2
Q2 — /2 )
v3\ -2 1
and then we define the 3 x 3 orthogonal matrix

V3 0 0

_ 1

Q=750 1 V2

0 —v2 1

Finally, the desired orthogonal matrix is () = Q1 Q)2:

ample

1 1
5 0 V3 0 0
Q:OIO.%Ol\@
LO—L?’O 2 1
V2 V2 -
1 _ 1 1
V2 V3 Ve
-1 0o L V2
V3 V3 |
1 1 1
V2 V3 Ve



and the upper triangular matrix is

T = QT AQ



