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Approximation of Eigenvalues

Let A be a n× n matrix.

(I) Power Method

Choose an initial vector u0 ∈ Rn, and define the

sequence

u1 = Au0, u2 = Au1, . . . , uk = Auk−1.

Then,

u2 = A2u0, u3 = A3u0, . . . , uk = Aku0.

This provides an efficient method when A is sparse,

i.e. most of its coefficients are zero.

Suppose that A is non-defective, with eigenvec-

tors x1, . . . , xn corresponding to the eigenvalues

λ1, . . . , λn, where |λ1| ≤ |λ2| ≤ · · · ≤ |λn−1| < |λn|.
Let u0 = c1x1 + · · ·+ cnxn with cn 6= 0. Then,
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as k →∞. Thus, in the limit we obtain an eigenvec-

tor corresponding to the largest eigenvalue (in the

direction of xn).



(II) Inverse Power Method

Suppose that A is non-defective, with eigenvec-

tors x1, . . . , xn corresponding to the eigenvalues

λ1, . . . , λn, where |λ1| < |λ2| ≤ · · · ≤ |λn|. This

method is the same as the previous one but apply-

ing iteratively to A−1 rather than A. It leads in the

limit to an eigenvector corresponding to the smallest

eigenvalue (in the direction of x1).

(III) Hessenberg Form

The Hessenberg form of a matrix A is a matrix

B similar to A but with many more vanishing coeffi-

cients (i.e. equal to zero) than A has. B will be pro-

duced through repeated applications of Householder

transformations to A.

Let u ∈ Cn be a unit vector (i.e. ‖u‖ = 1). Define

the Householder transformation L : Cn −→ Cn as

L(v) = Uv, where U = I− 2uuH .

Theorem: U is Hermitian and unitary.

Proof: UH = (I − 2uuH)H = I − 2(uH)HuH = U ,



and U is Hermitian. Also,

UHU = U2 = (I− 2uuH)(I− 2uuH)

= I− 4uuH + 4(uuH)(uuH) = I

since uHu = 1, and thus U is unitary.

Lemma: Let v = x + ‖x‖ e1, where e1 is the first

vector in the standard basis of Rn (or Cn), (e1)j =

δ1j , 1 ≤ j ≤ n. Let u = v
‖v‖ and U be the corre-

sponding Householder matrix. Then, Hx = −‖x‖e1.

Proof: Since U = I − 2
(x+ ‖x‖ e1)(x+ ‖x‖ e1)

H
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(
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where x1 is the first component of x. As the last

factor equals 1, it follows that Ux = −‖x‖e1, as

claimed.



Let now A be a n × n matrix, and take

x1 = (a21, a31, . . . , an1)
T ∈ Cn−1. Let e

(k)
1 denote

the first vector in the standard basis of Ck. De-

fine the Householder transformation of Cn−1 as in

the lemma with x = x1, and denote Ũ1 its matrix.

Then, from the lemma, Ũ1x1 = −‖x1‖e(n−1)
1 . De-

fine now a unitary and symmetric n × n matrix U1

by putting e
(n)
1 as first row and column of U1 and

Ũ1 for the rest of the rows and columns. We have

U−1
1 = U1 and U−1

1 AU1 has its first column equal to

(a11,−‖x1‖, 0, . . . , 0)T .

In the next step one takes x2 ∈ Cn−2 to be

the last n − 2 coefficients of the second column of

U−1
1 AU1, and use the (n− 2)× (n− 2) Householder

matrix Ũ2 that transforms x2 into −‖x2‖ e(n−2)
1 .

Then we define a unitary and symmetric n× n ma-

trix U2 by putting e
(n)
1 , e

(n)
2 as the first two rows and

columns of U2 and Ũ2 for the rest of the rows and

columns. We have U−1
2 = U2 and U−1

2 U−1
1 AU1U2

has its first column equal to (a11,−‖x1‖, 0, . . . , 0)T ,

and its second column to (∗, ∗,−‖x2‖, 0, . . . , 0)T ,

where ∗ stands for some unspecified number.



Repeating this process n−2 times, we find a uni-

tary and symmetric n×n matrix U = U1U2 . . . Un−2

such that U−1AU has zeros below the the first lower

diagonal, i.e. (U−1AU)ij = 0 for 2 ≤ j + 1 < i ≤ n.

This matrix is the Hessenberg matrix for A.

If A had been Hermitian, since U1, . . . , Un−2 are

all Hermitian, then so would be the Hessenberg ma-

trix U−1AU , and therefore, it must be tridiagonal,

i.e. (U−1AU)ij = 0 for |i− j| > 1, 1 ≤ i, j ≤ n.

Remark: We should stress the fact that the matrices

produced by this method are sparse and have the

same eigenvalues than the original one.

(IV) QR Method

Begin with the n×n matrix A0. Then use Gram-

Schmidt to factor it as A0 = Q0R0, where the

columns of Q0 are linear combinations of the cor-

responding columns of A0 and, if A0 is nonsingular,

they are orthonormal. R0 is upper triangular. Let

now A1 = R0Q0. Then,

Q−1
0 A0Q0 = Q−1

0 (Q0R0)q0 = A1,



so that A1 is similar to A0.

Let now A1 = Q1R1 and define A2 = R1Q1, and

so on. This process that defines the similar matrices

A1, A2, . . . , all similar to the original one A0 is called

the unshifted QR method.

If A0 were a Hessenberg form of A, then the QR

method would converge rapidly to an upper triangu-

lar matrix —which would then have the eigenvalues

of A on its diagonal.


