MA 511, Session 41

Approximation of Eigenvalues

Let A be a $n \times n$ matrix.

(I) <u>Power Method</u>

Choose an initial vector $u_0 \in \mathbb{R}^n$, and define the sequence

 $u_1 = Au_0, \quad u_2 = Au_1, \quad \dots, u_k = Au_{k-1}.$ Then,

$$u_2 = A^2 u_0, \quad u_3 = A^3 u_0, \quad \dots, u_k = A^k u_0.$$

This provides an efficient method when A is <u>sparse</u>, i.e. most of its coefficients are zero.

Suppose that A is non-defective, with eigenvectors x_1, \ldots, x_n corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$, where $|\lambda_1| \leq |\lambda_2| \leq \cdots \leq |\lambda_{n-1}| < |\lambda_n|$. Let $u_0 = c_1 x_1 + \cdots + c_n x_n$ with $c_n \neq 0$. Then,

$$u_k = c_1 \lambda_1^k x_1 + \dots + c_n \lambda_n^k x_n,$$

and

$$\frac{u_k}{\|u_k\|} = \frac{c_1 \lambda_1^k x_1 + \dots + c_n \lambda_n^k x_n}{\|c_1 \lambda_1^k x_1 + \dots + c_n \lambda_n^k x_n\|}$$
$$= \frac{\lambda_n^k \left(c_1 \left(\frac{\lambda_1}{\lambda_n} \right)^k x_1 + \dots + c_{n-1} \left(\frac{\lambda_{n-1}}{\lambda_n} \right)^k x_{n-1} + c_n x_n \right)}{|\lambda_n|^k \left\| c_1 \left(\frac{\lambda_1}{\lambda_n} \right)^k x_1 + \dots + c_{n-1} \left(\frac{\lambda_{n-1}}{\lambda_n} \right)^k x_{n-1} + c_n x_n \right\|}$$
$$= d_n^k x_n + \varepsilon_k,$$

where

$$\begin{aligned} |d_n^k| &= \left| \frac{\lambda_n}{|\lambda_n|} \right|^k \frac{|c_n|}{\sqrt{c_1^2 \left(\frac{\lambda_1}{\lambda_n}\right)^{2k} + \dots + c_{n-1}^2 \left(\frac{\lambda_{n-1}}{\lambda_n}\right)^{2k} + c_n^2}} \\ &= \frac{1}{\sqrt{\left(\frac{c_1}{c_n}\right)^2 \left(\frac{\lambda_1}{\lambda_n}\right)^{2k} + \dots + \left(\frac{c_{n-1}}{c_n}\right)^2 \left(\frac{\lambda_{n-1}}{\lambda_n}\right)^{2k} + 1}} \\ &\longrightarrow 1 \end{aligned}$$

and

$$\varepsilon_{k} = \frac{\lambda_{n}^{k} \left(c_{1} \left(\frac{\lambda_{1}}{\lambda_{n}} \right)^{k} x_{1} + \dots + c_{n-1} \left(\frac{\lambda_{n-1}}{\lambda_{n}} \right)^{k} x_{n-1} \right)}{|\lambda_{n}|^{k} \left\| c_{1} \left(\frac{\lambda_{1}}{\lambda_{n}} \right)^{k} x_{1} + \dots + c_{n-1} \left(\frac{\lambda_{n-1}}{\lambda_{n}} \right)^{k} x_{n-1} + c_{n} x_{n} \right\|} \longrightarrow 0$$

as $k \to \infty$. Thus, in the limit we obtain an eigenvector corresponding to the largest eigenvalue (in the direction of x_n).

(II) <u>Inverse Power Method</u>

Suppose that A is non-defective, with eigenvectors x_1, \ldots, x_n corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$, where $|\lambda_1| < |\lambda_2| \leq \cdots \leq |\lambda_n|$. This method is the same as the previous one but applying iteratively to A^{-1} rather than A. It leads in the limit to an eigenvector corresponding to the smallest eigenvalue (in the direction of x_1).

(III) <u>Hessenberg Form</u>

The Hessenberg form of a matrix A is a matrix B similar to A but with many more vanishing coefficients (i.e. equal to zero) than A has. B will be produced through repeated applications of Householder transformations to A.

Let $u \in \mathbb{C}^n$ be a unit vector (i.e. ||u|| = 1). Define the <u>Householder transformation</u> $L : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ as L(v) = Uv, where $U = \mathbb{I} - 2uu^H$.

Theorem: U is Hermitian and unitary. <u>Proof</u>: $U^H = (\mathbb{I} - 2uu^H)^H = \mathbb{I} - 2(u^H)^H u^H = U$, and U is Hermitian. Also,

$$U^{H}U = U^{2} = (\mathbb{I} - 2uu^{H})(\mathbb{I} - 2uu^{H})$$
$$= \mathbb{I} - 4uu^{H} + 4(uu^{H})(uu^{H}) = \mathbb{I}$$

since $u^H u = 1$, and thus U is unitary.

Lemma: Let $v = x + ||x|| e_1$, where e_1 is the first vector in the standard basis of \mathbb{R}^n (or \mathbb{C}^n), $(e_1)_j = \delta_{1j}$, $1 \leq j \leq n$. Let $u = \frac{v}{\|v\|}$ and U be the corresponding Householder matrix. Then, $Hx = -||x||e_1$.

<u>Proof</u>: Since $U = \mathbb{I} - 2 \frac{(x + ||x||| e_1)(x + ||x||| e_1)^H}{(x + ||x||| e_1)^H(x + ||x||| e_1)}$, then

$$Ux = x - 2 \frac{(x + ||x||| e_1)(x + ||x||| e_1)^H}{(x + ||x||| e_1)} x$$
$$= x - (x + ||x||| e_1) \frac{2(||x||^2 + ||x|| x_1)}{2||x||^2 + 2||x|| x_1}$$

where x_1 is the first component of x. As the last factor equals 1, it follows that $Ux = -||x||e_1$, as claimed.

Let now A be a $n \times n$ matrix, and take $x_1 = (a_{21}, a_{31}, \ldots, a_{n1})^T \in \mathbb{C}^{n-1}$. Let $e_1^{(k)}$ denote the first vector in the standard basis of \mathbb{C}^k . Define the Householder transformation of \mathbb{C}^{n-1} as in the lemma with $x = x_1$, and denote \tilde{U}_1 its matrix. Then, from the lemma, $\tilde{U}_1 x_1 = -||x_1|| e_1^{(n-1)}$. Define now a unitary and symmetric $n \times n$ matrix U_1 by putting $e_1^{(n)}$ as first row and column of U_1 and \tilde{U}_1 for the rest of the rows and columns. We have $U_1^{-1} = U_1$ and $U_1^{-1}AU_1$ has its first column equal to $(a_{11}, -||x_1||, 0, \ldots, 0)^T$.

In the next step one takes $x_2 \in \mathbb{C}^{n-2}$ to be the last n-2 coefficients of the second column of $U_1^{-1}AU_1$, and use the $(n-2) \times (n-2)$ Householder matrix \tilde{U}_2 that transforms x_2 into $-||x_2|| e_1^{(n-2)}$. Then we define a unitary and symmetric $n \times n$ matrix U_2 by putting $e_1^{(n)}, e_2^{(n)}$ as the first two rows and columns of U_2 and \tilde{U}_2 for the rest of the rows and columns. We have $U_2^{-1} = U_2$ and $U_2^{-1}U_1^{-1}AU_1U_2$ has its first column equal to $(a_{11}, -||x_1||, 0, \ldots, 0)^T$, and its second column to $(*, *, -||x_2||, 0, \ldots, 0)^T$, where * stands for some unspecified number. Repeating this process n-2 times, we find a unitary and symmetric $n \times n$ matrix $U = U_1 U_2 \dots U_{n-2}$ such that $U^{-1}AU$ has zeros below the the first lower diagonal, i.e. $(U^{-1}AU)_{ij} = 0$ for $2 \leq j+1 < i \leq n$. This matrix is the <u>Hessenberg matrix</u> for A.

If A had been Hermitian, since U_1, \ldots, U_{n-2} are all Hermitian, then so would be the Hessenberg matrix $U^{-1}AU$, and therefore, it must be <u>tridiagonal</u>, i.e. $(U^{-1}AU)_{ij} = 0$ for |i - j| > 1, $1 \le i, j \le n$.

Remark: We should stress the fact that the matrices produced by this method are sparse and have the same eigenvalues than the original one.

(IV) \underline{QR} Method

Begin with the $n \times n$ matrix A_0 . Then use Gram-Schmidt to factor it as $A_0 = Q_0 R_0$, where the columns of Q_0 are linear combinations of the corresponding columns of A_0 and, if A_0 is nonsingular, they are orthonormal. R_0 is upper triangular. Let now $A_1 = R_0 Q_0$. Then,

$$Q_0^{-1}A_0Q_0 = Q_0^{-1}(Q_0R_0)q_0 = A_1,$$

so that A_1 is similar to A_0 .

Let now $A_1 = Q_1 R_1$ and define $A_2 = R_1 Q_1$, and so on. This process that defines the similar matrices A_1, A_2, \ldots , all similar to the original one A_0 is called the <u>unshifted QR method</u>.

If A_0 were a Hessenberg form of A, then the QR method would converge rapidly to an upper triangular matrix —which would then have the eigenvalues of A on its diagonal.