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Approximation of Eigenvalues

Let A be a n X n matrix.

(I) Power Method

Choose an initial vector ug € R™, and define the

sequence

U1 = A’LLO, Uy — Aul, N Auk_l.
Then,

Uo — A2UO, Uz — A3u0, e, U = Ak’uo.

This provides an efficient method when A is sparse,
i.e. most of its coefficients are zero.

Suppose that A is non-defective, with eigenvec-
tors x1,...,xr, corresponding to the eigenvalues
ALy« An, Where | A1 < [Ag] < -0 < |A1] < |Anl
Let ug = c1x1 + - - - + ¢y, With ¢, # 0. Then,

k k
U = CIA{X1 + -+ + Cp A\ T,
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as k — oo. Thus, in the limit we obtain an eigenvec-
tor corresponding to the largest eigenvalue (in the
direction of x,).




(IT) Inverse Power Method

Suppose that A is non-defective, with eigenvec-
tors x1,...,xr, corresponding to the eigenvalues
AlyeeeyAn, Where |[A| < |A2| < -+ < |A,|. This
method is the same as the previous one but apply-
ing iteratively to A~! rather than A. It leads in the
limit to an eigenvector corresponding to the smallest
eigenvalue (in the direction of x7).

(III) Hessenberg Form

The Hessenberg form of a matrix A is a matrix
B similar to A but with many more vanishing coeffi-
cients (i.e. equal to zero) than A has. B will be pro-
duced through repeated applications of Householder
transformations to A.

Let u € C™ be a unit vector (i.e. ||u|| = 1). Define
the Householder transformation L : C* — C" as
L(v) = Uv, where U = I — 2uu®.

Theorem: U is Hermitian and unitary.
Proof: U# = (I — 2uuf)? =1 - 2(uf)2uf = U,



and U is Hermitian. Also,

U0 = U? = (I — 2uu)(I — 2uu’)
=1 — duu® + 4(uu®)(uu™) =1

H

since u*u = 1, and thus U is unitary.

Lemma: Let v = = + ||z|| e1, where e; is the first
vector in the standard basis of R™ (or C"), (e1); =
015, 1 < j < mn. Let u = H:j_H and U be the corre-
sponding Householder matrix. Then, Hx = —||z||e;.
(z + ||=]l ex)(z + ||z[| e1)™
(@ + [lz]l €)™ (z + [l e1)

Proof: Since U = 1T — 2
then

(z + [zl eV)(@ + ||zl e)™
(x4 [z ex)™ (z + [|z] €1)

2(||l=* + [Jz]|=1)
2||2[* + 2[|z ||,

Ur=x—2

=z — (z + [|lzfle)

where x1 is the first component of x. As the last
factor equals 1, it follows that Uz = —||x||e1, as
claimed.



Let now A be a n X n matrix, and take
1 = (as1,a31,...,a,1)7 € C*71. Let egk) denote
the first vector in the standard basis of C*. De-
fine the Householder transformation of C*~! as in
the lemma with z = z, and denote U; its matrix.
Then, from the lemma, Uiz = —||£I31||6§n_1). De-
fine now a unitary and symmetric n X n matrix Uy
by putting e§”> as first row and column of U; and
(~]1 for the rest of the rows and columns. We have
Ul_1 = U; and Ul_lAUl has its first column equal to

(a'llv _Hmlnv 07 <y O)T

In the next step one takes xo € C" 2 to be
the last n — 2 coeflicients of the second column of

U; ' AU, and use the (n — 2) x (n — 2) Householder
matrix U, that transforms zo into —|zs| e§”‘2).
Then we define a unitary and symmetric n X n ma-
trix U by putting egn), egn) as the first two rows and
columns of U, and U, for the rest of the rows and
columns. We have U; ' = U, and U, 'U; ' AU, U,
has its first column equal to (a1, —||z1][,0,...,0)%,
and its second column to (*,x,—|x2],0,...,0)%,

where * stands for some unspecified number.



Repeating this process n —2 times, we find a uni-
tary and symmetric n x n matrix U = U Uy ... U, _9
such that U1 AU has zeros below the the first lower
diagonal, i.e. (U'AU);; =0for2<j+1<i<n.
This matrix is the Hessenberg matrix for A.

If A had been Hermitian, since Uy, ...,U,_o are
all Hermitian, then so would be the Hessenberg ma-
trix U1 AU, and therefore, it must be tridiagonal,
1.e. (U_lAU)ij = ( for "L—j| >1,1<1,7<n.

Remark: We should stress the fact that the matrices
produced by this method are sparse and have the
same eigenvalues than the original one.

(IV) QR Method

Begin with the n xn matrix Ay. Then use Gram-
Schmidt to factor it as Ay = QoRy, where the
columns of )y are linear combinations of the cor-
responding columns of Ay and, if Ay is nonsingular,

they are orthonormal. R, is upper triangular. Let
now A, = RoQg. Then,

Qo AoQo = Qy ' (QoRo)qo = A,



so that A; is similar to Ajy.

Let now A1 = ()1 R, and define A, = R0, and
so on. This process that defines the similar matrices

A1, Ao, ..., all similar to the original one Ag is called
the unshifted QR method.

If Ayg were a Hessenberg form of A, then the QR
method would converge rapidly to an upper triangu-
lar matrix —which would then have the eigenvalues
of A on its diagonal.



