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Singular Value Decomposition

Let A be a m X n real matrix of rank 7.

Theorem: There exist an orthogonal m X m matrix
(21, an orthogonal n X n matrix ()2, and a m X n ma-
trix ¥ = (0;;) with all its coeflicients equal to zero,
except for oi1,...,0,, that are positive real num-
bers, such that A = Q1 XQZ. Moreover, the columns
of ()1 are an orthonormal basis of R™ of eigenvectors
of AA', and those of Q3 are an orthonormal basis
of R™ of eigenvectors of AT A.

Definition: The singular valuesof A, o1, ..., 0,, are

the square roots of the nonzero eigenvalues of AA”
(which are the same as those of AT A), 0; = /7,5,
I<j<r.

Remark: If A is positive definite, the singular value
decomposition is just the unitary diagonalization A =
QAQ" we have already seen.



Proof: (of theorem) Without loss of generality, as-
sume m > n. Let A\i,...,\, be the eigenvalues of
AT A and let x1,...,z, be an orthonormal set of

eigenvectors of AT A; place these as columns of Q5.
Then,
ATALUj = )\jﬂjj, and )‘j Z 0

since
(%) Aj = Ajazf:vj = foTA:Uj = ||Aa:j||2.
Let now )\1 Z )\2 Z Z )\n and let g = \/)\j.
Then, 0y > 090 > -+ > 0, > 0 and o; = 0 for
r+1 < j < n since rank (AT A) = r as well.
For 1 < j < r, define now ¢; = i‘?j. By (%),
J

these vectors have unit length; moreover, for 7 # j,

T AT : :
q; q; = = x:; r; =0
1 1] 1 7] )
0404 0404

so that they are an orthonormal set. Extend this set
to an orthonormal basis of R" (using Gram-Schmidt
if necessary), and take this basis as columns of ;.
Then, the coefficient in the i-th row and the j-th



column of QT AQ- is

0, j >r (since then Ax,; = 0),
q; Arj = { :

T .
q; 0iq; = 005, J =<,

where 0;; is Kronecker’s symbol. Hence QTAQ, =
¥, and A = QXQ%. All that is left to conclude the
proof is to check that the columns of ()1 are, in fact,
eigenvectors of AA’":

AAT = 12Q3 QX1 QT = Q1(2X1) Q7

where ¥X7 is a m x m diagonal matrix. It follows
that such diagonal matrix contains the eigenvalues
of AAT on its diagonal, and @); has corresponding
eigenvectors for columns, thus concluding the proof.

Example: Application to Image Processing.

Suppose that A is a 1000 x 1000 matrix contain-
ing the data for an image of 1000 x 1000 pixels (i.e.
one million data values). Let A = Q1XQ% be the
singular value decomposition of A. Suppose we re-
place ¥ by a matrix & which keeps only the largest



singular values of A, say the first 60, for example.
Thus, 0j;, = 055 for 1 < j < 60 and o;; = 0 for
61 < 45 < 1000. Let uq,...,u1000 and v1,..., V1000
denote, respectively, the columns of ()1 and ()5.

We have

A~ Qlng — 0'111,12)? + -+ (76011,60’067;0
requires now just 60 4+ 60 x 2000 = 120,060 data
values, with savings of nearly 78%.

Example: Find a singular value decomposition of

A=(1 1 1).
1 1 1
Solution: AAT =3and ATA=1[1 1 1. It fol-
1 1 1

lows that ()1 = 1. The characteristic polynomial of
AT A is p(A) = —A\?(X — 3), so that the eigenvalues
are A1 = 3 and Ay = A3 = 0. We find eigenvectors
for A = 3 by solving (ATA — 3I)z = 0 and find that
S = span{(1,1,1)T}. Similarly, we find eigenvec-
tors for A = 0 by solving AT Az = 0 and find that
So = span{(1,1,-2), (1,—-2,1)1"}, where we chose
an orthogonal basis for Sy (otherwise, we would use



Gram-Schmidt on any basis of Sy to produce an or-
thonormal one). We normalize these eigenvectors
and place them as columns of ().

Thus,
1 1 1
V3 V6 Ve
Q, = 1 1 2
N
V3 V6 V6
Finally,
Y= Q1 AQ:
1 1 1
=1 (1 1 1) % &% -
1 2 1
V3 V6 V6

=(v/3 0 0),

where o1 = /A1 = V/3 is the only singular value of
A.



