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Singular Value Decomposition

Let A be a m× n real matrix of rank r.

Theorem: There exist an orthogonal m×m matrix
Q1, an orthogonal n×n matrix Q2, and a m×n ma-
trix Σ = (σij) with all its coefficients equal to zero,
except for σ11, . . . , σrr that are positive real num-
bers, such that A = Q1ΣQT

2 . Moreover, the columns
of Q1 are an orthonormal basis of R

m of eigenvectors
of AAT , and those of Q2 are an orthonormal basis
of R

n of eigenvectors of AT A.

Definition: The singular values of A, σ1, . . . , σr, are
the square roots of the nonzero eigenvalues of AAT

(which are the same as those of AT A), σj = √
σjj ,

1 ≤ j ≤ r.

Remark: If A is positive definite, the singular value
decomposition is just the unitary diagonalization A =
QΛQT we have already seen.



Proof: (of theorem) Without loss of generality, as-
sume m ≥ n. Let λ1, . . . , λn be the eigenvalues of
AT A and let x1, . . . , xn be an orthonormal set of
eigenvectors of AT A; place these as columns of Q2.
Then,

AT Axj = λjxj , and λj ≥ 0

since

(∗) λj = λjx
T
j xj = xT

j AT Axj = ‖Axj‖2.

Let now λ1 ≥ λ2 ≥ · · · ≥ λn and let σj =
√

λj .
Then, σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σj = 0 for
r + 1 ≤ j ≤ n since rank (AT A) = r as well.

For 1 ≤ j ≤ r, define now qj = Axj

σj
. By (∗),

these vectors have unit length; moreover, for i 6= j,

qT
i qj =

xT
i AT Axj

σiσj
=

λj

σiσj
xT

i xj = 0,

so that they are an orthonormal set. Extend this set
to an orthonormal basis of R

n (using Gram-Schmidt
if necessary), and take this basis as columns of Q1.
Then, the coefficient in the i-th row and the j-th



column of QT
1 AQ2 is

qT
i Axj =

{
0, j > r (since then Axj = 0),

qT
i σjqj = σjδij , j ≤ r,

where δij is Kronecker’s symbol. Hence QT
1 AQ2 =

Σ, and A = Q1ΣQT
2 . All that is left to conclude the

proof is to check that the columns of Q1 are, in fact,
eigenvectors of AAT :

AAT = Q1ΣQT
2 Q2ΣT QT

1 = Q1(ΣΣT )QT
1 ,

where ΣΣT is a m × m diagonal matrix. It follows
that such diagonal matrix contains the eigenvalues
of AAT on its diagonal, and Q1 has corresponding
eigenvectors for columns, thus concluding the proof.

Example: Application to Image Processing.

Suppose that A is a 1000× 1000 matrix contain-
ing the data for an image of 1000× 1000 pixels (i.e.
one million data values). Let A = Q1ΣQT

2 be the
singular value decomposition of A. Suppose we re-
place Σ by a matrix Σ̃ which keeps only the largest



singular values of A, say the first 60, for example.
Thus, σ̃jj = σjj for 1 ≤ j ≤ 60 and σ̃jj = 0 for
61 ≤ j ≤ 1000. Let u1, . . . , u1000 and v1, . . . , v1000

denote, respectively, the columns of Q1 and Q2.

We have
A ≈ Q1Σ̃QT

2 = σ1u1v
T
1 + · · ·+ σ60u60v

T
60

requires now just 60 + 60 × 2000 = 120, 060 data
values, with savings of nearly 78%.

Example: Find a singular value decomposition of
A = ( 1 1 1 ).

Solution: AAT = 3 and AT A =


 1 1 1

1 1 1
1 1 1


. It fol-

lows that Q1 = 1. The characteristic polynomial of
AT A is p(λ) = −λ2(λ − 3), so that the eigenvalues
are λ1 = 3 and λ2 = λ3 = 0. We find eigenvectors
for λ = 3 by solving (AT A− 3I)x = 0 and find that
S3 = span {(1, 1, 1)T }. Similarly, we find eigenvec-
tors for λ = 0 by solving AT Ax = 0 and find that
S0 = span {(1, 1,−2)T , (1,−2, 1)T}, where we chose
an orthogonal basis for S0 (otherwise, we would use



Gram-Schmidt on any basis of S0 to produce an or-
thonormal one). We normalize these eigenvectors
and place them as columns of Q2.

Thus,

Q2 =




1√
3

1√
6

1√
6

1√
3

1√
6

− 2√
6

1√
3

− 2√
6

1√
6


.

Finally,

Σ = QT
1 AQ2

= 1 ( 1 1 1 )




1√
3

1√
6

1√
6

1√
3

1√
6

− 2√
6

1√
3

− 2√
6

1√
6




= (
√

3 0 0 ) ,

where σ1 =
√

λ1 =
√

3 is the only singular value of
A.


