MA 511, Session 43

Review

1) Let A be a $n \times n$ matrix. The following conditions are all equivalent for A:

i) A is singular

- ii) There is $b \in \mathbb{R}^n$ such that Ax = b has no solution
- iii) 0 is an eigenvalue of A
- iv) Ax = 0 has infinitely many solutions $x \in \mathbb{R}^n$
- v) det A = 0
- vi) rank A < n
- vii) nullity A > 0

2) Let $V = \mathcal{P}_3$ be the vector space of polynomials of degree ≤ 3 , and let $W = \{f \in V : f(1) = 0\}$. What is the dimension of W?

Solution: If $p \in W$, then p(t) = (t-1)q(t) with $q \in \mathcal{P}_2$. Hence, a basis for W is $v_1(t) = (t-1), \quad v_2(t) = (t-1)t, \quad v_3(t) = (t-1)t^2,$ and thus the dimension of W is 3.

- 3) Let U be a **unitary** matrix. Then,
- i) U is unitarily similar to a diagonal matrix ii) If λ is an eigenvalue of U, then $|\lambda| = 1$ iii) $U^H = U^{-1}$, thus U is invertible iv) ||Ux|| = ||x||, for any $x \in \mathbb{R}^n$ v) (Uy, Ux) = (y, x), for any $x, y \in \mathbb{R}^n$ vi) $|\det U| = 1$

vii) If U is (real) orthogonal, the only singular value of U is $\sigma_1 = \cdots = \sigma_n = 1$ (a singular value decomposition of U is $U = (UQ)\mathbb{I}Q^T$, where Q is any $n \times n$ orthogonal matrix)

4) Let H be a **Hermitian** matrix. Then,

i) H is unitarily similar to a diagonal matrix

- ii) If λ is an eigenvalue of H, then $\lambda \in \mathbb{R}$
- iii) All eigenspaces of H are mutually orthogonal
- iv) If H is (real) symmetric, its null space is the orthogonal complement of its column space

5) Let $V = \mathcal{M}_{2\times 2}$ be the vector space of (real) 2×2 matrices, and let $W = \left\{ A \in V : A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 0 \right\}$. Prove that W is a subspace of V and find a basis for W and its dimension.

Solution: (i)
$$0 \in W$$
 since $0 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 0$;
(ii) If $A, B \in W$, then $A + B \in W$ since
 $(A + B) \begin{pmatrix} 1 \\ 2 \end{pmatrix} = A \begin{pmatrix} 1 \\ 2 \end{pmatrix} + B \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 0 + 0 = 0$;
(iii) If $A \in W$ and $c \in \mathbb{R}$, then $cA \in W$ since
 $(cA) \begin{pmatrix} 1 \\ 2 \end{pmatrix} = cA \begin{pmatrix} 1 \\ 2 \end{pmatrix} = c0 = 0.$

Thus, W is a subspace of V.

Let now $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a generic element of V. If $A \in W$, then $A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 0$. This results in the following system of 2 equations for the 4 unknowns a, b, c, d:

$$\begin{cases} a+2b=0\\ c+2d=0. \end{cases}$$

Thus, a generic element of W has the form

$$\begin{pmatrix} a & -\frac{a}{2} \\ c & -\frac{c}{2} \end{pmatrix} = a \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & -\frac{1}{2} \end{pmatrix},$$

whereby $\dim W = 2$ and a basis for W is, for example,

$$\begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & -\frac{1}{2} \end{pmatrix}$$

6) Suppose that V is the same but W is now the subspace of V consisting of all 2×2 matrices X such that

$$X\left(\begin{array}{cc}1&2\\3&4\end{array}\right)=0.$$

Show that $\dim W = 0$.

Solution: Let $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then, $X \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 0$ means $\begin{cases} a+3b = 0\\ 2a+4b = 0\\ c+3d = 0\\ 2c+4d = 0. \end{cases}$

We easily find a = b = c = d = 0, i.e. $W = \{0\}$.