
LAB #6

The Swaying Building

Goal: Determine a model of the swaying of a skyscraper; estimating parameters

Required tools: Matlab routines pplane , ode45, plot; M-files; systems of differ-
ential equations.

Discussion

Modern skyscrapers are built to be flexible. In strong gusts of wind or in earthquakes
these buildings tend to sway back and forth to absorb the shocks. Oscillations with an
amplitude on the order of 5 to 10 seconds are common. You will analyse two different
differential equations that model the swaying of a building.

Let y(t) be a measure of how far the building is bent- the displacement (in meters)
of the top of the building with y = 0 corresponding to the perfectly vertical position.
When y �= 0, the building is bent and the structure applies a strong restoring force back
toward the vertical (see Figure 1).

y(t)

Figure 1
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Figure 2

This is reminiscent of a harmonic oscillator and therefore a very crude approximation
of the motion of a swaying building is the damped harmonic oscillator equation:

d2y

dt2
+ p

dy

dt
+ qy = 0 .

Here the constants p and q are chosen to reflect the characteristics of the particular
building being studied.

The P-Delta Effect. Modeling the swaying building with a harmonic oscillator
equation is extremely crude. We do not claim that the forces present in a swaying
building are identical to those of a spring. The harmonic oscillator is only a first ap-
proximation of a complicated physical system. To extend the usefulness of the model,
we must consider other factors that govern the motion of the swaying building. One
aspect of the model of the swaying building that we have not yet included is the effect
due to gravity. When the building undergoes small oscillations, gravity does not play a
very important role. However, if the oscillations become large enough, then gravity can
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have a significant effect. When y(t) is at its maximum value, a portion of the building
is not directly above any other part of the building (see Figure 2).
Therefore, gravity pulls downward on this portion of the building and this force tends
to bend the building farther. This is called the “P-Delta” effect (∆ is the overhang
distance and P is the force of gravity). To include this effect in our model in a way
that is quantitatively accurate requires knowledge of the density of the building and
the flexibility of the construction materials. Without going into specific details, we can
construct a much simplified model that is a caricature of the P-Delta effect.

The P-Delta effect is very small, much smaller than the restoring force. As y in-
creases, the P-Delta effect becomes quite large. As a first model, we may assume the
force provided by the P-Delta effect is proportional to y3. Adding this force corresponds
to adding a term to the expression for the acceleration of y, that is, adding a term
proportional to y3 to the right-hand side of the 2nd order differential equation. For the
system, this corresponds to adding a term ky3 to the equation :

d2y

dt2
+ p

dy

dt
+ qy = ky3 .

Let y1(t) and y2(t) represent measurements of displacement as a function of time of the
building reacting to two different shocks (Shock #1, Shock #2):

t y1(t) y2(t)

0 0.14 0.50
2 0.38 0.40
4 0.21 -0.12
6 -0.18 -0.49
8 -0.37 -0.33

10 -0.15 -0.33
12 0.21 0.48
14 0.34 0.25
16 0.10 -0.23
18 -0.24 -0.45
20 -0.31 -0.18
22 -0.05 0.27

y ’ = v                  
v ’ = − q y − p v + k y3

p = 0.02
q = 0.30

k = 0.8
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Assignment

You will basically do the following in this lab:

(i) Determine which equation

d2y

dt2
+ p

dy

dt
+ qy = 0 (A)

or
d2y

dt2
+ p

dy

dt
+ qy = ky3 (B)

forms a better model for the given data.

(ii) Approximate values of the parameters p, q, and k so that the solutions to (A)
and/or (B) fit the observed data reasonably well.

(iii) With your choice of parameters, comment on how well the models agree with the
data above.

(iv) Finally, determine if there is any danger the building will collapse in a severe
hurricane or earthquake. How can you tell from your graphs whether the building
is going to collapse ?

The physical meaning of the constants p, q, and k are as follows: p is a measure of
damping (essentially controls the magnitude of y); q is a measure of stiffness (it controls
the rapidity of vibrations); k measures the effect due to gravity (essentially controls the
fine tuning of the magnitude). These interpretations will be useful in trying to estimate
these parameters.

The basic technique is to “guess” values of the constants p, q and k, in a systematic
way, and then use these constants to plot the solution to the differential equations (A)
or (B) and the actual data on the same graph. You then change the parameters, plot
the solution to the differential equation (with the updated choices of parameter) and
the actual data on the same graph. Continue adjusting parameters until the computed
solution agrees reasonably well with the actual data.

Here is a systematic approach. Observe that from the actual data above, the dis-
placements y1(t) due to Shock # 1 tend to be smaller than displacements y2(t) due to
Shock #2. We expect that the effect of gravity is minimal for small displacments. Hence
k = 0 and we proceed as follows:

Step 1: Set k = 0 and p = 0. Choose a random value of q, where 0 ≤ q ≤ 1 (Recall that

v0 =
y1(2) − y1(0)

2
= 0.12 is an estimate for the initial velocity and y0 = 0.14 is

the true initial position.) Plot the solution of (A) and the true data y1.

Step 2: Adjust q (stiffness) until the period of the solution gives a reasonable approxima-
tion to the period of the y1 data.

Step 3: Adjust the initial velocity v0 until the solution looks reasonably close to the y1
data.

Step 4: Adjust p (damping) until the amplitude of the solution is reasonably close to the
y1 data. (Let 0 ≤ p ≤ 1)
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Step 5: Record your final values of q, v0, and p (Remember, k = 0).

Step 6: Using the same values of p and q from Step 5, compare the solution of (A) to
the y2 data. Of course, in this case here y0 = 0.50 and an approximation to

v0 =
y2(2) − y2(0)

2
= −0.05 and you may need to adjust v0, as in Step 3, to

get a reasonable approximation. If the approximation is bad, try increasing k
(0 ≤ k ≤ 1) until a good approximation is obtained. (Hence when k �= 0, you are
now solving equation (B).)

For your graphs, you will first use the Matlab program ode45 to solve the differen-
tial equation (B). To use ode45, you will need to create a function file which represents
the differential equation as a system. If we let y = y(t) and v = y′(t), then equation (B)
is equivalent to the system

{
y′ = v
v′ = −qy − pv + ky3 .

As a matrix equation, this becomes

[
y
v

]′
=

[
0 1

−q −p

] [
y
v

]
+

[
0

ky3

]
.

For Matlab to deal with this equation, you must first choose values for the constants.
Since you will be adjusting these constants many times, there is a technique for doing
this efficiently. First create an m-file as follows. In Matlab pull down the “File” menu
and select “New M-File”. In the window that will appear, enter the following statements:

function g=yy(t,x)

global k;

global p;

global q;

A=[0, 1; -q, -p];

g=A∗x+[0; k*x(1)∧3];

You then select “Save As” and save it as “yy.m”.

Remark: The “global” command will allow this m-file to share the values of k, p, q with
your main program. It will save time and typing.

For your plotting, first create a vector s which represents the time variable. A
convenient way of doing this is with the command:
>> s=0:2:22;

Next you create vectors y1 and y2 which represent the given data:

>> y1=[0.14,0.38 ,..., -0.05];

>> y2=[0.50,0.40 ,..., 0.27];

The initial position is y0 = 0.14 and the average velocity over the first interval is

v0 =
0.38 − 0.14

2
= 0.12
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Now you can begin Step (1) above. You will be changing the parameters k, p, q, and
v0. You can perturb these parameters and see the plots of the solution to equation (B)
compared with the actual data y1 as follows:

>> global k;

>> global p;

>> global q;

>> cla;hold on;plot(s,y1,’r’);k=0.0;p=0.0;q=0.2;

[t,y]=ode45(’yy’,[0,22],[0.14,0.12]);plot(t,y(:,1));

The line above should be typed as one long line, starting with cla; and ending with
plot(t,y(:,1));. The red graph is the graph of the y1 data points, the blue graph
is the approximation. Now to change parameters and view updated plots, simply use
the ↑ key. The long line above should appear. Simply change whichever parameters
you desire and hit “Enter” or “Return”. Continue this process of adjusting parameters
using the ↑ key until you are satisfied that your values of p, q will make the solution to
the differential equation fit the y1 data reasonably well. (Remember you may need to
adjust and v0.)

With the same values of p, q you found to fit the y1 data, now perturb k until the
solution to (B) fits the y2 data reasonably well.

These will allow you to answer (i)-(iii). To address (iv), you might want to enter
the system (with the values of p, q and k you found) into pplane which will compute
the phase plane portrait of the solution which, in this case, is a plot of velocity against
position, and compute a few of the orbits to see if you can make the building collapse
with the right initial conditions. Regarding the question, “How can you tell from your
graphs whether the building is going to collapse?” look at the phase portrait on Page 2
of this lab. What is happening to the displacement if the initial data of the building is
described by a point on one of the spiral orbits? What if the initial data is described by
a point on one of the other orbits?

5


