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Abstract

We prove that if Q C R? is a bounded domain with C?-boundary
and g € C%(R?), then any viscosity solution u € C(Q) of the infinity
Laplacian equation (1.1) is C*(Q). The interior C! and C'1*-regularity
of u in dimension two has been proved by Savin [20] and Evans-Savin
[15] respectively. We also show that for any n > 3, if @ C R™ is a
bounded domain with C*-boundary and g € C*(R™), then the solution
u of equation (1.1) is differentiable on 9€Q. This can be viewed as
a supplementary result to the much deeper interior differentiability
theorem by Evans-Smart [16, 17].

1 Introduction

In 1960’s, Aronsson [3] introduced the notion of the absolutely minimizing
Lipschitz extension. Namely, u € W1°°(Q) is said to be an absolutely mini-
mizing Lipschitz extension in some bounded open subset @ C R"™ if for any
open set V C 2, we have that

|u(z) — u(y)| Ju(z) — uly)|

sup ———— = 8sup

The results of Crandall-Evans-Gariepy [13] imply that the above definition
is equivalent to saying that for any open set V C Q and v € WL (V),

ulgy = vlgy = [|Dullpec(vy < [ Dv]| oo (vry-
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Jensen proved in [18] that v € W1°°(Q) is an absolutely minimizing Lips-
chitz extension with a given Lipschitz continuous boundary data g iff u is a
viscosity solution of the infinity Laplacian equation:

Acott := Y 1< jp Ul Uzie; =0 in (1.1)
u=g¢g on 0. '

Moreover, (1.1) has a unique viscosity solution with any given continuous
boundary data. The reader can refer to Armstrong-Smart [2] for a nice new
proof of Jensen’s uniqueness theorem. After Jensen’s celebrated work, there
has been an explosion of interest in the infinity Laplacian equation and
its generalizations. Two natural extensions include: (i) absolute minimal
Lipschitz extensions with respect to more general metrics on R"( see, e.g.,
[7]); and (ii) absolute minimizers of quasiconvex functions of the gradient
(see, e.g.,[1], [4]-[5], [9], and [10]). We would like to mention beautiful con-
nections between the infinity harmonic functions and the differential game
theory first discovered by Peres-Schramm-Sheffield-Wilson [19] and later by
Barron-Evans-Jensen [8] for Aronsson’s equations.

Viscosity solutions of the infinity Laplacian equation (1.1) are also called
infinity harmonic functions. One of the most important problems concern-
ing infinity harmonic function is its C'-regularity. When n = 2, this has
been proved by Savin [20], and the C1®- regularity was subsequently ob-
tained by Evans-Savin [15]. Very recently, Evans and Smart [16, 17] made
a breakthrough in dimensions n > 3 by showing that any infinity harmonic
function is differentiable everywhere. While the continuity of gradient of u
remains an open question.

In this short article, we will study the boundary regularity of infinity
harmonic functions. We are able to prove

Theorem 1.1 Suppose that Q C R? is a bounded domain with 0Q € C?.
Assume that g € C%(R?) and u € C(Q) is the viscosity solution of the infinity
Laplacian equation (1.1). Then u € Cl(ﬁ). Moreover, for any 6 > 0, there
exists €5 > 0 depending only on ||g||c2wz) and ||0Q||c2 such that for z,y € Q,

|z —y| < es = |Du(x) — Du(y)| < 0. (1.2)

Here [|09||c2 is understood as follows: We say that |[0Q||c2 < C < +o0,
if there exist 0 < r¢ < Rc < 400 such that @ C Bp,(O) and for any
x = (x1,x3) € 09, after suitable rotation, there exists f(*)(t) € C?(R) such
that || f@||cem) < C, f@(0) = £ £®(0) = 0 and for all r € (0,7¢)

B(2) N0 = {a} + (B(0) N {y = (1. 92)] 12 > F9(w)})

2



and
B,(2) N 92 = {z} + (B.(0) N {y = (. 12)| 2 = £ )}).

Sketch of the ideas of proof of Theorem 1.1: The C?-regularities of both
0f) and g assure the existence of classical solutions of the eikonal equation:
|Du| = constant near OS2, which serve as barrier functions. Using interior
estimate established in [20] and routine scaling arguments, to prove Theo-
rem 1.1, it suffices to show that u locally lies between two barrier functions
that are C''-close. One side bound comes easily from the method of charac-
teristics. The proof for the other side bound is more tricky and we utilize
some ideas of [20], but is simpler than [20]. The C?-regularity assumption
is necessary to implement the method of characteristics. It remains an in-
teresting question whether Theorem 1.1 holds when ¢ and 92 are assumed
to be C', a more natural assumption. It is also an interesting question to
ask whether the C-interior regularity by Evans-Savin [15] holds up to the
boundary for infinity harmonic functions.

Using the tool of comparison with cones by [13], we also establish the
differentiability of infinity harmonic functions on the boundary in all dimen-
sions.

Theorem 1.2 Forn > 2, let Q@ C R™ be a bounded domain with 9 € C*
and g € CY(R"). Assume that u is the viscosity solution of the infinity
Laplacian equation (1.1). Then u is differentiable on the boundary, i.e, for
any xg € 0N, there exists Du(xg) € R™ such that

w(z) = u(zo) + Du(xg) - (x — z0) + o(|x — xo|)  for all z € Q.

Remark 1.1 The interior differentiability of infinity harmonic functions in
all dimensions has been proved by Evans-Smart [16]. It is not clear to us
whether the C! assumption of g and 9 in Theorem 1.2 can be relaxed to
be everywhere differentiable. We need the continuity of the gradient of ¢
and 0f to derive (2.3) in the next section.

2 Boundary differentiability and proof of Theorem
1.2

In this section, we will assume that 99 € C! and g € C*(R") and u € C(2)
is a viscosity solution of (1.1). We will prove the boundary differentiability
Theorem 1.2.



For x € Q and r > 0, we define

St (x) = max 716(1/) —u(@)
yed(Br(x)n)\{z} |y — |
and

 yedB@NO\fa} |y — 2]

By the comparison principle with cones as in [13, 12], it is readily seen that
both S;F and S;~ are monotone increasing functions of r > 0. Hence, for any
x € ), we have that

St(z) = lirr(l) SF(z) and S~ (z) = lim S, ()
r—

r—0
exist. Let

S(z) = max {S+(x), S’(a:)}.

Then it is standard that the following properties of S(x) hold, whose proof
is left to the readers. Note that by Evans-Smart [16, 17], Du(z) exists for
all x € Q.

Lemma 2.1 (i) For x € (2,
§* (@) = 5~(z) = S(z) = |Du(a)!

(ii) For x € 09,
min{S"(z),S™(z)} > [Drg(z),
where Drg denotes the tangential gradient of g on Of).

(11i) S(z) is upper-semicontinuous, i.e,

limsup S(y) < S(z) Vo e Q. (2.3)

Yy—x

We first prove Aronsson’s tightness property for infinity harmonic func-
tions in R} = {a; = (¢/,2,) € R" : x, > O}, such a property was first

proved by Crandall-Evans [12] for infinity harmonic functions in R".
Lemma 2.2 Suppose w = w(z’,z,) € WH>(R%) and
|Dw(z)] <1 a.e xeRY].

Let e = (¢/,e,) € R™ be a unit vector with e, > 0. Assume that w(z',0) =
e - for all z' € R"! and for t > 0 w(te) = t. Then w(z) = ez for
z € RY.



Proof. For t > 0 and z = (2/,z,) € R"}, we have that
w(te) —w(z) < |te — x|
so that

2¢ -z —ttxl?

This, after taking t — +o00, implies
w(z) >e-x, Vo € RY.

It remains to show
w(z) <e-x, Vo eR]. (2.4)

Case 1: e, = 0. Then we have —te € R’} and
w(z) < w(—te) + |z + te] = —t + |z + te.
Hence

—2¢-x —t Ha|?
1+ le+t~ 1z

—w(x) >t—|z+te| =

so that (2.4) follows by taking t — 4o0.

Case 2: e, > 0. Then we have that for any x € R,

w(z) < w(a' - x—ne/,O) + ‘(:E—ne/,xn)‘ =é 2 — $—n|e/|2 +In— g
€n €n €n €n
This completes the proof. [l

Proof of Theorem 1.2. Since 092 € C!, by suitable rotations and transla-
tions we may assume that zp = 0 € 9€) and for some r > 0

QN B.(0) = {(:c’,xn) € B,(0) | zn > f(x/>},

where f € CHR" 1), f(0) = 0 and Df(0) = 0. Without loss of generality,
we may assume that
S*(0) > S(0)

so that S(0) = max {S*(O), S*(O)} = S57(0). Our goal is to show that

Du(0) = po = (Drg(0). v/5(0) = [Drg(O)). (2:5)



Here Dpg(0) = (2%, % 9% _(0) is the tangential gradient of g at

day? Jxz’ " D1
0€09Q . If S(0) =0, this follows immediately from Lemma 2.1. So we may
assume after scalings that S(0) = 1. For liIE Am = 0, set Q,, = A\ 1Q
m——+o0

and define
u(Am) — g(0)

N , T € Q.

Um () =

Since lim €, = R’ and
m—0o0

[tm | Lo (@mnBr) + 1 Dtmll L@,y < (1 + R)[VglLe@), VR>0,
we may assume that w,, — w locally uniformly in R’}. It is clear that
e w € WH*°(R") is an infinity harmonic function in R"~! x (0, 4-00),
e w(z',0) = Drg(0) - 2 for 2’ € R,
.
|Dw|(z) < S(0) =1 a.e. xz € RY. (2.6)
We need to verify that
w(z) =po-z, Vo= (2 z,) €RY, (2.7)

with py given by (2.5).
Since g € C!, by the definition of ST there exists 7 > 0 such that for
any 0 < r < rg there exists =, € B, N Q such that

tim 4 =90) _ g ) 1.

r—0 T

Note that if |[Drg(0)| < 1, we may in fact choose z, € OB, N Q satisfying
u(z,) — g(0)
o) =90) _ 5x(0).

We now claim that for each k € N, there exists a unit vector e, = (e}, (ex)n)
with (eg)n > 0 such that

w(tey) =t fort € [0,k (2.8)

In fact, taking possible subsequences, we may assume that (for r = kM\,,)

lim Thom _ ek
m—+oo kAp, '
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Then ke, = xf\% + o(1) for lim,,— 400 0(1) = 0. Hence

’U)(kiek) — lim U(LUk)\m) - g(O)

m—-+o0 )\m

=k.

This and (2.6) yield (2.8). After taking a subsequence if necessary, we assume
that

lim e, =¢
k—+o0

for a unit vector e = (¢/, e,,) with e, > 0. By (2.8), it is clear that
w(te) =t, Vt > 0.

Hence Lemma 2.2 implies w(z) = e - x. Since w(z’,0) = Drg(0) - 2/, we
have ¢/ = Drg(0). Combining with e, > 0 and |e] = 1, we conclude that
en = /1 —|Drg(0)|? and hence (2.5) holds. This completes the proof. [

3 (C'-boundary regularity and proof of Theorem
1.1

In this section, we will assume that n = 2, 9Q € C?, g € C*(R?), and
u € C(Q) is a viscosity solution of (1.1). We will prove the C'-boundary
regularity Theorem 1.1.

Write e = (e1,e2). Assume that |e] =1 and e; = 7 > 0. For pu,v > 0,
let B, ,, denote the parallelogram

1
By, = {te+ (3,0)‘ tel-u sel- 1}
We assume that
Q= Bl,l N {(1:1,1‘2)| To > f(l‘l)}, I'=00n {(1‘1,1‘2) € Bl,l | T = f(l‘l)}

for a function f € C?(R) and f(0) = f/(0) = 0. Let O = (0,0) € T. See
Figure 1 below.



Figure 1: Proof of Lemma 3.1

Lemma 3.1 Assume |f'| < € and ex = 7 > 0. Suppose that uw € C(Q) is
infinity harmonic function in Q satisfying that
(i)
u=g onl,
(i)
lu(z) —e-z| <e in Q.

Assume that w € CH(Q) N C(Q) is a solution of

|[Dw|=1-4§ in
w=g onT.
For any fized 6,7 > 0, if € is sufficiently small then we have that

u(x) > w(r) forxeQn Bl,i'

Proof. We argue by contradiction. Suppose that there exists xo € 2N By 1
4

such that u(zg) < w(zp). Note that when € is small, within Bj j, each line
x + te intersects the curve {zo = f(x1)} exactly once. Denote U as the
connected component of {u < w} containing zg. Since |w(te + x) — g(x)| <
(1=9)t for x € T and z +te € €, it is clear that if € is sufficiently small then

UCQﬁB;l.
47

See Figure 1 above. Also, U should stretch all the way to 9Q\I' although
OU NI might not be empty. Without loss of generality, we assume

oUn {te+ (L0t [ 71} #0.
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Let K be the line segment {(%, 0)+Ae: A€ L 2]} According to (ii) , if
€ is small enough, then there must exist £ € K such that

|Du(z)| > 1 — 10e.
Let £(t) : (=T,0] — Q be a backward generalized gradient flow from z, i.e,
£(0) =z, {(-T) € 99,
|Du(E(t))| > |Du(z)| > 1 — 106, =T <t <0

and
0 .
u(@) — u(€(t)) = / €(s)|ds > (1= 106)[7 — &(t)], =T <t <0,

See [11] for the construction of £. Let S denote the strip bounded by two
lines L1 = 1+ e and Ly = %—F)\e. According to (ii), when € is small enough,
the whole curve £ must lie within the strip S and {(—7") € I'. Hence there
exists tg € (—T,0) such that £(t9) € SN U. This leads a contradiction if we
are able to establish the following claim.

Claim. If € is sufficiently small, then

sup |Du(z)| <1 —12e.
xeUns

In fact, we again argue by contradiction. Assume that thereisazeUNS
such that
|Du(z)] > 1 — 12e.

Let £(t) : (=T,0] — U be a backward gradient flow from & such that £(—T) €
oU. Since

u(@) — u(E(~T)) > (1 - 12¢) / I ds

we have that u(£(—T)) < w(é(=T)) provided that 12¢ < §. Hence £(—T) €
{te+ (1,0)t € [-1, %}} Then by (ii),

e (& —E&(=T)) = (1 —12¢)[7 — £(=T)| - 2e.
This is impossible provided that € is small enough. O

Let f be the same function as in the statement of Lemma 3.1. Denote

Yt = Bi(0) N {(z1,22)| 22 > f(21)}-



and

Iy = Bi(O) N{(w1,22)| w2 = f(z1)}

See Figure 2 below.

» 1
Figure 2: Uniform control

Lemma 3.2 Assume |f'| < ¢, |f"| <1 and |g|c2m2) < 1. Suppose that u is
infinity harmonic in X1 and u = g on I'y. Assume that

max [u — e - x| < € and max|(Dg — e)p| < e. (3.9)
TEX] zel'y

Here (Dg — e)r denotes the tangential component of (Dg — e) along the

boundary I'y. Then for any T > 0, there exists €. > 0 depending only on e

and T such that when € < €. r,

|Du(z) —e| <7 forallxe (3.10)

1.
2
Proof: When e > 0 is sufficiently small, 9B;(O) N {(x1,2z2)| z2 = f(z1)}
contains exactly two points, for t € (0,1]. Due to (3.9) and |f'| < ¢, by
comparison with cones (first on the boundary and then in the interior), it is
easy to prove that

sup |Du(x)| < |e| + Ce. (3.11)

Py

1

If le] = 0, then (3.10) follows from (3.11) immediately. Now we assume
le] = p > 0.

Claim. Given § > 0, when €(< min{$, £}) is small enough, there exists a
positive constant 7 € (0, %) depending only on e and 4 such that for any point
x € T2, we can find two barrier functions wi (y) € C'(Bs(x)) satisfying

3

wy (y) < u(y) <wg(y) in Bi(z) N3 (3.12)

and

max{|Dw} (y) — e|, |[Dw} (y) —e|} <25 in Bi(z). (3.13)

For simplicity, we will only prove this claim for z = O = (0,0) (the proof
for other points can be done similarly). Since f'(0) = 0, Drg(O) = g4, (0).
Denote g, (0) = s and e = (e1,e2). Then by (3.9), |s —e1] < e.
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Case 1. eg = 0. Then |e;| = pu. Choose € small enough such that by (3.11),

sup |[Du(z)| < v/s? 4 62 (3.14)
T3
4

Using the method of characteristics (see [14] Chapter 3 for instance), there

exist a simply connected open set V containing O such that V* := V' N

{xy > f(x1)} C ¥s and two barrier functions w™ € C?(V) that are classical
4

solutions of the eikonal equation:

|DwF| =52 +62 inV
wt=yg on VNI
subject to the condition: Dw*(0) = (g, (0), £0) = (s, £d). Since |s—e;| <

€, |s| < p+ 9. We may choose 2 > 0 depending only on p and § such that
B,,(0) C V. From the constructions of w*, we have that

w(z) <u(z) <wh(z) forze B,,(0)NT;. (3.15)

We will indicate the proof of the second inequality in (3.15) (the first in-
equality in (3.15) can be proved similarly). According to the method of
characteristics, for any = € B,,(0O) N Xy, there exists a unique y, € VNT 3

and t; > 0 such that
£(tz) =z, &(0)=ys
and the characteristics & : (0,t,] — VT satisfies that
ey
Hence, by (3.14), we have
. Duwt
9 (et —w* €)) = D“@%% €O /orm<o 0<t<t,

This implies u(z) < w*(z). We would like to point out that £ is actually a
straight line and

Dw*(6()) = Drg(ye)7(ue) + nya) /5 + 62 — Dg(us).

Here 7(y,) = (f'( O is the unit tangential direction of I'; at y, =
Yz1
(Y1s Yz2),s n(yz) = % is the inward normal vector of I'; at .,
Yz q
and Drg(yz) = Dg(ya) - 7(ya)-

11



Case 2. ey # 0. Without loss of generality, we assume that e > 0. For
otherwise, we can consider —u and —e. Let 0 < § < %. When e is small
enough, by (3.11) we have

sup [ Du()| < /5 + (e3 + 02

I's
1

and

V824 (ea — 6)2 < /e]? — 62

Using the method of characteristics, there exist a simply connected open set
V containing O such that V™ =V N {zy > f(r1)} C Z% and two barrier

* on V which are classical solutions of

{\Dwi| =2+ (e2£9)2 inV

functions w

wt =g on VNI,

subject to the condition: Dw*(0O) = (g, (0),e2 + ) = (s,e2 + ). Since
Is| < le1| + € < p+ d, we may Choose r2 > 0 depending only on e and ¢
such that By, (O) C V. From the construction of w*, we have that

u(r) <wt(z) forz € B,,(0)NXy.

The proof is similar to that of (3.15). Moreover, let A € (0,1) such that
By, C B%z (O) (see the definition of Bj; at the begin of this section),

and consider uy(x) = M

Ht) = —f(;\t), an(z) = 79()‘35)/\_9(0), and w)(r) = —wi(’\z)/\_wi(O), we conclude
that when e is small enough, there exists 0 < r3 = arg for some a € (0,1)
depending only on e and § such that

, © € Bii. Apply Lemma 3.1 to uy ,

w(x) > w (z) for x € By, (0)NYy.

Hence
w™(z) <u(xr) <wt(z) forz € B, (0)NY;.

Note that [D¥w(0) — e| < e+ J. Also, the module of continuity of Dw™*
depends only on § and e. Hence we may choose 7 > 0 depending only on §
and e such that the Claim holds.

Next let W = {w € E%| d(x,l“%) < g} When =z € W, (3.10) can be

derived from our claim and Savin’s interior estimate (see [20] Proposition
2) through routine scaling argument. For reader’s convenience, we sketch it

12



here. Fix o € W. Choose yy € 92 such that |z¢ — yo| = d(zg, Q) = 1o <
5 < % Clearly, yo € I'2. Denote
3

o(y) = u(yo + ro(y ;Oyo)) — u(yo)

y Y € Bl(i‘O)

Then v is an infinity harmonic function in By (Zg), here Zo = yo + % By
(3.12) and (3.13), we have

lv(y) —e-(y—yo)| <46 for y € Bi(Zo).
Let v(z) = v(Zo+ 2) + e-yo — e - Tp for z € B1(0). Then we have
[v(z) —e-z| <46, z € B1(0).

By Savin’s interior estimate ([20] Proposition 2), for any given 7 > 0, if § is
chosen to be sufficiently small, we have that

|Du(zg) — e| = |Dv(Zg) —e| = |Dv(0O) —e| < 7.

IfzekX 1 \W, (3.10) follows immediately from Savin’s interior estimate ([20]
Proposition 2).

Figure 3: rescaling argument along the boundary

Proof of Theorem 1.1. It suffices to prove (1.2). We argue by contra-
diction. If it were false, then there would exist 7 > 0, a sequence of C?
bounded domains €,,,, boundary values g,, € C?(R?), and infinity harmonic
functions u,, € C(Q,), and two sequences of points {z,,} and {y,,} in O,
such that

lgmllczzy <1, 1Qmlles < € (3.16)

1
[T —ym| < —  and  [Dup(2m) — Dt (ym)| > 47. (3.17)
m

Upon taking possible subsequences, we may assume that there exist a bounded
CH! domain Q (i.e. 92 € CH) and g € CH1(R?) such that Q,, — Q and
gm — g in C!' as m — +oo. Due to Savin’s interior estimate [20] or the

13



C1@ regularity in [15], x,,, and y,,, must converge to a point on 9. Let us
assume that

lim z, = lm y,=(0,0)=0 €.

m——+00 m——+00

By suitable translations and rotations, we may assume that O € 0§, and
there exists some r > 0 such that for all m > 1

Qn N B,(0) = {(41,42) € Br(O) | 92> fml) }.

/

for some f,, € C%(R), f,,(0) =0, f,,(0) =0 and [ fmllc2@®) < C. Next, we
suppose as m — 0o,

Um — w  uniformly in C(Q).

Here u € C(92) is the infinity harmonic function satisfying u = g on 0f.
According to Theorem 1.2, u is differentiable at O. Denote e = Du(0). For
7 and e, let € = €.~ be the same number as in Lemma 3.2. Choose a positive
number A < min{r, ¢} such that

’u()\ex) —u(0)

and

Hence when m is large enough,

’ Um (Ae) — um (0)

3 —e-x’ﬁe forxex\;1<B)\e(O)ﬁQm>.

and

‘(ng — e)T’ <e forxz e By (0)NI,.
Set vy, (z) = %:um(o). Apply Lemma 3.2 to @ = v, f(t) = fin(Act)
and g(z) = —gm()\exz\zgm(O)’ we have that

| Dty (M) — €| = |Dogp(2) —e| <7 inz e\t (BA (o)n Qm)

2€
2

This contradicts to (3.17) when m is sufficiently large. The proof is now
complete. O
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