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Abstract

We prove that if Ω ⊂ R2 is a bounded domain with C2-boundary
and g ∈ C2(R2), then any viscosity solution u ∈ C(Ω) of the infinity
Laplacian equation (1.1) is C1(Ω). The interior C1 and C1,α-regularity
of u in dimension two has been proved by Savin [20] and Evans-Savin
[15] respectively. We also show that for any n ≥ 3, if Ω ⊂ Rn is a
bounded domain with C1-boundary and g ∈ C1(Rn), then the solution
u of equation (1.1) is differentiable on ∂Ω. This can be viewed as
a supplementary result to the much deeper interior differentiability
theorem by Evans-Smart [16, 17].

1 Introduction

In 1960’s, Aronsson [3] introduced the notion of the absolutely minimizing
Lipschitz extension. Namely, u ∈W 1,∞(Ω) is said to be an absolutely mini-
mizing Lipschitz extension in some bounded open subset Ω ⊂ Rn if for any
open set V ⊂ Ω, we have that

sup
x 6=y∈∂V

|u(x)− u(y)|
|x− y|

= sup
x 6=y∈V

|u(x)− u(y)|
|x− y|

.

The results of Crandall-Evans-Gariepy [13] imply that the above definition
is equivalent to saying that for any open set V ⊂ Ω and v ∈W 1,∞(V ),

u|∂V = v|∂V ⇒ ‖Du‖L∞(V ) ≤ ‖Dv‖L∞(V ).
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Jensen proved in [18] that u ∈ W 1,∞(Ω) is an absolutely minimizing Lips-
chitz extension with a given Lipschitz continuous boundary data g iff u is a
viscosity solution of the infinity Laplacian equation:{

∆∞u :=
∑

1≤i,j≤n uxiuxjuxixj = 0 in Ω

u = g on ∂Ω.
(1.1)

Moreover, (1.1) has a unique viscosity solution with any given continuous
boundary data. The reader can refer to Armstrong-Smart [2] for a nice new
proof of Jensen’s uniqueness theorem. After Jensen’s celebrated work, there
has been an explosion of interest in the infinity Laplacian equation and
its generalizations. Two natural extensions include: (i) absolute minimal
Lipschitz extensions with respect to more general metrics on Rn( see, e.g.,
[7]); and (ii) absolute minimizers of quasiconvex functions of the gradient
(see, e.g.,[1], [4]–[5], [9], and [10]). We would like to mention beautiful con-
nections between the infinity harmonic functions and the differential game
theory first discovered by Peres-Schramm-Sheffield-Wilson [19] and later by
Barron-Evans-Jensen [8] for Aronsson’s equations.

Viscosity solutions of the infinity Laplacian equation (1.1) are also called
infinity harmonic functions. One of the most important problems concern-
ing infinity harmonic function is its C1-regularity. When n = 2, this has
been proved by Savin [20], and the C1,α- regularity was subsequently ob-
tained by Evans-Savin [15]. Very recently, Evans and Smart [16, 17] made
a breakthrough in dimensions n ≥ 3 by showing that any infinity harmonic
function is differentiable everywhere. While the continuity of gradient of u
remains an open question.

In this short article, we will study the boundary regularity of infinity
harmonic functions. We are able to prove

Theorem 1.1 Suppose that Ω ⊂ R2 is a bounded domain with ∂Ω ∈ C2.
Assume that g ∈ C2(R2) and u ∈ C(Ω) is the viscosity solution of the infinity
Laplacian equation (1.1). Then u ∈ C1(Ω). Moreover, for any δ > 0, there
exists εδ > 0 depending only on ||g||C2(R2) and ||∂Ω||C2 such that for x, y ∈ Ω,

|x− y| ≤ εδ ⇒ |Du(x)−Du(y)| ≤ δ. (1.2)

Here ||∂Ω||C2 is understood as follows: We say that ||∂Ω||C2 ≤ C < +∞,
if there exist 0 < rC < RC < +∞ such that Ω ⊂ BRC (O) and for any
x = (x1, x2) ∈ ∂Ω, after suitable rotation, there exists f (x)(t) ∈ C2(R) such
that ||f (x)||C2(R) ≤ C, f (x)(0) = d

dtf
(x)(0) = 0 and for all r ∈ (0, rC)

Br(x) ∩ Ω = {x}+
(
Br(O) ∩ {y = (y1, y2)| y2 > f (x)(y1)}

)
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and

Br(x) ∩ ∂Ω = {x}+
(
Br(O) ∩ {y = (y1, y2)| y2 = f (x)(y1)}

)
.

Sketch of the ideas of proof of Theorem 1.1: The C2-regularities of both
∂Ω and g assure the existence of classical solutions of the eikonal equation:
|Du| = constant near ∂Ω, which serve as barrier functions. Using interior
estimate established in [20] and routine scaling arguments, to prove Theo-
rem 1.1, it suffices to show that u locally lies between two barrier functions
that are C1-close. One side bound comes easily from the method of charac-
teristics. The proof for the other side bound is more tricky and we utilize
some ideas of [20], but is simpler than [20]. The C2-regularity assumption
is necessary to implement the method of characteristics. It remains an in-
teresting question whether Theorem 1.1 holds when g and ∂Ω are assumed
to be C1, a more natural assumption. It is also an interesting question to
ask whether the C1,α-interior regularity by Evans-Savin [15] holds up to the
boundary for infinity harmonic functions.

Using the tool of comparison with cones by [13], we also establish the
differentiability of infinity harmonic functions on the boundary in all dimen-
sions.

Theorem 1.2 For n ≥ 2, let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C1

and g ∈ C1(Rn). Assume that u is the viscosity solution of the infinity
Laplacian equation (1.1). Then u is differentiable on the boundary, i.e, for
any x0 ∈ ∂Ω, there exists Du(x0) ∈ Rn such that

u(x) = u(x0) +Du(x0) · (x− x0) + o(|x− x0|) for all x ∈ Ω.

Remark 1.1 The interior differentiability of infinity harmonic functions in
all dimensions has been proved by Evans-Smart [16]. It is not clear to us
whether the C1 assumption of g and ∂Ω in Theorem 1.2 can be relaxed to
be everywhere differentiable. We need the continuity of the gradient of g
and ∂Ω to derive (2.3) in the next section.

2 Boundary differentiability and proof of Theorem
1.2

In this section, we will assume that ∂Ω ∈ C1 and g ∈ C1(Rn) and u ∈ C(Ω)
is a viscosity solution of (1.1). We will prove the boundary differentiability
Theorem 1.2.
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For x ∈ Ω and r > 0, we define

S+
r (x) = max

y∈∂(Br(x)∩Ω)\{x}

u(y)− u(x)

|y − x|

and

S−r (x) = max
y∈∂(Br(x)∩Ω)\{x}

u(x)− u(y)

|y − x|
.

By the comparison principle with cones as in [13, 12], it is readily seen that
both S+

r and S−r are monotone increasing functions of r > 0. Hence, for any
x ∈ Ω, we have that

S+(x) = lim
r→0

S+
r (x) and S−(x) = lim

r→0
S−r (x)

exist. Let
S(x) = max

{
S+(x), S−(x)

}
.

Then it is standard that the following properties of S(x) hold, whose proof
is left to the readers. Note that by Evans-Smart [16, 17], Du(x) exists for
all x ∈ Ω.

Lemma 2.1 (i) For x ∈ Ω,

S+(x) = S−(x) = S(x) = |Du(x)|.

(ii) For x ∈ ∂Ω,
min{S+(x), S−(x)} ≥ |DT g(x)|,

where DT g denotes the tangential gradient of g on ∂Ω.
(iii) S(x) is upper-semicontinuous, i.e,

lim sup
y→x

S(y) ≤ S(x) ∀x ∈ Ω. (2.3)

We first prove Aronsson’s tightness property for infinity harmonic func-

tions in Rn+ =
{
x = (x′, xn) ∈ Rn : xn ≥ 0

}
, such a property was first

proved by Crandall-Evans [12] for infinity harmonic functions in Rn.

Lemma 2.2 Suppose w = w(x′, xn) ∈W 1,∞(Rn+) and

|Dw(x)| ≤ 1 a.e. x ∈ Rn+.

Let e = (e′, en) ∈ Rn be a unit vector with en ≥ 0. Assume that w(x′, 0) =
e′ · x′ for all x′ ∈ Rn−1 and for t > 0 w(te) = t. Then w(x) = e · x for
x ∈ Rn+.
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Proof. For t > 0 and x = (x′, xn) ∈ Rn+, we have that

w(te)− w(x) ≤ |te− x|

so that

w(x) ≥ t− |te− x| = 2e · x− t−1|x|2

1 + |e− t−1x|
.

This, after taking t→ +∞, implies

w(x) ≥ e · x, ∀x ∈ Rn+.

It remains to show
w(x) ≤ e · x, ∀x ∈ Rn+. (2.4)

Case 1: en = 0. Then we have −te ∈ Rn+ and

w(x) ≤ w(−te) + |x+ te| = −t+ |x+ te|.

Hence

−w(x) ≥ t− |x+ te| = −2e · x− t−1|x|2

1 + |e+ t−1x|
so that (2.4) follows by taking t→ +∞.

Case 2: en > 0. Then we have that for any x ∈ Rn+,

w(x) ≤ w(x′ − xn
en
e′, 0) +

∣∣∣(xn
en
e′, xn)

∣∣∣ = e′ · x′ − xn
en
|e′|2 +

xn
en

= e · x.

This completes the proof. �

Proof of Theorem 1.2. Since ∂Ω ∈ C1, by suitable rotations and transla-
tions we may assume that x0 = 0 ∈ ∂Ω and for some r > 0

Ω ∩Br(0) =
{

(x′, xn) ∈ Br(0) | xn > f(x′)
}
,

where f ∈ C1(Rn−1), f(0) = 0 and Df(0) = 0. Without loss of generality,
we may assume that

S+(0) ≥ S−(0)

so that S(0) = max
{
S+(0), S−(0)

}
= S+(0). Our goal is to show that

Du(0) = p0 :=
(
DT g(0),

√
S2(0)− |DT g(0)|2

)
. (2.5)
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Here DT g(0) = ( ∂g
∂x1

, ∂g∂x2 , ...,
∂g

∂xn−1
)(0) is the tangential gradient of g at

0 ∈ ∂Ω . If S(0) = 0, this follows immediately from Lemma 2.1. So we may
assume after scalings that S(0) = 1. For lim

m→+∞
λm = 0, set Ωm = λ−1

m Ω

and define

um(x) =
u(λmx)− g(0)

λm
, x ∈ Ωm.

Since lim
m→∞

Ωm = Rn+ and

‖um‖L∞(Ωm∩BR) + ‖Dum‖L∞(Ωm) ≤ (1 +R)‖∇g‖L∞(Ω), ∀R > 0,

we may assume that um → w locally uniformly in Rn+. It is clear that

• w ∈W 1,∞(Rn+) is an infinity harmonic function in Rn−1 × (0,+∞),

• w(x′, 0) = DT g(0) · x′ for x′ ∈ Rn−1,

•
|Dw|(x) ≤ S(0) = 1 a.e. x ∈ Rn+. (2.6)

We need to verify that

w(x) = p0 · x, ∀x = (x′, xn) ∈ Rn+, (2.7)

with p0 given by (2.5).
Since g ∈ C1, by the definition of S+ there exists r0 > 0 such that for

any 0 < r ≤ r0 there exists xr ∈ ∂Br ∩ Ω such that

lim
r→0

u(xr)− g(0)

r
= S+(0) = 1.

Note that if |DT g(0)| < 1, we may in fact choose xr ∈ ∂Br ∩ Ω satisfying

u(xr)− g(0)

r
= S+

r (0).

We now claim that for each k ∈ N, there exists a unit vector ek = (e′k, (ek)n)
with (ek)n ≥ 0 such that

w(tek) = t for t ∈ [0, k]. (2.8)

In fact, taking possible subsequences, we may assume that (for r = kλm)

lim
m→+∞

xkλm
kλm

= ek.
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Then kek =
xkλm
λm

+ o(1) for limm→+∞ o(1) = 0. Hence

w(kek) = lim
m→+∞

u(xkλm)− g(0)

λm
= k.

This and (2.6) yield (2.8). After taking a subsequence if necessary, we assume
that

lim
k→+∞

ek = e

for a unit vector e = (e′, en) with en ≥ 0. By (2.8), it is clear that

w(te) = t, ∀t > 0.

Hence Lemma 2.2 implies w(x) = e · x. Since w(x′, 0) = DT g(0) · x′, we
have e′ = DT g(0). Combining with en ≥ 0 and |e| = 1, we conclude that
en =

√
1− |DT g(0)|2 and hence (2.5) holds. This completes the proof. �

3 C1-boundary regularity and proof of Theorem
1.1

In this section, we will assume that n = 2, ∂Ω ∈ C2, g ∈ C2(R2), and
u ∈ C(Ω) is a viscosity solution of (1.1). We will prove the C1-boundary
regularity Theorem 1.1.

Write e = (e1, e2). Assume that |e| = 1 and e2 = τ > 0. For µ, ν > 0,
let Bµ,ν denote the parallelogram

Bµ,ν =
{
te+ (s, 0)

∣∣∣ t ∈ [−1

4
, µ], s ∈ [−ν, ν]

}
.

We assume that

Ω = B1,1 ∩
{

(x1, x2)| x2 > f(x1)
}
, Γ = ∂Ω∩

{
(x1, x2) ∈ B1,1 | x2 = f(x1)

}
for a function f ∈ C2(R) and f(0) = f ′(0) = 0. Let O = (0, 0) ∈ Γ. See
Figure 1 below.
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Figure 1: Proof of Lemma 3.1

Lemma 3.1 Assume |f ′| ≤ ε and e2 = τ > 0. Suppose that u ∈ C(Ω) is
infinity harmonic function in Ω satisfying that
(i)

u = g on Γ;

(ii)
|u(x)− e · x| ≤ ε in Ω.

Assume that w ∈ C1(Ω) ∩ C(Ω) is a solution of{
|Dw| = 1− δ in Ω

w = g on Γ.

For any fixed δ, τ > 0, if ε is sufficiently small then we have that

u(x) ≥ w(x) for x ∈ Ω ∩B1, 1
4
.

Proof. We argue by contradiction. Suppose that there exists x0 ∈ Ω ∩B1, 1
4

such that u(x0) < w(x0). Note that when ε is small, within B1,1, each line
x + te intersects the curve {x2 = f(x1)} exactly once. Denote U as the
connected component of {u < w} containing x0. Since |w(te+ x)− g(x)| ≤
(1− δ)t for x ∈ Γ and x+ te ∈ Ω, it is clear that if ε is sufficiently small then

U ⊂ Ω ∩B 1
4
,1.

See Figure 1 above. Also, U should stretch all the way to ∂Ω\Γ although
∂U ∩ Γ might not be empty. Without loss of generality, we assume

∂U ∩
{
te+ (1, 0)

∣∣∣t ∈ [−1

4
,
1

4
]
}
6= ∅.

8



Let K be the line segment
{

(3
8 , 0) + λe : λ ∈ [1

4 ,
1
2 ]
}

. According to (ii) , if

ε is small enough, then there must exist x̄ ∈ K such that

|Du(x̄)| > 1− 10ε.

Let ξ(t) : (−T, 0] → Ω be a backward generalized gradient flow from x̄, i.e,
ξ(0) = x̄, ξ(−T ) ∈ ∂Ω,

|Du(ξ(t))| ≥ |Du(x̄)| ≥ 1− 10ε, −T ≤ t ≤ 0

and

u(x̄)− u(ξ(t)) ≥
∫ 0

t
|ξ̇(s)| ds ≥ (1− 10ε)|x̄− ξ(t)|, −T ≤ t ≤ 0.

See [11] for the construction of ξ. Let S denote the strip bounded by two
lines L1 = 1

4 +λe and L2 = 1
2 +λe. According to (ii), when ε is small enough,

the whole curve ξ must lie within the strip S and ξ(−T ) ∈ Γ. Hence there
exists t0 ∈ (−T, 0) such that ξ(t0) ∈ S ∩ U. This leads a contradiction if we
are able to establish the following claim.
Claim. If ε is sufficiently small, then

sup
x∈U∩S

|Du(x)| ≤ 1− 12ε.

In fact, we again argue by contradiction. Assume that there is a x̃ ∈ U ∩ S
such that

|Du(x̃)| > 1− 12ε.

Let ξ̃(t) : (−T̃ , 0]→ U be a backward gradient flow from x̃ such that ξ(−T̃ ) ∈
∂U . Since

u(x̃)− u(ξ̃(−T̃ )) ≥ (1− 12ε)

∫ 0

−T̃
| ˙̃ξ(s)| ds,

we have that u(ξ̃(−T̃ )) < w(ξ̃(−T̃ )) provided that 12ε < δ. Hence ξ̃(−T̃ ) ∈{
te+ (1, 0)|t ∈ [−1

4 ,
1
4 ]
}

. Then by (ii),

e · (x̃− ξ̃(−T̃ )) ≥ (1− 12ε)|x̃− ξ̃(−T̃ )| − 2ε.

This is impossible provided that ε is small enough. �

Let f be the same function as in the statement of Lemma 3.1. Denote

Σt = Bt(O) ∩ {(x1, x2)| x2 > f(x1)}.
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and
Γt = Bt(O) ∩ {(x1, x2)| x2 = f(x1)}.

See Figure 2 below.
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Figure 2: Uniform control

Lemma 3.2 Assume |f ′| ≤ ε, |f ′′| ≤ 1 and |g|C2(R2) ≤ 1. Suppose that u is
infinity harmonic in Σ1 and u = g on Γ1. Assume that

max
x∈Σ1

|u− e · x| ≤ ε and max
x∈Γ1

|(Dg − e)T | ≤ ε. (3.9)

Here (Dg − e)T denotes the tangential component of (Dg − e) along the
boundary Γ1. Then for any τ > 0, there exists εe,τ > 0 depending only on e
and τ such that when ε ≤ εe,τ ,

|Du(x)− e| ≤ τ for all x ∈ Σ 1
2
. (3.10)

Proof: When ε > 0 is sufficiently small, ∂Bt(O) ∩ {(x1, x2)| x2 = f(x1)}
contains exactly two points, for t ∈ (0, 1]. Due to (3.9) and |f ′| ≤ ε, by
comparison with cones (first on the boundary and then in the interior), it is
easy to prove that

sup
Σ 3

4

|Du(x)| ≤ |e|+ Cε. (3.11)

If |e| = 0, then (3.10) follows from (3.11) immediately. Now we assume
|e| = µ > 0.

Claim. Given δ > 0, when ε(≤ min{ δ2 ,
µ
2}) is small enough, there exists a

positive constant r̂ ∈ (0, 1
6) depending only on e and δ such that for any point

x ∈ Γ 2
3
, we can find two barrier functions w±x (y) ∈ C1(Br̂(x)) satisfying

w−x (y) ≤ u(y) ≤ w+
x (y) in Br̂(x) ∩ Σ1 (3.12)

and
max{|Dw+

x (y)− e|, |Dw−x (y)− e|} ≤ 2δ in Br̂(x). (3.13)

For simplicity, we will only prove this claim for x = O = (0, 0) (the proof
for other points can be done similarly). Since f ′(0) = 0, DT g(O) = gx1(0).
Denote gx1(0) = s and e = (e1, e2). Then by (3.9), |s− e1| ≤ ε.
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Case 1. e2 = 0. Then |e1| = µ. Choose ε small enough such that by (3.11),

sup
Σ 3

4

|Du(x)| ≤
√
s2 + δ2. (3.14)

Using the method of characteristics (see [14] Chapter 3 for instance), there
exist a simply connected open set V containing O such that V + := V ∩
{x2 > f(x1)} ⊂ Σ 3

4
and two barrier functions w± ∈ C2(V ) that are classical

solutions of the eikonal equation:{
|Dw±| =

√
s2 + δ2 in V

w± = g on V ∩ Γ1

subject to the condition: Dw±(O) = (gx1(O),±δ) = (s,±δ). Since |s−e1| ≤
ε, |s| ≤ µ+ δ. We may choose r2 > 0 depending only on µ and δ such that
Br2(O) ⊂ V . From the constructions of w±, we have that

w−(x) ≤ u(x) ≤ w+(x) for x ∈ Br2(O) ∩ Σ1. (3.15)

We will indicate the proof of the second inequality in (3.15) (the first in-
equality in (3.15) can be proved similarly). According to the method of
characteristics, for any x ∈ Br2(O) ∩ Σ1, there exists a unique yx ∈ V ∩ Γ 3

4

and tx > 0 such that
ξ(tx) = x, ξ(0) = yx

and the characteristics ξ : (0, tx]→ V + satisfies that

ξ̇(t) =
Dw+(ξ(t))√
s2 + δ2

.

Hence, by (3.14), we have

d

dt

(
u(ξ(t))−w+(ξ(t))

)
=
Du(ξ(t)) ·Dw+(ξ(t))√

s2 + δ2
−
√
s2 + δ2 ≤ 0, 0 ≤ t ≤ tx.

This implies u(x) ≤ w+(x). We would like to point out that ξ is actually a
straight line and

Dw+(ξ(t)) ≡ DT g(yx)τ(yx) + n(yx)
√
s2 + δ2 −D2

T g(yx).

Here τ(yx) = (1,f ′(yx1))√
1+(f ′(yx1))2

is the unit tangential direction of Γ1 at yx =

(yx1, yx2), n(yx) = (−f ′(yx1),1)√
1+(f ′(yx1))2

is the inward normal vector of Γ1 at yx,

and DT g(yx) = Dg(yx) · τ(yx).

11



Case 2. e2 6= 0. Without loss of generality, we assume that e2 > 0. For
otherwise, we can consider −u and −e. Let 0 < δ < e2

2 . When ε is small
enough, by (3.11) we have

sup
Γ 3

4

|Du(x)| ≤
√
s2 + (e2 + δ)2

and √
s2 + (e2 − δ)2 ≤

√
|e|2 − δ2.

Using the method of characteristics, there exist a simply connected open set
V containing O such that V + := V ∩ {x2 > f(x1)} ⊂ Σ 3

4
and two barrier

functions w± on V which are classical solutions of{
|Dw±| =

√
s2 + (e2 ± δ)2 in V

w± = g on V ∩ Γ1

subject to the condition: Dw±(O) = (gx1(O), e2 ± δ) = (s, e2 ± δ). Since
|s| ≤ |e1| + ε ≤ µ + δ, we may Choose r2 > 0 depending only on e and δ
such that Br2(O) ⊂ V . From the construction of w+, we have that

u(x) ≤ w+(x) for x ∈ Br2(O) ∩ Σ1.

The proof is similar to that of (3.15). Moreover, let λ ∈ (0, 1) such that
B1,1 ⊂ B r2

λ
(O) (see the definition of B1,1 at the begin of this section),

and consider uλ(x) = u(λx)−u(O)
λ , x ∈ B1,1. Apply Lemma 3.1 to uλ ,

fλ(t) = f(λt)
λ , gλ(x) = g(λx)−g(O)

λ , and wλ(x) = w−(λx)−w−(O)
λ , we conclude

that when ε is small enough, there exists 0 < r3 = αr2 for some α ∈ (0, 1)
depending only on e and δ such that

u(x) ≥ w−(x) for x ∈ Br3(O) ∩ Σ1.

Hence
w−(x) ≤ u(x) ≤ w+(x) for x ∈ Br3(O) ∩ Σ1.

Note that |D±w(O) − e| ≤ ε + δ. Also, the module of continuity of Dw±

depends only on δ and e. Hence we may choose r̂ > 0 depending only on δ
and e such that the Claim holds.

Next let W =
{
x ∈ Σ 1

2
| d(x,Γ 1

2
) ≤ r̂

2

}
. When x ∈ W , (3.10) can be

derived from our claim and Savin’s interior estimate (see [20] Proposition
2) through routine scaling argument. For reader’s convenience, we sketch it
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here. Fix x0 ∈ W . Choose y0 ∈ ∂Ω such that |x0 − y0| = d(x0, ∂Ω) = r0 <
r̂
2 ≤

1
12 . Clearly, y0 ∈ Γ 2

3
. Denote

v(y) =
u(y0 + r0(y − y0))− u(y0)

r0
, y ∈ B1(x̄0).

Then v is an infinity harmonic function in B1(x̄0), here x̄0 = y0 + x0−y0
r0

. By
(3.12) and (3.13), we have

|v(y)− e · (y − y0)| ≤ 4δ for y ∈ B1(x̄0).

Let ṽ(z) = v(x̄0 + z) + e · y0 − e · x̄0 for z ∈ B1(O). Then we have

|ṽ(z)− e · z| ≤ 4δ, z ∈ B1(O).

By Savin’s interior estimate ([20] Proposition 2), for any given τ > 0, if δ is
chosen to be sufficiently small, we have that

|Du(x0)− e| = |Dv(x̄0)− e| = |Dṽ(O)− e| ≤ τ.

If x ∈ Σ 1
2
\W , (3.10) follows immediately from Savin’s interior estimate ([20]

Proposition 2).
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Figure 3: rescaling argument along the boundary

Proof of Theorem 1.1. It suffices to prove (1.2). We argue by contra-
diction. If it were false, then there would exist τ > 0, a sequence of C2

bounded domains Ωm, boundary values gm ∈ C2(R2), and infinity harmonic
functions um ∈ C(Ωm), and two sequences of points {xm} and {ym} in Ωm

such that
||gm||C2(R2) ≤ 1, ||Ωm||C2 ≤ C (3.16)

|xm − ym| ≤
1

m
and |Dum(xm)−Dum(ym)| ≥ 4τ. (3.17)

Upon taking possible subsequences, we may assume that there exist a bounded
C1,1 domain Ω (i.e. ∂Ω ∈ C1,1) and g ∈ C1,1(R2) such that Ωm → Ω and
gm → g in C1 as m → +∞. Due to Savin’s interior estimate [20] or the
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C1,α regularity in [15], xm and ym must converge to a point on ∂Ω. Let us
assume that

lim
m→+∞

xm = lim
m→+∞

ym = (0, 0) = O ∈ ∂Ω.

By suitable translations and rotations, we may assume that O ∈ ∂Ωm and
there exists some r > 0 such that for all m ≥ 1

Ωm ∩Br(O) =
{

(y1, y2) ∈ Br(O) | y2 > fm(y1)
}
,

for some fm ∈ C2(R), fm(0) = 0, f
′
m(0) = 0 and ||fm||C2(R) ≤ C. Next, we

suppose as m→∞,

um → u uniformly in C(Ω).

Here u ∈ C(Ω) is the infinity harmonic function satisfying u = g on ∂Ω.
According to Theorem 1.2, u is differentiable at O. Denote e = Du(0). For
τ and e, let ε = εe,τ be the same number as in Lemma 3.2. Choose a positive
number λε < min{r, ε} such that∣∣∣u(λεx)− u(O)

λε
− e · x

∣∣∣ ≤ ε

2
for x ∈ λ−1

ε

(
Bλε(O) ∩ Ω

)
.

and ∣∣∣(Dg − e)T ∣∣∣ ≤ ε

2
for x ∈ Bλε(O) ∩ ∂Ω.

Hence when m is large enough,∣∣∣um(λεx)− um(O)

λε
− e · x

∣∣∣ ≤ ε for x ∈ λ−1
ε

(
Bλε(O) ∩ Ωm

)
.

and ∣∣∣(Dgm − e)T ∣∣∣ ≤ ε for x ∈ Bλε(O) ∩ ∂Ωm.

Set vm(x) = um(λεx)−um(O)
λε

. Apply Lemma 3.2 to ũ = vm, f̃(t) = fm(λεt)

and g̃(x) = gm(λεx)−gm(O)
λε

, we have that

|Dum(λεx)− e| = |Dvm(x)− e| ≤ τ in x ∈ λ−1
ε

(
Bλε

2
(O) ∩ Ωm

)
.

This contradicts to (3.17) when m is sufficiently large. The proof is now
complete. �
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