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Abstract. Building upon works of Hironaka Bierstone-Milman, and Villamayor and the third author we

give estimate for the complexity of the simplified Hironaka algoritm.
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0. Introduction

In the present paper we discuss the complexity of the Hironaka theorem on resolution of singularities.
Recall that approach to the problem of embedded resolution was originated by Hironaka (see [24]) and later
developed and simplified by Bierstone-Milman (see [10]) and Villamayor (see [32]), and others

1. Formulation of the main theorems

All algebraic varieties in this paper are defined over a ground field of characteristic zero. The assumption
of characteristic zero is only needed for the local existence of a hypersurface of maximal contact (Lemma
2.6.4).

We give a proof of the following Hironaka Theorems (see [24]):

(1) Canonical Principalization

Theorem 1.0.1. Let I be a sheaf of ideals on a smooth algebraic variety X. There exists a princi-
palization of I, that is, a sequence

X = X0
σ1←− X1

σ2←− X2 ←− . . .←− Xi ←− . . .←− Xr = X̃

of blow-ups σi : Xi−1 ← Xi of smooth centers Ci−1 ⊂ Xi−1 such that
(a) The exceptional divisor Ei of the induced morphism σi = σ1 ◦ . . . ◦ σi : Xi → X has only simple

normal crossings and Ci has simple normal crossings with Ei.
(b) The total transform σr∗(I) is the ideal of a simple normal crossing divisor Ẽ which is a natural

combination of the irreducible components of the divisor Er.
The morphism (X̃, Ĩ) → (X, I) defined by the above principalization commutes with smooth mor-
phisms and embeddings of ambient varieties. It is equivariant with respect to any group action not
necessarily preserving the ground field K.

(2) Weak-Strong Hironaka Embedded Desingularization
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Theorem 1.0.2. Let Y be a subvariety of a smooth variety X over a field of characteristic zero.
There exists a sequence

X0 = X
σ1←− X1

σ2←− X2 ←− . . .←− Xi ←− . . .←− Xr = X̃

of blow-ups σi : Xi−1 ←− Xi of smooth centers Ci−1 ⊂ Xi−1 such that
(a) The exceptional divisor Ei of the induced morphism σi = σ1 ◦ . . . ◦ σi : Xi → X has only simple

normal crossings and Ci has simple normal crossings with Ei.
(b) Let Yi ⊂ Xi be the strict transform of Y . All centers Ci are disjoint from the set Reg(Y ) ⊂ Yi

of points where Y (not Yi) is smooth (and are not necessarily contained in Yi).
(c) The strict transform Ỹ := Yr of Y is smooth and has only simple normal crossings with the

exceptional divisor Er.
(d) The morphism (X,Y ) ← (X̃, Ỹ ) defined by the embedded desingularization commutes with

smooth morphisms and embeddings of ambient varieties. It is equivariant with respect to any
group action not necessarily preserving K.

(3) Canonical Resolution of Singularities

Theorem 1.0.3. Let Y be an algebraic variety over a field of characteristic zero.
There exists a canonical desingularization of Y that is a smooth variety Ỹ together with a proper

birational morphism resY : Ỹ → Y which is functorial with respect to smooth morphisms. For any
smooth morphism φ : Y ′ → Y there is a natural lifting φ̃ : Ỹ ′ → Ỹ which is a smooth morphism.

In particular resY : Ỹ → Y is an isomorphism over the nonsingular part of Y . Moreover resY is
equivariant with respect to any group action not necessarily preserving the ground field.

2. Preliminaries

To simplify our considerations we shall assume that the ground field is algebraically closed. At the end
of the paper we deduce the theorem for an arbitrary ground field of characteristic zero.

2.1. Resolution of marked ideals. For any sheaf of ideals I on a smooth variety X and any point x ∈ X
we denote by

ordx(I) := max{i | I ⊂ mi
x}

the order of I at x. (Here mx denotes the maximal ideal of x.)

Definition 2.1.1. (Hironaka (see [24], [26]), Bierstone-Milman (see [10]),Villamayor (see [32])) A marked
ideal (originally a basic object of Villamayor) is a collection (X, I, E, µ), where X is a smooth variety,
I is a sheaf of ideals on X, µ is a nonnegative integer and E is a totally ordered collection of divisors
whose irreducible components are pairwise disjoint and all have multiplicity one. Moreover the irreducible
components of divisors in E have simultaneously simple normal crossings.

Definition 2.1.2. (Hironaka ([24], [26]), Bierstone-Milman (see [10]),Villamayor (see [32])) By the support
(originally singular locus) of (X, I, E, µ) we mean

supp(X, I, E, µ) := {x ∈ X | ordx(I) ≥ µ}.

Remarks. (1) The ideals with assigned orders or functions with assigned multiplicities and their supports
are key objects in proofs of Hironaka, Villamayor and Bierstone-Milman (see [24]. Hironaka intro-
duced the notion of idealistic exponent. Then various modifications of this definition were considered
in the papers of Bierstone-Milman (presentation of invariant) and Villamayor ( basic objects). In our
proof we stick to Villamayor’s presentation of his basic objects (and their resolutions). Our marked
ideals are essentially the same notion as basic objects. However because of some technical differences
and in order to introduce more suggestive terminology we shall call them marked ideals.

(2) Sometimes for simplicity we shall represent marked ideals (X, I, E, µ) as couples (I, µ) or even ideals
I.

(3) For any sheaf of ideals I on X we have supp(I, 1) = supp(I).
(4) For any marked ideals (I, µ) on X, supp(I, µ) is a closed subset of X (Lemma 2.5.2).

Definition 2.1.3. (Hironaka (see [24], [26]), Bierstone-Milman (see [10]),Villamayor (see [32])) By a reso-
lution of (X, I, E, µ) we mean a sequence of blow-ups σi : Xi → Xi−1 of disjoint unions of smooth centers
Ci−1 ⊂ Xi−1,
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X0 = X
σ1←− X1

σ2←− X2
σ3←− . . . Xi ←− . . .

σr←− Xr,

which defines a sequence of marked ideals (Xi, Ii, Ei, µ) where

(1) Ci ⊂ supp(Xi, Ii, Ei, µ).
(2) Ci has simple normal crossings with Ei.
(3) Ii = I(Di)−µσ∗i (Ii−1), where I(Di) is the ideal of the exceptional divisor Di of σi.
(4) Ei = σc

i (Ei−1) ∪ {Di}, where σc
i (Ei−1) is the set of strict transforms of divisors in Ei−1.

(5) The order on σc
i (Ei−1) is defined by the order on Ei−1 while Di is the maximal element of Ei.

(6) supp(Xr, Ir, Er, µ) = ∅.

Definition 2.1.4. The sequence of morphisms which are either isomorphisms or blow-ups satisfying condi-
tions (1)-(5) is called a multiple blow-up. The number of morphisms in a multiple blow-up will be called its
length.

Definition 2.1.5. An extension of a multiple blow-up (or a resolution) (Xi)0≤i≤m is a sequence (X ′j)0≤j≤m′

of blow-ups and isomorphisms X ′0 = X ′j0 = . . . = X ′j1−1 ← X ′j1 = . . . = X ′j2−1 ← . . . X ′jm = . . . = X ′m′ ,
where X ′ji = Xi.

Remarks. (1) The definition of extension arises naturally when we pass to open subsets of the considered
ambient variety X.

(2) The notion of a multiple blow-up is analogous to the notions of test or admissible blow-ups considered
by Hironaka, Bierstone-Milman and Villamayor.

2.2. Transforms of marked ideal and controlled transforms of functions. In the setting of the above
definition we shall call

(Ii, µ) := σc
i (Ii−1, µ)

a transform of the marked ideal or controlled transform of (I, µ). It makes sense for a single blow-up in a
multiple blow-up as well as for a multiple blow-up. Let σi := σ1 ◦ . . . ◦ σi : Xi → X be a composition of
consecutive morphisms of a multiple blow-up. Then in the above setting

(Ii, µ) = σic(I, µ).

We shall also denote the controlled transform σic(I, µ) by (I, µ)i or [I, µ]i.
The controlled transform can also be defined for local sections f ∈ I(U). Let σ : X ← X ′ be a blow-up of

a smooth center C ⊂ supp(I, µ) defining transformation of marked ideals σc(I, µ) = (I ′, µ). Let f ∈ I(U)
be a section of a sheaf of ideals. Let U ′ ⊆ σ−1(U) be an open subset for which the sheaf of ideals of the
exceptional divisor is generated by a function y. The function

g = y−µ(f ◦ σ) ∈ I(U ′)

is a controlled transform of f on U ′ (defined up to an invertible function). As before we extend it to any
multiple blow-up.

The following lemma shows that the notion of controlled transform is well defined.

Lemma 2.2.1. Let C ⊂ supp(I, µ) be a smooth center of the blow-up σ : X ← X ′ and let D denote the
exceptional divisor. Let IC denote the sheaf of ideals defined by C. Then

(1) I ⊂ IµC .
(2) σ∗(I) ⊂ (ID)µ.

Proof. (1) We can assume that the ambient variety X is affine. Let u1, . . . , uk be parameters generating IC
Suppose f ∈ I \ IµC . Then we can write f =

∑
α cαu

α, where either |α| ≥ µ or |α| < µ and cα 6∈ IC . By the
assumption there is α with |α| < µ such that cα 6∈ IC . Take α with the smallest |α|. There is a point x ∈ C
for which cα(x) 6= 0 and in the Taylor expansion of f at x there is a term cα(x)uα. Thus ordx(I) < µ. This
contradicts to the assumption C ⊂ supp(I, µ).

(2) σ∗(I) ⊂ σ∗(IC)µ = (ID)µ. �
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2.3. Hironaka resolution principle. Our proof is based upon the following principle which can be traced
back to Hironaka and was used by Villamayor in his simplification of Hironaka’s algorithm:

(Canonical) Resolution of marked ideals (X, I, E, µ)(1)
⇓

(Canonical) Principalization of the sheaves I on X(2)
⇓

(Canonical) Weak Embedded Desingularization of subvarieties Y ⊂ X(3)
⇓

(Canonical) Desingularization(4)

(1)⇒(2) It follows immediately from the definition that a resolution of (X, I, ∅, 1) determines a princi-
palization of I. Denote by σ : X ← X̃ the morphism defined by a resolution of (X, I, ∅, 1). The controlled
transform (Ĩ, 1) := σc(I, 1) has the empty support. Consequently, V (Ĩ) = ∅, and thus Ĩ is equal to the
structural sheaf O eX . This implies that the full transform σ∗(I) is principal and generated by the sheaf of
ideal of a divisor whose components are the exceptional divisors. The actual process of desingularization is
controlled by some invariant and is often achieved before (X, I, E, 1) has been resolved (Proposition ??) .

(2)⇒(3) Let Y ⊂ X be an irreducible subvariety. Assume there is a principalization of sheaves of ideals
IY subject to conditions (a) and (b) from Theorem 1.0.1. Then in the course of the principalization of IY
the strict transform Yi of Y on some Xi is the center of a blow-up. At this stage Yi is nonsingular and has
simple normal crossing with the exceptional divisors. In the algorithm this moment is detected by some
invariant.

(3)⇒(4) Every algebraic variety admits locally an embedding into an affine space. Thus we can show that
the existence of canonical embedded desingularization independent of the embedding defines a canonical
desingularization. The patching of local desingularizations is controlled by an invariant independent of
embeddings into smooth ambient varieties, provided the dimensions of the ambient varieties are the same.

2.4. Equivalence relation for marked ideals. Let us introduce the following equivalence relation for
marked ideals:

Definition 2.4.1. Let (X, I, EI , µI) and (X,J , EJ , µJ ) be two marked ideals on the smooth variety X.
Then

(X, I, EI , µI) ' (X,J , EJ , µJ )
if

(1) EI = EJ and the orders on EI and on EJ coincide.
(2) supp(X, I, EI , µI) = supp(X,J , EJ , µJ ).
(3) All the multiple blow-ups X0 = X

σ1←− X1
σ2←− . . . ←− Xi

σr←− . . . ←− Xr of (X, I, EI , µI) are
exactly the multiple blow-ups of (X,J , EJ , µJ ) and moreover we have

supp(Xi, Ii, Ei, µI) = supp(Xi,Ji, Ei, µJ ).

Example 2.4.2. For any k ∈ N, (I, µ) ' (Ik, kµ).

Remark. The marked ideals considered in this paper satisfy a stronger equivalence condition: For any smooth
morphisms φ : X ′ → X, φ∗(I, µ) ' φ∗(J , µ). This condition will follow and is not added in the definition.

2.5. Ideals of derivatives. Ideals of derivatives were first introduced and studied in the resolution context
by Giraud. Villamayor developed and applied this language to his basic objects.

Definition 2.5.1. (Giraud, Villamayor) Let I be a coherent sheaf of ideals on a smooth variety X. By
the first derivative (originally extension) D(I) of I we mean the coherent sheaf of ideals generated by all
functions f ∈ I with their first derivatives. Then the i-th derivative Di(I) is defined to be D(Di−1(I)). If
(I, µ) is a marked ideal and i ≤ µ then we define

Di(I, µ) := (Di(I), µ− i).
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Recall that on a smooth variety X there is a locally free sheaf of differentials ΩX/K over K generated
locally by du1, . . . , dun for a set of local parameters u1, . . . , un. The dual sheaf of derivations DerK(OX)
is locally generated by the derivations ∂

∂ui
. Immediately from the definition we observe that D(I) is a

coherent sheaf defined locally by generators fj of I and all their partial derivatives ∂fj
∂ui

. We see by induction

that Di(I) is a coherent sheaf defined locally by the generators fj of I and their derivatives ∂|α|fj
∂uα for all

multiindices α = (α1, . . . , αn), where |α| := α1 + . . .+ αn ≤ i.

Remark. In characteristic p the partial derivatives 1
α!
∂|α|

∂uα (where α! = α1! · . . . ·αn!) are well defined and are
called the Hasse-Dieudonné derivatives. They should be used in the definition of the derivatives of marked
ideals. One of the major sources of problems is that unlike in characteristic zero

Di(Dj(I)) ( Di+j(I).

Lemma 2.5.2. (Giraud, Villamayor) For any i ≤ µ− 1,

supp(I, µ) = supp(Di(I), µ− i)).
In particular supp(I, µ) = supp(Dµ−1(I), 1) = V (Dµ−1(I) is a closed set. �

We write (I, µ) ⊂ (J , µ) if I ⊂ J .

Lemma 2.5.3. (Giraud,Villamayor) Let (I, µ) be a marked ideal and C ⊂ supp(I, µ) be a smooth center
and r ≤ µ. Let σ : X ← X ′ be a blow-up at C. Then

σc(Dr(I, µ)) ⊆ Dr(σc(I, µ)).

Proof. See simple computations in

2.6. Hypersurfaces of maximal contact. The concept of the hypersurfaces of maximal contact is one of
the key points of this proof. It was originated by Hironaka, Abhyankhar and Giraud and developed in the
papers of Bierstone-Milman and Villamayor.

In our terminology we are looking for a smooth hypersurface containing the supports of marked ideals
and whose strict transforms under multiple blow-ups contain the supports of the induced marked ideals.
Existence of such hypersurfaces allows a reduction of the resolution problem to codimension 1.

First we introduce marked ideals which locally admit hypersurfaces of maximal contact.

Definition 2.6.1. (Villamayor (see [32])) We say that a marked ideal (I, µ) is of maximal order (originally
simple basic object) if max{ordx(I) | x ∈ X} ≤ µ or equivalently Dµ(I) = OX .

Lemma 2.6.2. (Villamayor (see [32])) Let (I, µ) be a marked ideal of maximal order and C ⊂ supp(I, µ)
be a smooth center. Let σ : X ← X ′ be a blow-up at C ⊂ supp(I, µ). Then σc(I, µ) is of maximal order.

Proof. If (I, µ) is a marked ideal of maximal order thenDµ(I) = OX . Then by Lemma 2.5.3, Dµ(σc(I, µ)) ⊃
σc(Dµ(I), 0) = OX . �

Lemma 2.6.3. (Villamayor (see [32])) If (I, µ) is a marked ideal of maximal order and 0 ≤ i ≤ µ then
Di(I, µ) is of maximal order.

Proof. Dµ−i(Di(I, µ)) = Dµ(I, µ) = OX . �

Lemma 2.6.4. (Giraud) Let (I, µ) be the marked ideal of maximal order. Let σ : X ← X ′ be a blow-up at
a smooth center C ( supp(I, µ). Let u ∈ Dµ−1(I, µ)(U) be a function of multiplicity one on U , that is, for
any x ∈ V (u), ordx(u) = 1. In particular supp(I, µ) ∩ U ⊂ V (u). Let U ′ ⊂ σ−1(U) ⊂ X ′ be an open set
where the exceptional divisor is described by y. Let u′ := σc(u) = y−1σ∗(u) be the controlled transform of u.
Then

(1) u′ ∈ Dµ−1(σc(I|U ′ , µ)).
(2) u′ is a function of multiplicity one on U ′.
(3) V (u′) is the restriction of the strict transform of V (u) to U ′.

Proof. (1) u′ = σc(u) = u/y ∈ σc(Dµ−1(I)) ⊂ Dµ−1(σc(I)).
(2) Since u was one of the local parameters describing the center of blow-ups, u′ = u/y is a parameter,

that is, a function of order one.
(3) follows from (2). �
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Definition 2.6.5. We shall call a function

u ∈ T (I)(U) := Dµ−1(I(U))

of multiplicity one a tangent direction of (I, µ) on U .

As a corollary from the above we obtain the following lemma:

Lemma 2.6.6. (Giraud) Let u ∈ T (I)(U) be a tangent direction of (I, µ) on U . Then for any multiple
blow-up (Ui) of (I|U , µ) all the supports of the induced marked ideals supp(Ii, µ) are contained in the strict
transforms V (u)i of V (u). �

Remarks. (1) Tangent directions are functions defining locally hypersurfaces of maximal contact.
(2) The main problem leading to complexity of the proofs is that of noncanonical choice of the tangent

directions. We overcome this difficulty by introducing homogenized ideals.

Lemma 2.6.7. (Villamayor) Let (I, µ) be the marked ideal of maximal order whose support is of codimension
1. Then all codimension one components of supp(I, µ) are smooth and isolated. After the blow-up σ : X ←
X ′ at such a component C ⊂ supp(I, µ) the induced support supp(I ′, µ) does not intersect the exceptional
divisor of σ.

Proof. By the previous lemma there is a tangent direction u ∈ Dµ−1(I) whose zero set is smooth and
contains supp(I, µ). Then Dµ−1(I) = (u) and I is locally described as I = (uµ). The blow-up at the
component C locally defined by u transforms (I, µ) to (I ′, µ), where σ∗(I) = yµOX , and I ′ = σc(I) =
y−µσ∗(I) = OX , where y = u describes the exceptional divisor. �

Remark. Note that the blow-up of codimension one components is an isomorphism. However it defines a
nontrivial transformation of marked ideals. In the actual desingularization process this kind of blow-up may
occur for some marked ideals induced on subvarieties of ambient varieties. Though they define isomorphisms
of those subvarieties they determine blow-ups of ambient varieties which are not isomorphisms.

2.7. Arithmetical operations on marked ideals. In this sections all marked ideals are defined for the
smooth variety X and the same set of exceptional divisors E. Define the following operations of addition
and multiplication of marked ideals:

(1) (I, µI) + (J , µJ ) := (IµI + J µI , µIµJ ), or more generally (the operation of addition is not asso-
ciative)

(I1, µ1) + . . .+ (Im, µm) := (Iµ2·...·µm
1 + Iµ1µ3·...·µm

2 + . . .+ Iµ1...µk−1
m , µ1µ2 . . . µm).

(2) (I, µI) · (J , µJ ) := (I · J, µI + µJ ).

Lemma 2.7.1. (1) supp((I1, µ1) + . . . + (Im, µm)) = supp(I1, µ1) ∩ . . . ∩ supp(Im, µm). Moreover
multiple blow-ups (Xk) of (I1, µ1) + . . .+ (Im, µm) are exactly those which are simultaneous multiple
blow-ups for all (Ij , µj) and for any k we have the equality for the controlled transforms (Ij , µI)k

(I1, µ1)k + . . .+ (Im, µm)k = [(I1, µ1) + . . .+ (Im, µm)]k

(2)
supp(I, µI) ∩ supp(J , µJ ) ⊇ supp((I, µI) · (J , µJ )).

Moreover any simultaneous multiple blow-up Xi of both ideals (I, µI) and (J , µJ ) is a multiple
blow-up for (I, µI) · (J , µJ ), and for the controlled transforms (Ik, µI) and (Jk, µJ ) we have the
equality

(Ik, µI) · (Jk, µJ ) = [(I, µI) · (J , µJ )]k.

Proof.

2.8. Homogenized ideals and tangent directions. Let (I, µ) be a marked ideal of maximal order. Set
T (I) := Dµ−1I. By the homogenized ideal we mean

H(I, µ) := (H(I), µ) = (I +DI · T (I) + . . .+DiI · T (I)i + . . .+Dµ−1I · T (I)µ−1, µ)

Remark. A homogenized ideal features two important properties:

(1) It is equivalent to the given ideal.
(2) It ”looks the same” from all possible tangent directions.
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By the first property we can use the homogenized ideal to construct resolution via the Giraud Lemma 2.6.6.
By the second property such a construction does not depend on the choice of tangent directions.

Lemma 2.8.1. Let (I, µ) be a marked ideal of maximal order. Then

(1) (I, µ) ' (H(I), µ).
(2) For any multiple blow-up (Xk) of (I, µ),

(H(I), µ)k = (I, µ)k + [D(I, µ)]k · [(T (I), 1)]k + . . . [Dµ−1(I, µ)]k ·+[(T (I), 1)]µ−1
k .

Although the following Lemmas 2.8.2 and 2.8.3 are used in this paper only in the case E = ∅ we formulate
them in slightly more general versions.

Lemma 2.8.2. Let (X, I, E, µ) be a marked ideal of maximal order. Assume there exist tangent direc-
tions u, v ∈ T (I, µ)x = Dµ−1(I, µ)x at x ∈ supp(I, µ) which are transversal to E. Then there exists an
automorphism φ̂uv of X̂x := Spec(Ôx,X) such that

(1) φ̂∗uv(HÎ)x = (HÎ)x.
(2) φ̂∗uv(E) = E.

(3) φ̂∗uv(u) = v.

(4) supp(Î, µ) := V (T (Î, µ)) is contained in the fixed point set of φ.

Proof. (0) Construction of the automorphism φ̂uv.
Find parameters u2, . . . , un transversal to u and v such that u = u1, u2, . . . , un and v, u2, . . . , un form two

sets of parameters at x and divisors in E are described by some parameters ui where i ≥ 2. Set

φ̂uv(u1) = v, φ̂uv(ui) = ui for i > 1.

(1) Let h := v − u ∈ T (I). For any f ∈ Î,

φ̂∗uv(f) = f(u1 + h, u2, . . . , un) = f(u1, . . . , un) +
∂f

∂u1
· h+

1
2!
∂2f

∂u2
1

· h2 + . . .+
1
i!
∂if

∂ui1
· hi + . . .

The latter element belongs to

Î +DÎ · T̂ (I) + . . .+DiÎ · T̂ (I)
i
+ . . .+Dµ−1Î · T̂ (I)

µ−1
= HÎ.

Hence φ̂∗uv(Î) ⊂ HÎ. (2)(3) Follow from the construction.

(4) The fixed point set of φ̂∗uv is defined by ui = φ̂∗uv(ui), i = 1, . . . , n, that is, h = 0. But h ∈ Dµ−1(I) is
0 on supp(I, µ). �

Lemma 2.8.3. (Glueing Lemma) Let (X, I, E, µ) be a marked ideal of maximal order for which there
exist tangent directions u, v ∈ T (I, µ) at x ∈ supp(I, µ) which are transversal to E. Then there exist étale
neighborhoods φu, φv : X → X of x = φu(x) = φv(x) ∈ X, where x ∈ X, such that

(1) φ∗u(X,H(I), E, µ) = φ∗v(X,H(I), E, µ).
(2) φ∗u(u) = φ∗v(v).

Set (X, I, E, µ) := φ∗u(X,H(I), E, µ) = φ∗v(X,H(I, E, µ)).
(3) For any y ∈ supp(X, I, E, µ), φu(y) = φv(y).
(4) For any multiple blow-up (Xi) of (X, I, ∅, µ) the induced multiple blow-ups φ∗u(Xi) and φ∗v(Xi) of

(X, I, E, µ) are the same (defined by the same centers). Set (Xi) := φ∗u(Xi) = φ∗v(Xi). For any
yi ∈ supp(Xi, Ii, Ei, µ) and the induced morphisms φui, φvi : Xi → Xi, φui(yi) = φvi(yi).

Proof. (0) Construction of étale neighborhoods φu, φv : U → X.
Let U ⊂ X be an open subset for which there exist u2, . . . , un which are transversal to u and v on U such

that u = u1, u2, . . . , un and v, u2, . . . , un form two sets of parameters on U and divisors in E are described
by some ui, where i ≥ 2. Let An be the affine space with coordinates x1, . . . , xn. Construct first étale
morphisms φ1, φ2 : U → An with

φ∗1(xi) = ui for all i and φ∗2(x1) = v, φ∗2(xi) = ui for i > 1.

Then
X := U ×An U
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is a fiber product for the morphisms φ1 and φ2. The morphisms φu, φv are defined to be the natural
projections φu, φv : X → U such that φ1φu = φ2φv. Set

w1 := φ∗u(u) = (φ1φu)∗(x1) = (φ2φv)∗(x1) = φ∗v(v),

(5) wi = φ∗u(ui) = φ∗v(ui) for i ≥ 2.

(1) Let h := v − u. By the above the morphisms φu and φv coincide on φ−1
u (V (h)) = φ−1

v (V (h)).

2.9. Coefficient ideals and Giraud Lemma. The idea of coefficient ideals was originated by Hironaka
and then developed in papers of Villamayor and Bierstone-Milman. The following definition modifies and
generalizes the definition of Villamayor.

Definition 2.9.1. Let (I, µ) be a marked ideal of maximal order. By the coefficient ideal we mean

C(I, µ) =
µ∑
i=1

(DiI, µ− i).

Remark. The coefficient ideals C(I) feature two important properties.

(1) C(I) is equivalent to I.
(2) The intersection of the support of (I, µ) with any smooth subvariety S is the support of the restriction

of C(I) to S:
supp(I) ∩ S = supp(C(I)|S).

Moreover this condition is persistent under relevant multiple blow-ups.

These properties allow one to control and modify the part of support of (I, µ) contained in S by applying
multiple blow-ups of C(I)|S .

Lemma 2.9.2. C(I, µ) ' (I, µ).

Proof. By Lemma 2.7.1 multiple blow-ups of C(I, µ) are simultaneous multiple blow-ups of Di(I, µ) for 0 ≤
i ≤ µ−1. By Lemma ?? multiple blow-ups of (I, µ) define the multiple blow-up of all Di(I, µ). Thus multiple
blow-ups of (I, µ) and C(I, µ) are the same and supp(C(I, µ))k =

⋂
supp(DiI, µ− i)k = supp(Ik, µ). �

Lemma 2.9.3. Let (X, I, E, µ) be a marked ideal of maximal order whose support supp(I, µ) does not
contain a smooth subvariety S of X. Assume that S has only simple normal crossings with E. Then

supp(I, µ) ∩ S = supp(C(I, µ)|S).

Moreover let (Xi) be a multiple blow-up with centers Ci contained in the strict transforms Si ⊂ Xi of S.
Then

(1) The restrictions σi|Si : Si → Si−1 of the morphisms σi : Xi → Xi−1 define a multiple blow-up (Si)
of C(I, µ)|S.

(2) supp(Ii, µ) ∩ Si = supp[C(I, µ)|S ]i.
(3) Every multiple blow-up (Si) of C(I, µ)|S defines a multiple blow-up (Xi) of (I, µ) with centers Ci

contained in the strict transforms Si ⊂ Xi of S ⊂ X.

Proof. By Lemmas 2.9.2 and ??, supp(I, µ) ∩ S = supp(C(I, µ)) ∩ S ⊆ supp(C(I, µ)|S).
Let x1, . . . , xk, y1, . . . , yn−k be local parameters at x such that {x1 = 0, . . . , xk = 0} describes S. Then

any function f ∈ I can be written as
f =

∑
cαf (y)xα,

where cαf (y) are formal power series in yi.
Now x ∈ supp(I, µ) ∩ S iff ordx(cα) ≥ µ− |α| for all f ∈ I and |α| ≤ µ. Note that

cαf |S =
(

1
α!
∂|α|(f)
∂xα

)
|S
∈ D|α|(I)|S

and consequently supp(I, µ) ∩ S =
⋂
f∈I,|α|≤µ supp(cαf |S , µ− |α|) ⊃ supp(C(I, µ)|S).

Assume that all multiple blow-ups of (I, µ) of length k with centers Ci ⊂ Si are defined by multiple
blow-ups of C(I, µ)|S and moreover for i ≤ k,

supp(Ii, µ) ∩ Si = supp[C(I, µ)|S ]i.
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For any f ∈ I define f = f0 ∈ I and fi+1 = σc
i (fi) = y−µi σ∗(fi) ∈ Ii+1. Assume moreover that for any

f ∈ I,

fk =
∑

cαfk(y)xα,

where cαfk|Sk ∈ (σk|Sk)c(Dµ−|α|(I)|S). Consider the effect of the blow-up of Ck at a point x′ in the strict
transform of Sk+1 ⊂ Xk+1. By Lemmas 2.9.2 and ??,

supp(Ik+1, µ) ∩ Sk+1 = supp[C(I, µ)]k+1 ∩ Sk+1 ⊆ supp[C(I, µ)]k+1|Sk+1 = supp[C(I, µ)|S ]k+1

Let x1, . . . , xk describe the subvariety Sk of Xk. We can find coordinates x1, . . . , xk, y1, . . . , yn−k, by
taking if necessary linear combinations of y1, . . . , yn−k, such that the center of the blow-up is described by
x1, . . . , xk, y1, . . . , ym and the coordinates at x′ are given by

x′1 = x1/ym, . . . , x
′
k = xk/ym, y

′
1 = y1/ym, . . . , y

′
m = ym, y

′
m+1 = ym+1, . . . , y

′
n = yn.

Note that replacing y1, . . . , yn−k with their linear combinations does not modify the form fk =
∑
cαfk(y)xα.

Then the function fk+1 = σc(fk) can be written as

fk+1 =
∑

cαfk+1(y)x′α,

where cαfk+1 = y
−µ+|α|
m σ∗k+1(cαfk). Thus

cαfk+1|Sk+1 = (σk+1|Sk+1)c(cαfk|Sk) ∈ (σk+1
|Sk+1

)c(Dµ−|α|(I)|S) = (σk+1)c(Dµ−|α|(I))|Sk+1

and consequently

supp(Ik+1, µ) ∩ Sk+1 =
⋂

f∈I,|α|≤µ

supp(cαfk+1|Sk+1 , µ− |α|) ⊇ supp[C(I, µ)|S ]k+1 = supp(C(I, µ)k+1)|Sk+1 .

�

A direct consequence of the above lemma is the following result:

Lemma 2.9.4. Let (X, I, E, µ) be a marked ideal of maximal order whose support supp(I, µ) does not
contain a smooth subvariety S of X. Assume that S has only simple normal crossings with E. Let (Xi) be
its multiple blow-up such that all centers Ci are either contained in the strict transforms Si ⊂ Xi of S or
are disjoint from them. Then the restrictions σi|Si : Si → Si−1 of the morphisms σi : Xi → Xi−1 define a
multiple blow-up (Si) of C(I, µ)|S and

supp(Ii, µ) ∩ Si = supp[C(I, µ)|S ]i.

As a simple consequence of the Lemma 2.9.3 we formulate the following refinement of the Giraud Lemma.

Lemma 2.9.5. Let (X, I, ∅, µ) be a marked ideal of maximal order whose support supp(I, µ) has codimension
at least 2 at some point x. Let U 3 x be an open subset for which there is a tangent direction u ∈ T (I) and
such that supp(I, µ) ∩ U is of codimension 2. Let V (u) be the regular subscheme of U defined by u. Then
for any multiple blow-up Xi of X,

(1) supp(Ii, µ) is contained in the strict transform V (u)i of V (u) as a proper subset.
(2) The sequence (V (u)i) is a multiple blow-up of C(I, µ)|V (u).
(3) supp(Ii, µ) ∩ V (u)i = supp[C(I, µ)|V (u)]i.
(4) Every multiple blow-up (V (u)i) of C(I, µ)|V (u) defines a multiple blow-up (Xi) of (I, µ).

�

Lemma 2.9.6. Let φ : X ′ → X be a smooth morphism of smooth varieties and let (X, I, ∅, µ) be a marked
ideal. Then

φ∗(C(I)) = C(φ∗(I)).

Proof. A direct consequence of Lemma ??. �



10 DIMA GRIGORIEV, PIERRE MILMAN, JAROS LAW W LODARCZYK

3. Resolution algorithm

The presentation of the following Hironaka resolution algorithm builds upon Villamayor’s and Bierstone-
Milman’s proofs.

Inductive assumption For any marked ideal (X, I, E, µ) such that I 6= 0 there is an associated resolution
(Xi)0≤i≤mX , called canonical, satisfying the following conditions:
Proof. Induction on the dimension of X. If X is 0-dimensional, I 6= 0 and µ > 0 then supp(X, I, µ) = ∅
and all resolutions are trivial.

Step 1 Resolving a marked ideal (X,J , E, µ) of maximal order.
Before we start our resolution algorithm for the marked ideal (J , µ) of maximal order we shall replace it

with the equivalent homogenized ideal C(H(J , µ)). Resolving the ideal C(H(J , µ)) defines a resolution of
(J , µ) at this step. To simplify notation we shall denote C(H(J , µ)) by (J , µ).

Step 1a Reduction to the nonboundary case. Moving supp(J , µ) and Hs
α apart . For any

multiple blow-up (Xi) of (X,J , E, µ) we shall identify (for simplicity) strict transforms of E on Xi with E.
For any x ∈ Xi, let s(x) denote the number of divisors in E through x and set

si = max{s(x) | x ∈ supp(J i)}.

Let s = s0. By assumption the intersections of any s > s0 components of the exceptional divisors
are disjoint from supp(J , µ). Each intersection of divisors in E is locally defined by intersection of some
irreducible components of these divisors. Find all intersections Hs

α, α ∈ A, of s irreducible components of
divisors E such that supp(J , µ) ∩ Hs

α 6= ∅. By the maximality of s, the supports supp(J |Hsα) ⊂ Hs
α are

disjoint from Hs
α′ , where α′ 6= α.

Construct the canonical resolutions of J p|Hsα . By Lemma 2.9.3 each such resolution defines a multiple
blow-up of (J p, µ) (and of (J , µ)) . Since the supports supp(J |Hsα) ⊂ Hs

α are disjoint from Hs
α′ , where

α′ 6= α, these resolutions glue to a unique multiple blow-up (Xi)i≤j1 of (J , µ) such that sj1 < s.
Note that by the maximality condition for any Hs

α the irreducible components of the centers are contained
in Hs

α or are disjoint from them. Therefore by Lemma 2.9.4,

supp(J i, µ)|Hsα = supp(J i, µ) ∩Hs
α.

By applying this multiple blow-up we create a marked ideal (J j1 , µ) with support disjoint from all Hs
α.

Summarizing the above we construct a multiple blow-up (Xi)0≤i≤j1 subject to the conditions:
Conclusion of the algorithm in Step 1a. After performing the blow-ups in Steps 1aa and 1ab for

the marked ideal (J , µ) we arrive at a marked ideal (J j1 , µ) with sj1 < s0. Now we put s = sj1 and repeat
the procedure of Steps 1a for (J j1 , µ). Note that any Hs

αj1
on Xj1 is the strict transform of some intersection

H
sj1
α of s = sj1 divisors in E on X. Moreover by the maximality condition for all si, where i ≤ j1 and

α 6= α′, the set supp(J i, µ) ∩Hsi
α′i is either disjoint from H

sj1
αi or contained in it. Thus for 0 ≤ i ≤ j1, all

centers Ci have components either contained in H
sj1
αi = Hs

αi or disjoint from them and by Lemma 2.9.4,

supp(J i, µ)|Hsαi = supp(J i, µ) ∩Hs
αi.

Moreover if we repeat the procedure in Steps 1a the above property will still be satisfied until either (J i, µ)|Hsα
are resolved as in Step 1ab or Hs

α disappear as in Step 1aa.
We continue the above process till sjk = sr = 0. Then (Xj)0≤j≤r is a multiple blow-up of (X,J , E, µ)

such that supp(J r, µ) does not intersect any divisor in E. Therefore (Xj)0≤j≤r and further longer multiple
blow-ups (Xj)0≤j≤r0 for any r ≤ r0 can be considered as multiple blow-ups of (X,J , ∅, µ) since starting
from Xr the strict transforms of E play no further role in the resolution process since they do not intersect
supp(J j , µ) for j ≥ r.

Step 1b. Nonboundary case
Let (Xj)0≤j≤r be the multiple blow-up of (X,J , ∅, µ) defined in Step 1a.

If supp(J r, µ) is of codimension 1 then by Lemma 2.6.7 all its codimension 1 components are smooth
and disjoint from the other components of supp(J r, µ). These components are strict transforms of the
codimension 1 components of supp(J , µ). Moreover the irreducible components of the centers of blow-ups
were either contained in the strict transforms or disjoint from them. Therefore Er will be transversal to all
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the codimension 1 components. Let codim(1)(supp(J i, µ)) be the union of all components of supp(J i, µ)) of
codimension 1. This definition, as we see below, is devised so as to ensure that all codimension 1 components
will be blown up first.

By Lemma 2.6.7 blowing up the components reduces the situation to the case when supp(J , µ) is of
codimension ≥ 2.

For any x ∈ supp(J , µ) \ codim(1)(supp(J , µ) ⊂ X find a tangent direction u ∈ Dµ−1(J ) on some
neighborhood Uu of x. Then V (u) ⊂ Uu is a hypersurface of maximal contact. By the quasicompactness of
X we can assume that the covering defined by Uu is finite. Let Uui ⊂ Xi be the inverse image of Uu and
let V (u)i ⊂ Uu denote the strict transform of V (u). By Lemma 2.9.5, (V (u)i)0≤i≤p is a multiple blow-up of
(V (u),J |V (u), ∅, µ). In particular the induced marked ideal for i = p is equal to

J p|V (u)p = (V (u)p,J p|V (u)p , (Ep \ E)|V (u)p , µ).

Construct the canonical resolution of (V (u)i)p≤i≤mu of the marked ideal J p|V (u)p . Then the sequence
(V (u)i)0≤i≤mu is a resolution of (V (u),J |V (u), ∅, µ) which defines, by Lemma 2.9.5, a resolution (Uui)0≤i≤mu
of (Uu,J |Uu , ∅, µ). Moreover both resolutions are related by the property

supp(J i|Uui) = supp(J i|V (u)i).

We shall construct the resolution of (X,J , ∅, µ) by patching together extensions of the local resolutions
(Uui)0≤i≤mu .

Let x ∈ supp(J p, µ)∩Uup∩Uvp. By Glueing Lemma 2.8.3 for any two different tangent directions u and v
we find étale neighborhoods φu, φv : Uuv → U := Uu∩Uv and their liftings φpu, φpv : Uuvp → Up := Uup∩Uvp
such that

(1) Xuv
p := (φpu)−1(V (u)p) = (φpv)−1(V (v)p).

(2) (Uuvp ,J uvp , Euvp , µ) := (φpu)∗(Up,J p, Ep, µ) = (φpv)∗(Up,J p, Ep, µ).
(3) There exists y ∈ supp(Uuvp ,J uvp , Euvp , µ) such that φpu(x) = φpv(x).

Note that for any tangent direction u, either Cp ∩Uup defines the first blow-of the canonical resolution of
(V (u)p,J p|V (u)p , Ep|V (u)p , µ) or Cp ∩ Uup = ∅ and the blow-up of Cp does not change V (u)p ⊂ Uup.

Blowing up Cp defines Xp+1 and we are in a position to construct the invariants on Xp+1 and define the
center of the blow-up Cp+1 ⊂ Xp+1 as before.

By repeating the same reasoning for j = p+ 1, . . . ,m we construct the resolution (Xi)p≤i≤m of
(Xp,J p, Ep \ E,µ) satisfying the following properties.

(1) For any u, the restriction of (Xi)p≤i≤m to (V (u)i)p≤i≤m is an extension of the canonical resolution
of (V (u)p,J p|V (u)p , Ep|V (u)p , µ).

(2) supp(Jm, µ) = ∅.

The resolution (Xi)p≤i≤m of (Xp,J p, Ep \ E,µ) defines the resolution (Xi)0≤i≤m of (X,J , ∅, µ) and of
(X,J , E, µ).

In Step 1b all points x ∈ supp(J i, µ) with s(x) = 0 were assigned the invariants inv, ν and ρ. They are
upper semicontinuous by the inductive assumption.

Step 2. Resolving of marked ideals (X, I, E, µ).
For any marked ideal (X, I, E, µ) write

I =M(I)N (I),

where M(I) is the monomial part of I, that is, the product of the principal ideals defining the irreducible
components of the divisors in E, and N (I) is a nonmonomial part which is not divisible by any ideal of a
divisor in E. Let

ordN (I) := max{ordx(N (I)) | x ∈ supp(I, µ)}.

Definition 3.0.7. (Hironaka, Bierstone-Milman,Villamayor, Encinas-Hauser) By the companion ideal of
(I, µ) where I = N (I)M(I) we mean the marked ideal of maximal order

O(I, µ) =
{

(N (I), ordN (I)) + (M(I), µ− ordN (I)) if ordN (I) < µ,
(N (I), ordN (I)) if ordN (I) ≥ µ.
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In particular O(I, µ) = (I, µ) for ideals (I, µ) of maximal order.
Step 2a. Reduction to the monomial case by using companion ideals
By Step 1 we can resolve the marked ideal of maximal order (J , µJ ) := O(I, µ) using the invariant

invO(I,µ). By Lemma 2.7.1, for any multiple blow-up of O(I, µ),
supp(O(I, µ))i = supp[N (I), ordN (I)]i ∩ supp[M(I), µ− ordN (HI)]i =

supp[N (I), ordN (I)]i ∩ supp(Ii, µ).
Consequently, such a resolution leads to the ideal (Ir1 , µ) such that ordN (Ir1 ) < ordN (I). This resolution

is controlled by the invariants inv, ν and ρ defined for all x ∈ supp(N (I), ordN (I)) ∩ supp(Ii, µ)i,

inv(x) =
(

ordN (I)

µ
, invO(I,µ)(x)

)
, ν(x) = νO(I,µ)(x), ρ(x) = ρO(I,µ)(x).

Then we repeat the procedure for (Ir1 , µ). We find marked ideals (Ir0 , µ) = (I, µ), (Ir1 , µ), . . . , (Irm , µ) such
that ordN (I0) > ordN (Ir1 ) > . . . > ordN (Irm ). The procedure terminates after a finite number of steps when
we arrive at the ideal (Irm , µ) with ordN (Irm ) = 0 or with supp(Irm , µ) = ∅. In the second case we get the
resolution. In the first case Irm =M(Irm) is monomial.

In Step 2a all points x ∈ supp(I, µ) for which ordc(I) 6= 0 were assigned the invariants inv, µ, ρ. They are
upper semicontinuous by the semicontinuouity of ordx and of the invariants inv, µ, ρ for the marked ideals
of maximal order.

Step 2b. Monomial case I =M(I).
Define the invariants

inv(x) = (0, . . . , 0, . . .), ν(x) =
ordx(I)

µ
.

Let x1, . . . , xk define equations of the components Dx
1 , . . . , D

x
k ∈ E through x ∈ supp(X, I, E, µ) and I

be generated by the monomial xa1,...,ak at x. In particular ν(x) = a1+...+ak
µ .

Let ρ(x) = {Di1 , . . . , Dil} ∈ Sub(E) be the maximal subset satisfying the properties

(1) ai1 + . . .+ ail ≥ µ.
(2) For any j = 1, . . . , l, ai1 + . . .+ ǎij + . . .+ ail < µ.

Let R(x) denote the subsets in Sub(E) satisfying the properties (1) and (2). The maximal components of
the supp(I, µ) through x are described by the intersections

⋂
D∈AD where A ∈ R(x). The maximal locus

of ρ determines at most o one maximal component of supp(I, µ) through each x.
After the blow-up at the maximal locus C = {xi1 = . . . = xil = 0} of ρ, the ideal I = (xa1,...,ak) is equal to

I ′ = (x′a1,...,aij−1,a,aij+1,...,ak) in the neighborhood corresponding to xij , where a = ai1 +. . .+ail−µ < aij . In
particular the invariant ν drops for all points of some maximal components of supp(I, µ). Thus the maximal
value of ν on the maximal components of supp(I, µ) which were blown up is bigger than the maximal value of
ν on the new maximal components of supp(I, µ). Since the set 1

µZ≥0 of values of ν is discrete the algorithm
terminates after a finite number of steps. �

3.1. Summary of the resolution algorithm. The resolution algorithm can be represented by the follow-
ing scheme.
Step 2. Resolve (I, µ).

Step 2a. Reduce (I, µ) to the monomial marked ideal I =M(I).

⇓

If I 6=M(I), decrease the maximal order of the nonmonomial part N (I) by resolving the companion
ideal O(I, µ). For x ∈ supp(O(I, µ)), set

inv(x) = (ordx(N (J ))/µ, invO(I,µ)).

Step 1. Resolve the companion ideal (J , µJ ) := O(I, µ) :
Replace J with J := C(H(J )) ' J . (*)
Step 1a. Move apart all strict transforms of E and supp(J , µ).

⇓
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Move apart all intersections Hs
α of s divisors in E

(where s is the maximal number of divisors in E through points in supp(I, µ)).

m

For any α, resolve all J |Hsα . For x ∈ supp(J , µ) ∩Hs
α set

Step 1b If the strict transforms of E do not intersect supp(J , µ), resolve (J , µ).

m

Simultaneously resolve all J |V (u) (by induction), where V (u) is a hypersurface of

maximal contact. For x ∈ supp(J , µ) \ codim(1)(supp(J )) set
Step 2b. Resolve the monomial marked ideal I =M(I).
(Construct the invariants inv, ρ and ν directly for M(I).)

Remarks. (1) (*) The ideal J is replaced with H(J ) to ensure that the algprithm constructed in Step
1b is independent of the choice of the tangent direction u.

We replace H(J ) with C(H(J )) to ensure the equalities supp(J|S) = supp(J )∩S, where S = Hs
α

in Step 1a and S = V (u) in Step 1b.
(2) If µ = 1 the companion ideal is equal to O(I, 1) = (N (I), µN (I)) so the general strategy of the

resolution of I, µ is to decrease the order of the nonmonomial part and then to resolve the monomial
part.

(3) In particular if we desingularize Y we put µ = 1 and I = IY to be equal to the sheaf of the subvariety
Y and we resolve the marked ideal (X, I, ∅, µ). The nonmonomial part N (Ii) is nothing but the
weak transform (σi)w(I) of I.

4. Complexity bound in terms of Grzegorczyk’s classes

Our purpose is to estimate the complexity of the of the desingularization algorithm described in the
previous sections. The complexity estimate is given in terms of the Grzegorczyk’s classes E i, i ≥ 0 [?] of
primitive-recursive functions. For the sake of self-containdness we provide the definition of E i by induction
on i (informally speaking, E i consists of integer functions Zs → Zt whose construction requires i primitive
recursions).

For the base of definition E0 contains constant functions xj 7→ c and projections (x1, . . . , xn) 7→ xj for any
variables x1, . . . , xn. Every class E i, i ≥ 0 is closed under composition and some natural basic operations
(we don’t need and therefore don’t make precise the list of these operations), in particular, identifying of
variables: if F (. . . , xi, . . . , xj , . . . ) ∈ E i then F (. . . , x, . . . , x, . . . ) ∈ E i.

Class E1 contains functions xj 7→ xj + 1.
For the inductive step of the definition assume that functions G(x1, . . . , xn), H(x1, . . . , xn, y, z) ∈ E i.

Then function F (x1, . . . , xn, y) defined by the following primitive recursion

F (x1, . . . , xn, 0) = G(x1, . . . , xn)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y, F (x1, . . . , xn, y))

belongs to E i+1. To complete the definition of E i, i ≥ 0 take the closure with respect to the basic operations
from the aforementioned list. Clearly, E i+1 ⊃ E i.

Observe that E2 contains all the polynomials with integer coefficients and E3 contains all the towers of
exponential functions [?]. The union ∪i<∞E i coincides with the set of all primitive-recursive functions.

The principal complexity result of the paper states that

Theorem 4.0.1. The complexity of the resolution algorithm can be bounded by L ·F (d, n, q, µ) for a certain
function F ∈ Em+2.
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Remark. Below in the proof we give a more explicit form of F providing an additional information on its
dependance on d, n, q, µ. But the main consequence of the Theorem is that m = dimX brings the most
significant contribution into the complexity bound.

Proof of the Theorem we conduct by induction onm. It is instructive to represent the resolution algorithm
in a form of a tree T as in the

Each node a of T corresponds to an intermediate tuple Ta =
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