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ABSTRACT

For the perturbed oscillators in one-dimensional case, J.M. Franco designed the so-called Adapted Runge-
Kutta-Nystrém (ARKN) methods and derived the sufficient order conditions as well as the necessary and
sufficient order conditions for ARKN methods based on the B-series theory [J.M. Franco, Runge-Kutta-
Nystrom methods adapted to the numerical integration of perturbed oscillators, Comput. Phys. Comm.
147 (2002) 770-787]. These methods integrate exactly the unperturbed oscillators and are highly efficient
when the perturbing function is small. Unfortunately, some critical mistakes have been made in the
derivation of order conditions in that paper. On the basis of the results from that paper, Franco extended
directly the ARKN methods and the corresponding order conditions to multidimensional case where the
perturbed function f does not depend on the first derivative y’ [J.M. Franco, New methods for oscillatory
systems based on ARKN methods, Appl. Numer. Math. 56 (2006) 1040-1053]. In this paper, we present
the order conditions for the ARKN methods for the general multidimensional perturbed oscillators where

Order conditions
Oscillatory systems
B-Series

the perturbed function f may depend on only y or on both y and y'.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Oscillatory phenomena are frequently encountered in pure and applied mathematics and in applied sciences such as mechanics, physics,
astronomy, and molecular biology and engineering. A lot of theoretical and numerical researches have been done on the modeling and
simulation of these oscillations. Among typical topics is the numerical integration of non-stiff second-order initial value problems of the
form

{y”(t>+w2y(r>=f<y<r>,y/<r>), telto, 1, 0
y(to) =yo.  Y'(to) =Y.

where the main frequency w may be known or accurately estimated and the perturbing force has the form f(y,y’) =eg(y,y’), with
& <1 a small parameter. In his pioneer and fruitful paper [1], Franco reformed the update of classical Runge-Kutta-Nystrom (RKN)
methods proposed the so-called ARKN methods (RKN methods adapted to perturbed oscillators (1) as in (3) below) and presented the
corresponding order conditions based on the theory of Nystrom trees. An advantage of ARKN methods is that their updates take into
account the special structure of Eq. (1) brought by the term w2y so that they naturally integrate the unperturbed problem y” + w?y =
0 exactly. For work following [1] we refer the reader to [2-7]. However, in [1], the order conditions are incorrect so that the direct
generalization of ARKN methods from one-dimensional case to multidimensional case in [4] is not reliable. In fact, 7 in Theorems 3.2 and
3.3 should be the Nystrom tree corresponding to an elementary differential F(y, y’) of the function f(y,y') := f(y,y’) — w*y and not of
the function f(y, y’). Furthermore, the paper [4] does not explicitly give a general ARKN scheme for systems of perturbed oscillators even
though a family of three-stage ARKN-based methods of order 4 for systems are proposed and analyzed.

The purpose of this paper is to give a standard form of the multidimensional ARKN integrators for systems of second order oscillatory
equations and to derive the related order conditions in a correct way based on the B-series theory.
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The rest of the paper is organized as follows. In Section 2, we restate the basic idea and order conditions of ARKN methods for
one-dimensional oscillatory problems. Section 3 extends these methods to the multidimensional case. The order conditions for multidi-
mensional ARKN methods are derived in Section 4. Section 5 is devoted to conclusions.

2. One-dimensional ARKN methods and the corresponding order conditions

In this section, we briefly review the formulation of ARKN methods for the initial value problem (1) in one-dimensional case. Applying
the well-known variation-of-constants formula to Eq. (1) gives the following integral equations

tp+h
1
y(tn+h)=¢o(v2)y(tn)+h¢1(v2)y’(tn)+5 / ¥ (2) sin(w(tat1 — 2)) dz
th
tp+h

Y (tn+h) = ¢o(v?)y (tn) — wvep1 (V) y(ta) + / ¥ (2) cos(w(tnt1 — 2)) dz, (2)

where v = hw, ¢o(V?) := cos(v), ¢1(V?) := % and ¥ (2) := f(¥(2),y'(2)). Approximating the integrals in these equations by some
quadrature formulas results in Franco’s definition of ARKN methods.

Definition 2.1. An s-stage ARKN method for the numerical integration of the IVP (1) is given by the following scheme

g =yn+heiyy +h* 35 G@ii(f(g). 8) —w’gp, i=1.....5,
gi=yn+hy i aij(f(gj. 8} —w?gj), i=1,...,s,

_ (3)
Y1 =002 yn + d1(v)hy, +h2 Y5 bi(v?) f(gi. gD,
Yior = do(Dyy — ovd1 (V) yn +h Y5 bi(v?) f (gi. &)
This scheme can also be expressed in the Butcher tableau as
ais (_11] N (_1]5

cl A _ A _ G| aa ... Ay U1 ... Qs

bT(w2) BT (v?) bi(v?) ... b)) bi(v?) ... b(v?)
The method (3) has order p, if for sufficiently smooth problems (1) the conditions
ent1 1= Ynr1 — Y(ta +h) =O(RPT!) and e}, =y, — ¥ (ta+h) = O(hP*) (4)

are satisfied simultaneously, where y(t, +h) and y’(t, + h) are the exact solution of (1) and its derivative at t, + h, respectively, and y, 1
and y;, 41 are the one step numerical results obtained by the method from the exact starting values y, = y(t;) and Yn =¥ (tn) (the local
assumptions). The paper [7] gives the correct order conditions for ARKN methods as follows.

Theorem 2.1. The following are sufficient conditions for an ARKN method to be of order p:

b(v?) @ (1) = (( S0 (V). p@ =1 p =1, 5)
2\T _r@® 2 _
b(U) ¢(T) y(r)¢p(f)( )’ p(r)_lv”'sps (6)

where T is the Nystrom tree corresponding to an elementary differential F(y, y’) of the function ]’(y, y) = f(y,y) — w*y at (yn, i), d)j(vz) =
Zk 0 (1+2k)' v, j=2,3,..., the functions p(1), a(7), y(t) and &(t) are defined in [8)].

Theorem 2.2. An ARKN method is of order p if and only if

b(1?) @ (1) — i(( )) borr11(V?) =O(hRPPD), pr)=1,...,p—1, (7)
NT _p@)! 2\ _ y(pp+1-p(T) _
b(+)" @) = TS0 () =001 4), p@ =1, ®)

where T is the Nystrém tree corresponding to an elementary differential F(y, y') of the function f(y, y") := f(y,y") — w%y at (¥n, Yn)-
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3. Multidimensional version of ARKN methods

Now we move on to the integration of systems of second order ordinary differential equations in the form

Y'+Ky=fQy@®,y'®).
y(to) = Yo, 9)
y'(to) = ¥,

where K € R™™ is a symmetric positive semi-definite matrix (stiffness matrix) that implicitly contains the main frequencies of the

problem, f(y,y’): R™ x R™ — R™, yo € R™, y; € R™. Here we restrict ourselves to the autonomous case for, if f = f(t,y,y’) explicitly
contains t, we can extend y by one dimension and turn the system equivalently into the following autonomous one

() =6 006+ (edn)

This kind of problems usually arise when, for example, the method of lines is applied to linear wave equations, where spatial derivatives
are approximated by appropriate finite difference formulas. This converts each partial differential equation (PDE) into a set of coupled
linear ordinary differential equations (ODEs) in time. Although the problem (9) is a special case of the general class of second order initial
value problems of the form

y' =g, ¥,
y(to) = Yo, (10)
y'(to) =y,

and quite a lot of discussions are available for the integration of (10), most authors are not able to make full use of the special information
transpired from Eq. (9). Franco [4] was the first attempt to extend his ARKN methods in [1] for scalar equations to the systems (9) with
the perturbed function f not depending on the first derivative y’. But both the order conditions and analysis for stability and phase
properties of the methods are based on the one-dimensional theory. This is not satisfactory.

In view of the importance of the algebraic order theory for the construction of ARKN methods, we, instead, present the order conditions
of ARKN methods for the system (9) based on the B-series theory. Let

u®) =[yo"y®’1",  u=[yr.vd]"
Gu®)=[o. fu®)' ] =[0. FyoO .y ®)],

(0 In
w=(5 %)

Then the initial value problem (9) can be rewritten in a more compact form as

[u’(t) = Wu(t) + G(u(r)),
u(to) = uo,

and

(11)
which is a system of first order nonhomogeneous differential equations, where W is a 2m x 2m constant matrix. From the well-known
variation-of-constants formula, the solution at t >ty of system (11) has the form
t
u(t) = exp((t — to) W)uo + / exp((t —&)W)G(u(®)) ds. (12)
to

Here and in the sequel, the integral of a matrix function is understood as componentwise. Define

& (kKK N (CDRKE

Then we have the following formulas for the exact solution of the system (9) and its derivative.

Theorem 3.1. If K € R™*™ is a symmetric positive semi-definite matrix and f : R™ x R™ — R™ is continuous in (9), then the solution of (9) and its
derivative satisfy the following equations

{ (O = do((t — t0)?K)yo + (t — to)dr (¢ — t0)*K)yp + [ (£ — &)1 (£ — £)2K) [ (€) d&, (a3

V() = —(t — t0)K1 (¢ — t0)*K)yo + po((t — t0)2K)yp + fit do((t —£)2K) F (&) d

for any real number to, t € (—oo, +00), where f (&) = f(y(€), y'(£)).
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Proof. It is easy to see that
2 (—-K O 3_ (0 =K
W‘(o —K)’ W‘<1<2 0 )
2 2
4 _(K° O 5 0O K
w _<o 1<2>’ w _(—1<3 0)
An argument by induction yields that for every nonnegative integer k

1+(=DF p(k/2 1=(=D p[k/2
W":(_l)Lk/ZJ( =kl TKL/J>,

_Kl—(z—l)" K Lk/2] 1+(2—1)" K k72

where |k/2] stands for the integer part of k/2. Then
—ta)2 V42 )3 _ )52
I, — & tz(),)K+(t t?“)I( .. (t—to)lm—(t t30!)l<+(t tg?l( +o
_+\3K2 _t\5K3 )2 VA2
_(t_t0)1<+(t tg?K G tg?K .. I, — tz()!)l(+(t t?l?K T+

( do((t — t0)?K) (t — to)p1 ((t — to)21<>>
—(t — to) K ((t — t0)*K) Bo((t — t0)*K)

exp((t — to)W) = (

and (12) becomes

(y(t) ) _ ( do((t — £0)*K) (t — to)ghr ((t — fo)zK)) <y0>
y'() —(t — to) K1 ((t — t0)*K) do((t — t0)*K) Yo

t

+/< $o((t —£)*K) (r—s>¢>1((r—s)21<>)( 0 )ds
—(t=HKH(C—EK)  po((t —£)*K) FE).y'©)

fo

_( Po((t —t0)*K)yo + (t — to)1 ((t — t0)*K) yy ) (ftg(t—é)qb]((t —S)ZK)f(S)dE)
ot = t0)*K)yp — (t — to) K1 ((t — to)*K) yo Jego(t—82K)fE)de )

This is exactly the vector form of (13). The proof is complete. O

Consequently, if y(t,) and y’(t,) are prescribed, it follows from (13) that

Y(tn +h) = go(V)y(ta) +hp1 (V)Y () + [ (tnsr — ©)p1 (tn1 — £)2K) f (6) d (1)
Y'(ta+h) = —hK1(V)y(ta) + do(V)y'(tn) + " po((tny1 — £)2K) F (&) dé.

where V = h2K. Formulas (14) can also be written as
Y(tn+h) = do(V)y(tn) +hd1 (V)Y (tn) +h2 [} (1 = 21 (1 — 2)2V) f (t + h2) dz, as)
Y (ta +h) = —hKg1 (V) y(ta) + do (V)Y (ta) + h [ ¢o(1 —2)2V) f (ta + h2) dz

according to the change of variable & =t, + hz.
In order to obtain a numerical integrator for (9) we approximate the integrals in (15) by some higher order quadrature formulas. This
leads to the following family of schemes for the systems of oscillatory second order ordinary differential equations (9).

Definition 3.1. An s-stage ARKN method for numerical integration of the oscillatory system (9) is defined as

Yi=yn+heiy, +h* 35 a(f (YY) —KYp, i=1,...s,
Yi=yp+hyi g ai(f(Y;, YD) = KY)p, i=1,...5,

_ (16)

Va1 =do(V)yn +hor(V)yp +h? Y5 bi(V) f (Y3, Y)),

Vi1 =b0(V)yn —hKe1(V)yn +h Y bi(V) f(Yi, Y)).
Here, the weight functions b; : V € R™™ — b;(V) and b; : V € R™™M — b;(V), i=1,...,s in the updates are functions of V with

V = h2K. The scheme (16) can also be denoted by the Butcher tableau as
c1| a1 ... OQis (_111 (_115

_ Ass (_151 P (_155

C| A A _ C.s a;1
BT (V) BT (V) b1(V) ... bs(V) bi(V) ... bs(V)
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It is convenient to express the equations of (16) in block-matrix notation in terms of Kronecker products
Y=eQyn+hcQy,+ hZ(A QIm)(fY,Y) —Us @ K)Y),
Y=e®y, +h(AQIm)(f(Y,Y) — (s ® K)Y),
Y1 =do(V)yn +he1(V)y, +h*bT (V) f(Y,Y'),
Vi1 =00(V)yp —hKe1(V)yn +hbT (V) f(Y,Y),

(17)

where e = (1,1,..., 17T is an s x 1 vector, and the block vectors are defined by
e v, FOLY)
y=|: |, Y=|:]|, fy)=
Ys Y! f(¥s, Y9)

In the special case where the perturbed function does not depend on the first derivative y’, the ARKN method (16) reduces to
Yi=yn+hciy, +h* Y5 @i (f(Y) —KYj), i=1,...s,
Ynt1=do(V)yn +hdr1 (V)yy +h? 305 bi(V) F (Y, (18)
Ynp1 =P0(V)yn —hKe1(V)yn +h Y i bi(V) f(Yi),

which can also be expressed in the Butcher tableau as

ci| a1 ... ags
cl A Cs| asq Ass
pT(v) = bi(V) ... bs(V)
bT (V) bi(V) ... bs(V)

As a simple example, the trapezoidal discretization of the integrals in the formulas (15) with a fixed step size h gives

Y1 = do(V)yn +he1 (V) y) + 30201 (V) f (tn, Y, V7)., (1)
Yoy = —hKp1(V)yn +do(V)yj + 2h(@o (V) f (tn, Yn Vi) + F 1, Ynsts V1))

If the perturbed function f does not depend on the first derivative y’, formulas (19) reduce to the explicit scheme
Y1 = do(V)yn +he1 (V) y, + 3021 (V) f (tn, yn), (20)
Vi1 = —hKe1(V)yn + do(V)y; + 3h(@o(V) f (tn. ) + f (tni1. Yns1)-

For a theoretical analysis of formulas (20) and its application to oscillatory systems of differential equations, see Hairer and Lubich [9].
In practical computation, instead of applying the formulas (19) and (20) directly, we take the following schemes

Y41 = QYn +hy, + Sh2 f (ta. Yn, ¥}). 21)
Vi1 =—hKyn + Qyp + 3h(Qf (tn, yu, yi) + f (tat1. Yng1. Yiir))-

and
Y41 = QYn+hy, + 1h% f (t, yn), 22)
Vi1 =—hKyn + Qyj + $h(Qf (tn, yn) + f (tat1. Yns1)),

which are obtained by taking the second order and first order truncations of ¢o(V) and ¢1(V), respectively, in the formulas (19) and (20),
with Q = Iy — K.

4. Order conditions for multidimensional ARKN methods

The definition of the order of a multidimensional ARKN method is the same in form as Egs. (4), except that the errors e;+1 and e,’H]
are understood as vectors.

It is easy to verify that the formulas (19), (20), (21) and (22) are all of order two.

The aim of this section is to present a correct derivation of order conditions for ARKN methods for perturbed oscillators in multidimen-
sional case based on the B-series theory and Nystrom trees. For this purpose, we need to move the term Ky in Eq. (9) to the right-hand
side of the equation, namely, in the autonomous case, the equation of the problem (9) should be read as y" = f(y,y") = f(y,y") — Ky.

Define the ¢-functions apart from ¢g and ¢ as follows:

o0

(_1)’(Kk ]
i(K):= _—, =2,3,.... 23
$;(K) gekﬂ)! j (23)

Then the asymptotic expansions of the true solution the problems (9) and its derivative in powers of h are given, respectively, by
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Y(tn+h) = go(V)yn +her(V)yy + > W2 0(V)f7,
j=0

o0
Y (tn+h) = go(V)yy — K1 (V)yn+ Y hiT (V)2
j=0
where }rﬁ” = ;Tjjfn(z)lzztn is the j-th derivative of f(z) at z =t,. In order to prove the first of the two expansions, we take ty = ty,
t =t, + h in Egs. (14), utilize the series expansions of f’(é), ¢1 in the integrands to get
ta+h
Y(tn +h) = ¢o(V)yn +ho1(V)y, + / (tn +h — &)1 ((ta +h — §)*K) f(§) dg

tn

1
=¢o(V)yn +he1(V)y, + / (1 —2)h2¢1((1 — 2)2h%K) f (ta + zh) dz
0

1
© pit2
= go(V)yn +he1 (V)y + f A =2¢1(1-2°V) ) —-2f ¢z
0 j=0 =

_ j+2 k \ (1 —2)*+1z k()
=¢o(V)yn + hoq (V /+§ § hIT2 (-1 = dz|v
Po(V)yn +hp1(V)y, 22 (=1 K+ DI z fa
- = 0

o0 o0
. 1 ~(i
— go(V V)y! IARTE ) LAY
G0 (V) n +hepr ( )yn+j§::0§h D G

= go(V)yn +hor(V)yy + Y hiT2¢; (V) V.
j=0

Likewise the second expansion is obtained. For j > 2, f,ﬁj) can be expressed by the B-series

PO =(Fry)+ k0= Y a@F@Um ) +K Y. a(F@ W v,
p(T)=j+1 p(T)=j—1

where 7 is the Nystrom tree associated with an elementary differential F(7)(yy, y,) of the function f(y, Y)Y=f,y)—Ky at (yn, yp),
the order of 7 is denoted by p(7), and «/(7) is the number of possible monotonic labellings of . Then we have

Y(tn+h) =do(V)yn +hd1(V)yp+ > hiT2i o)
j=0

=po(V)yn +her(V)yp+ D W 2¢j0(V) Y a(@F (@) (yn, yp)
j=0 p(T)=j+1

oo
+h2 K (V)yn + K3 (V)yy + K Y ht20i0(V) > a@F@)(n. vh).
j=2 p(r)=j-1
On the other hand, we know from [8, 11.14] that

S
YDV, o=@+ Y y(@® ) @) (®)F @) (Yn. Vi)
p(T)=q j=1
where y(7) is the density of the Nystrom tree T and @;(7), j=1,...,s, are weight functions as defined in [8]. Then we expand the
numerical solution as

Vi1 =po(V)yn +her (V)yy + 0> D bi(V)(F(Yi, ¥])) = KYi) +h* Y bi(V)KY;

i=1 i=1
) oo hj+2 T _ ,
=¢o(V)yn+ho1(V)yn+ ) GTl Y. y@(@@" & In)b(V)a (D) F(T)(Yn, ¥1)
Jj=0 J T p(m=j+1
+h?K(e” ® Im)b(V)yn +h3K(c" ® Im)b(V)y,,

O pit2

+ K .
;(1—1)!

Y v @((A2@)" @ Im)b(V)(T)F(T)(Yn. V).
p(@)=j-1
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Consequently, the local error of y,4+1 can be expressed by

ent1=Ynt1 — Y(n +h)

=Y ey ( Y (5(0)7 @ In)B(V) — oy (W)a(r)f(r)(yn, Vi)

— — o(7)!
j=0 p(T)=j+1
+h?K((e" ® Im)b(V) — 2 (V) yn + PK((c" ® Im)b(V) — ¢3(V)) v,

+KY ity ( y(® (Ae(@)" ® Im)b(V) — ¢p<f>+3(V)>ot(r)f(r)(yn, y)-

|
o a1 PO

Similarly, we have

Y (ta+h) = go(V)yy —hK$1(V)yn+ Y W ¢10(V) Y a()F@)(n, yp)
j=0 p(D)=j+1

+hKG1 (V)yn + 02 Ko (V)yp +K Y hiTlgi (V) Y a(mF@)(yn. vp).
j=2 p(r)=j—1

and

Ynsr =¢o(V)yn — hK1(V)yn+h D bi(V)(F(Yi, Y)) = KYi) +h D bi(V)KY;
i=1 i=1
j+1

(j+1)!

Y y@(@@T & In)b(V)a(T)F(T)(Yn. ¥

p(T)=j+1
+hK (e" ®Im)b(V)yn+h2K(c ® Im)b(V)y},

= po(V)yy — hK¢1(V)yn + Z

- pitl
+1<Z — 3y @((A2©)" @ In)b(V)a(D)F(T) Y, V).
2

p(r)=j-1

Then we get the local error of y,’H] as

eni1=Ynp1 =Y (ta+h)

=Y Wt Y ( YO ((2)T @ In)b(V) — ¢p<f><V)>a<r>f<r)<yn, Vi)

— —  \ p(T)!
=0 p(m)=j+1
+hK((e" ® Im)b(V) — p1(V))yn + V((c" ® Im)b(V) — $2(V)) v,

+RY WY (Z((;), (A2(@®)" ® Im)b(V) — ¢p<f>+z(V))oe<r>f(r)(yn, Vo).
j=2 p(r)=j—-1 '

The above analysis proves the following theorem.

Theorem 4.1. The sufficient conditions for an ARKN method to be of order p are given by

(@' @ In)b(V) = p((r))¢p(r)+1(v) pm=1,....p—1,
(Ao (®)" @ Im)b(V) = (( ))¢>p<f)+3(V) p(r)=1,...,p—3,
(@(r)T®1m)b<V>— (” oM. pO=1....p.

(Ao )" ®1m)b(V)— p(( )) $pr2(V), P =1,....p—2,

where T is the Nystrom tree associated with an elementary differential F(t)(yn, y;,) of the function fu.y)=fW.y)—Kyat (yn, Yn)-

These conditions can be simplified as follows.

Theorem 4.2. The conditions (24) of Theorem 4.1 imply conditions (25) and conditions (26) imply conditions (27).
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Proof. Let T be a Nystrom tree of order p(7) < p — 3 and denote by 7 the Nystrom tree of order p(t) = p(?) + 2 obtained by connecting
the root of 7 to a meagre vertex and then to a new (fat) root. From the definitions of functions p, y and & [8], it follows that
Y@= (o) +2)(p(®) +1)y(#), and &(r)=Ad ().
The conditions (24) assure that

_ - 7)!
((A@(f))T ® Im)b(V) — I;)/((_T_E))(pp(f)-&%(v)

ae s T Py POF2 p(@+1 p@)!
=((A2())” ®Im)b(V) 0B 12 o 11 7@ bp)+3(V)
_ ! R
=(¢(m)" @ Im)b(V) — ';((—TT))%(,)H(V) =0, p(f)=1,...,p—3.

Similarly, conditions (26) can deduce conditions (27). The proof is complete. O
From Theorems 4.1 and 4.2 we arrive at the conclusive theorem of this paper.

Theorem 4.3. The necessary and sufficient conditions for an ARKN method to be of order p are given by

_ |
(@) @ Im)b(V) — ’;((?)' $po+1(V)=0mP~PD), pm)=1,....p—1,
|
(@) @ Im)b(V) — %%m(w =O(hP*H1=P®) p(r)=1,....p,

where t is the Nystrom tree associated with an elementary differential F(t)(yn, y;,) of the function f(y, y)=f,y)—Kyat(yn,y,).

5. Conclusions and discussions

Sections 3 and 4 successfully generalize Franco’s ARKN methods in [1] for scalar perturbed oscillators to oscillatory systems. Unlike the
methods proposed by Garcia et al. [10], the multidimensional ARKN methods (16) also share the favorable property that they integrate
exactly the unperturbed oscillators y” + Ky = 0 and the coefficients in the update depend on the matrix of principal frequencies. The
order conditions have a similar form to those conditions for the classical RKN methods after introducing the ¢-functions.

Finally, given an ARKN method of order p for the system of oscillatory second order ordinary differential equations (9), we can adopt
some variations in actual applications in order to avoid the evaluation of the functions ¢o(V) and ¢1(V). We can follow Franco’s advice
to use in the updates some polynomials Po(V?2) and P1(V?2) (for example, the Taylor polynomials of ¢o(V) and ¢1(V)) in place of the
functions ¢o(V) and ¢1(V), respectively, with Py and P; satisfying

go(V) = Po(V2) + O(hT™Y),  ¢1(V) = P1(V2) + O(h9), (28)

with V =h2K and q > p (see [4]). The weight functions b;(V) and b;(V) should also be replaced by some appropriate orders of truncations
of their Taylor series.
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