
Operator Theory:
Advances and Applications, Vol. 179, 111–143
c© 2007 Birkhäuser Verlag Basel/Switzerland

A Fast QR Algorithm for Companion Matrices

Shiv Chandrasekaran, Ming Gu, Jianlin Xia and Jiang Zhu

Abstract. It has been shown in [4, 5, 6, 31] that the Hessenberg iterates
of a companion matrix under the QR iterations have low off-diagonal rank
structures. Such invariant rank structures were exploited therein to design fast
QR iteration algorithms for finding eigenvalues of companion matrices. These
algorithms require only O(n) storage and run in O(n2) time where n is the
dimension of the matrix. In this paper, we propose a new O(n2) complexity
QR algorithm for real companion matrices by representing the matrices in the
iterations in their sequentially semi-separable (SSS) forms [9, 10]. The bulge
chasing is done on the SSS form QR factors of the Hessenberg iterates. Both
double shift and single shift versions are provided. Deflation and balancing
are also discussed. Numerical results are presented to illustrate both high
efficiency and numerical robustness of the new QR algorithm.

Mathematics Subject Classification (2000). 65F15, 65H17.

Keywords. Companion matrices, sequentially semi-separable matrices, struc-
tured QR iterations, structured bulge chasing, Givens rotation swaps.

1. Introduction

After nearly forty years since its introduction [18, 19], the QR algorithm is still the
method of choice for small or moderately large nonsymmetric eigenvalue problems
Ax = λx where A is an n × n matrix. At the moment of this writing, moderately
large eigenvalue problems refer to matrices of order 1, 000 or perhaps a bit higher.
The main reason for such a limitation in problem size is because the algorithm
runs in O(n3) time and uses O(n2) storage.

The success of the algorithm lies on doing QR iterations repeatedly, which
under mild conditions [29] leads to Schur form convergence. However, for a general
nonsymmetric dense matrix A, one QR decomposition itself already takes O(n3)
operations, so even if we are lucky enough to do only one iteration per eigenvalue,
the cost would still be O(n4). To make the algorithm practical, it is necessary to
first reduce A into an upper Hessenberg matrix H and then carry out QR iterations
on H accordingly. It is also important to incorporate a suitable shift strategy (since

112 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

QR iteration is implicitly doing inverse iteration), which can dramatically reduce
the number of QR iterations needed for convergence.

The rationale for reducing A to H is that the Hessenberg form is invariant un-
der QR iterations. Such Hessenberg invariance structure enables us to implement
QR iterations implicitly and efficiently by means of structured bulge chasing. In
practice, with the use of shifts, convergence to the Schur form occurs in O(n) bulge
chasing passes, each pass consists of O(n) local orthogonal similarity transforma-
tions, and each local similarity transformation takes O(n) operations. Therefore
the total cost of the algorithm is O(n3) operations. The algorithm has been tested
for many different types of examples and is stable in practice.

In this paper we consider the eigenvalue computation of a real companion
matrix of the form

C =

a1 a2 . . . an−1 an

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

∈ R
n×n. (1)

Since the eigenvalues of C coincide with the zeros of a real univariate polynomial

p(x) = xn − a1x
n−1 − · · · − an−1x − an, (2)

algorithms for computing matrix eigenvalues can be used to approximate the zeros
of p(x). In fact, the Matlab function roots finds the zeros of p(x) by applying the
implicit shift QR algorithm to C0, a suitably balanced version of C by means
of a diagonal scaling (note that C0 is not necessarily a companion matrix). The
algorithm costs O(n3) operations as we mentioned.

The O(n3) cost and O(n2) storage are still expensive for a large n. In fact, it
is possible to improve the performance of QR iterations by exploiting additional
invariance structures of the Hessenberg iterates of C under QR iterations. It has
been shown independently in [4] and in [5, 6] that the Hessenberg iterates of a
companion matrix preserve an off-diagonal low-rank structure, called sequentially
semi-separable structure and semi-separable structure, respectively. This fact was
then exploited to design companion eigensolvers which require only O(n2) time
and O(n) storage.

In this paper, we present a new O(n2) QR variant algorithm for the real com-
panion matrix, with experiments showing numerical stability. We implement both
the single shift and double shift QR iterations with compact sequentially semi-
separable structures. Instead of working on the similarity transformations of C,
we work on the QR factors of these matrices. A swapping strategy for Givens rota-
tion matrices is used to efficiently conduct structured bulge chasing. To maintain
compact structured forms of those QR factors we introduce a structure recovery
technique. We also provide a structured balancing strategy.

A Fast QR Algorithm for Companion Matrices 113

The paper is organized as follows. In Section 2, we describe the sequentially
semi-separable representation and some related operations including matrix addi-
tions and matrix-matrix multiplications. In Section 3, we adopt the approach in
[4] to prove why all Hessenberg iterates of C have off-diagonal blocks with ranks
never exceeding 3. Similar off-diagonal rank results can be easily extended to the
QR factors Q and R in the QR iterations. Thus Section 4 shows the representa-
tions of Q and R in compact SSS forms. In Section 5, we describe the deflation
technique and the convergence criterion of the new QR algorithm, and then by
using a concrete 5× 5 matrix example, we demonstrate how to implicitly do both
single and double shift QR iterations based on the compact representations of Q
and R. Balancing strategy, which preserves the semi-separable structure, is dis-
cussed in Section 6. In Section 7, we present numerical results to demonstrate the
performance. Finally, Section 8 draws some concluding remarks.

2. SSS representation

In this section we lay out some necessary background information about sequen-
tially semi-separable (SSS) representations [9, 10]. Closely related matrix struc-
tures include quasiseparable matrices (e.g., [14, 15]), hierarchically semi-separable
matrices [8], etc. Both the name “SSS” and “quasiseparable” refer to the same type
of matrices. Related matrix properties and operations are discussed in the above
references. Here we use SSS representations and some associated operations in
[9, 10]. Similar results also appear in [14]. They will be used in our fast structured
QR iterations.

2.1. SSS notations

We say that A ∈ R
n×n is in SSS form if it is represented as

A = (Aij), where Aij ∈ R
mi×mj , Aij =

Di if i = j,
UiWi+1 · · ·Wj−1VT

j if i < j,
PiRi−1 · · ·Rj+1QT

j if i > j.
(3)

Here the empty products are treated as the identity matrices, and the partitioning
sequence {mi}r

i=1 satisfies
∑r

i=1 mi = n, with r being the number of block rows
(or columns) of the partitioning scheme. The SSS generators {Di}r

i=1, {Ui}r−1
i=1 ,

{Vi}r
i=2, {Wi}r−1

i=2 , {Pi}r
i=2, {Qi}r−1

i=1 and {Ri}r−1
i=2 are real matrices with dimen-

sions specified in Table 2.1.

Di Ui Vi Wi Pi Qi Ri

mi × mi mi × ki mi × ki−1 ki−1 × ki mi × li mi × li+1 li+1 × li

Table 1. Dimensions of matrices in (3).

To illustrate the compactness of this SSS representation when the off-diagonal
blocks of A have small ranks, assume mi = ki = li = p � n, then we only need to

114 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

store the SSS generators of A with about 7rp2(= 7pn) working precision numbers
instead of storing every entry of A with n2 numbers.

It should be noted that the SSS structure of a given matrix A depends on
the partitioning sequence {mi}r

i=1. Different sequences will lead to different rep-
resentations.

The power of SSS representation for matrices with low-rank off-diagonal
blocks has been shown in [9, 10, 11, 30], where fast and stable linear system
solvers based on SSS representation were designed with applications to many
relevant engineering problems. In [9, 10], algorithms for SSS matrix operations
have been systematically introduced, including constructions of the SSS represen-
tations, (LU-like) factorizations of SSS matrices, fast SSS matrix additions and
fast matrix-matrix multiplications, etc. For our purpose of designing a new QR
iteration method for companion matrices, we need to use two important SSS ma-
trix operations, SSS addition and SSS multiplication. We present the results from
[9, 10] without proofs.

2.2. SSS addition

Let A and B be two SSS matrices that are conformally partitioned, that is,
mi(A) = mi(B) for i = 1, . . . , r. Then their sum A + B is an SSS matrix with
representation given by the following SSS generators [9, 10]:

Di(A + B) = Di(A) + Di(B),

Ui(A + B) =
(Ui(A) Ui(B)

)
, Vi(A + B) =

(Vi(A) Vi(B)
)
,

Wi(A + B) =
(Wi(A) 0

0 Wi(B)

)
,

Pi(A + B) =
(Pi(A) Pi(B)

)
, Qi(A + B) =

(Qi(A) Qi(B)
)
,

Ri(A + B) =
(Ri(A) 0

0 Ri(B)

)
.

Remark 2.1. Note that the computed SSS representation of the sum might be
inefficient in the sense that the dimensions of the SSS generators are increasing
additively, whereas in some cases the real ranks of the off-diagonal blocks might
be far smaller. Ideally, these formulas should be followed by some sort of rank-
reduction or compression step [9, 10].

2.3. SSS multiplication

Let A and B be two SSS matrices that are conformally partitioned. Define forward
and backward recursions

S1 = 0, Si+1 = QT
i (A)Ui(B) + Ri(A)SiWi(B), for i = 1, 2, . . . , r − 1,

Tn = 0, Ti−1 = VT
i (A)Pi(B) + Wi(A)TiRi(B), for i = r, r − 1, . . . , 2.

A Fast QR Algorithm for Companion Matrices 115

Then the SSS generators of the matrix A·B can be computed through the following
formulas [9, 10]:

Di(A · B) = Di(A)Di(B) + Pi(A)SiVT
i (B) + Ui(A)TiQT

i (B),

Ui(A · B) =
(Di(A)Ui(B) + Pi(A)SiWi(B) Ui(A)

)
,

Vi(A · B) =
(Vi(B) DT

i (B)Vi(A) + Qi(B)T T
i WT

i (A)
)
,

Wi(A · B) =
(Wi(B) 0

VT
i (A)Ui(B) Wi(A)

)
,

Pi(A · B) =
(Di(A)Pi(B) + Ui(A)TiRi(B) Pi(A)

)
,

Qi(A · B) =
(Qi(B) DT

i (B)Qi(A) + Vi(B)ST
i RT

i (A)
)
,

Ri(A · B) =
(Ri(B) 0

QT
i (A)Pi(B) Ri(A)

)
.

Remark 2.2. In the case where mi = ki = li = p, the total operation count of
this fast multiplication algorithm is at most 40p3n, contrasting with 2n3 flops for
doing ordinary matrix-matrix multiplication.

3. Invariant off-diagonal low-rank structure

The classical Hessenberg QR algorithm for finding eigenvalues computes a series
of Hessenberg matrices Hk which are orthogonally similar to C in (1):

H(0) = C,

H(k) = Q(k)R(k), H(k+1) = R(k)Q(k), k = 0, 1, 2, . . .

Generally shifts are used in the iterations. It has been shown independently in
[4] and [5] that each such Hessenberg matrix Hk (real or complex) maintains off-
diagonal low-rank structures. More precisely, the following result holds.

Theorem 3.1. [4, 5] max1≤j<n rank(H(k)(1 : j, j + 1 : n)) ≤ 3.

In what follows, we concentrate on real companion matrices. The proof of
the theorem relies on the results in the following two lemmas [4].

Lemma 3.2. For any Hessenberg matrix H(k) in the Hessenberg QR iterations,
there exist an orthogonal matrix Z(k) ∈ R

n×n and two vectors x(k), y(k) ∈ R
n so

that
H(k) = Z(k) + x(k)y(k)T . (4)

(H(k) is an orthogonal-plus-rank-one structure.)

It suffices to establish the equation for H0 since the structure of a low-rank
modification to an orthogonal matrix is preserved under orthogonal similarity

116 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

transformations. For H(0) = C, we can write

C =

0 0 . . . 0 ±1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

+

1
0
0
...
0

(

a1 a2 . . . an−1 an ∓ 1
)

≡ Z(0) + x(0)y(0)T .

For convenience, we choose the sign of the (1, n)-entry of Z(0) so that det(Z(0)) = 1.

Lemma 3.3. An orthogonal matrix Z is rank-symmetric [4], in the sense that for
any 2-by-2 block partitioning

Z =
(

Z11 Z12

Z21 Z22

)
,

where Z11 and Z22 are square, we have rank(Z12) = rank(Z21).

This is a direct outcome of the CS decomposition (see [17]). Actually not only
rank(Z12) = rank(Z21), Z12 and Z21 have the same singular values as well. There-
fore, we can expect that a slightly perturbed orthogonal matrix is still numerically
rank-symmetric.

Now let us prove Theorem 3.1. For simplicity of the notation, we drop the
superscript (k) from (4) in the rest of this section.

Proof of Theorem 3.1. Write L = xyT . According to Lemma 3.2, we have H =
Z + L. Partition H as

H =
(

H11 H12

H21 H22

)
,

where H11 and H22 are square, and partition Z and L conformally. Then H21 has
rank at most 1, since there is only one possible nonzero in its upper right corner.
In addition,

|rank(H12) − rank(H21)| = |(rank(H12) − rank(Z12)) − (rank(H21) − rank(Z12))|
≤ |rank(H12) − rank(Z12)| + |rank(H21) − rank(Z21)|

(since Z is rank-symmetric)

≤ rank(L12) + rank(L21)

≤ 2 · rank(L) = 2.

Thus
rank(H12) ≤ rank(H21) + 2 ≤ 3. �

Theorem 3.1 indicates that all H in the QR iterations have low-rank off-
diagonal blocks. Such a low-rank structure admits a compact representation for
H .

A Fast QR Algorithm for Companion Matrices 117

Bini, Eidelman, et al. [6] take advantage of this property and represent each
H in a quasiseparable form which can be represented by a linear number of pa-
rameters. Similarly the new QR algorithm proposed by Bindel, Chandresekaran,
et al. in [4] exploits this structure by writing the Hessenberg iterate H in terms
of its SSS representation. Both type of schemes provide explicit formulas for QR
iterations with single shifts.

Because during the structured bulge chasing passes only linear memory space
and only local updating for the quasiseparable or SSS generators of H are required,
those new QR algorithms are able to achieve O(n2) complexity and O(n) storage.
To maintain the compact quasiseparable or SSS representations for H , the algo-
rithm in [6] involves some compression schemes, and the algorithm in [4] incurs
merging and splitting SSS representations repeatedly during each bulge chasing
pass.

In this paper we propose a different approach for QR iterations: instead of
working explicitly on the compact representations of H , we choose to work on
Q and R directly, and in the meantime, to maintain compact representations for
them, where Q and R are QR factors of H . This allows more flexibility in handling
the structured QR iterations. Partly because of this reason we are able to provide
both single shift and double shift QR iterations, whereas [4] and [6] only provide
single shift versions.

We use the following theorem to characterize the similar low-rank off-diagonal
structures of Q and R.

Theorem 3.4. Suppose that a nonsingular upper Hessenberg matrix H can be ex-
pressed as H = Z + xyT , with Z being orthogonal and x, y ∈ R

n, and suppose that
it has QR factorization: H = QR. Then

1. Q has the form: Q = Q1Q2 · · ·Qn−1, where each Qi is a Givens rotation;
2. R can be written as: R = Z̃ + x̃yH, with Z̃ being orthogonal. Furthermore, if

we partition R as

R =
(

R11 R12

0 R22

)
,

where R11 and R22 are square, then

rank(R12) ≤ 2.

Proof. For any Hessenberg matrix H , its QR decomposition can be obtained by
applying a sequence of Givens rotations {Qi}n−1

i=1 to zero out its subdiagonal entries
from the top to bottom. Specifically, we will have Q = Q1Q2 · · ·Qn−1 and

R = QT
n−1 · · ·QT

2 QT
1 · H = QT (Z + xyT) =: Z̃ + x̃yT

where Z̃ := QT Z and x̃ := QT x. We can then finish the proof by using inequalities
similar to those in the proof of Theorem 3.1. �

118 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

4. Compact Representations of Q and R

Theorem 3.4 implies that it is possible to represent Q and R in compact forms. We
dedicate this section to the detailed description of such compact representations.

4.1. Compact representations of Q

Consider an orthogonal matrix Q which can be expressed in the form

Q = Q1Q2 · · ·Qn−1 (5)

where Qk is a Givens rotation matrix

Qk = diag
(

Ik−1,

(
ck sk

−sk ck

)
, In−k−1

)
, ck, sk ∈ R, c2

k + s2
k = 1. (6)

For convenience we call Qk the k-th Givens (rotation) matrix. Multiplying out
the product (5), it is straightforward to verify that Q takes the following form
(assuming c0 = cn = 1):

Q = Q1Q2 · · ·Qn−1

=

c0c1 c0s1c2 c0s1s2c3 c0s1 · · · sn−1cn

−s1 c1c2 c1s2c3 c1s2 · · · sn−1cn

−s2 c2c3 c2s3 · · · sn−1cn

.
...

...
−sn−2 cn−2cn−1 cn−2sn−1cn

−sn−1 cn−1cn

.

It is evident that the maximum off-diagonal rank of Q is at most one. Hence an
SSS representation for Q will come in handy when we need to conduct SSS matrix-
matrix additions or multiplications. With the partitioning sequence {mi = 1}n

i=1,
the SSS generators of Q are given by Table 2.

Di(Q) Ui(Q) Vi(Q) Wi(Q) Pi(Q) Qi(Q) Ri(Q)

ci−1ci ci−1si ci si 1 −si 0

Table 2. SSS generators of Q.

4.2. Compact representations of R

The off-diagonal low-rank structure of R in Theorem (3.4) admits a compact SSS
representation. Using the partitioning sequence {mi = 1}n

i=1 and taking into ac-
count that R is upper triangular, we have

R = (Rij)N×N , where Rij =

di, if i = j,

uiwi+1 · · ·wj−1v
T
j , if i < j,

0, if i > j.
(7)

Again, the empty products above are treated as identity matrices. The dimensions
of the (nonzero) SSS generators of R are specified in Table 3.

A Fast QR Algorithm for Companion Matrices 119

Generator Di(R) Ui(R) Vi(R) Wi(R)
matrix di ui vi wi

Size 1 × 1 1 × p 1 × p p × p

Table 3. Dimensions of the SSS generators of R.

According to Theorem 3.4, a compact SSS representation of R will have p
not exceeding 2. During our new QR algorithm, however, we will allow not-so-
compact (redundant) intermediate SSS generators of R but will compress them
back to compact representations at the end of each QR iteration step.

Remark 4.1. As the SSS generators can be simply represented by a small number
of vectors or parameters, later in most places of this paper for convenience we
directly provide those vectors or parameters instead of writing the SSS forms.

5. A new QR algorithm for C

Consider the n × n companion matrix (1). Let

Z =

0 · · · 0 ±1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 , e1 =

1
0
...
0

 , and y =

a1

a2

...
an ∓ 1

 ,

and choose the sign of the (1, n)-entry of Z so that det(Z) = 1. Clearly,

C = Z + e1y
T .

Instead of updating the Hessenberg iterates H in the standard QR algorithm, our
new algorithm will carry out the implicit shift QR iterations based on the compact
representations of Q and R mentioned in the previous section. The structured
representations of Q and R will lead to a more delicate deflation scheme and a
more convenient bulge chasing procedure, which are to be discussed in detail in
the following subsections.

5.1. Swapping real Givens matrices

Before presenting the detailed QR iterations we first consider an important tech-
nique which swaps two or three Givens matrices and will be used in the structured
bulge chasing. The notion of “swap” will become evident in a moment. Similar
techniques can also be found in other places (e.g., [28]).

First consider the product Qi · Qj, 1 ≤ i, j < n, where Qi and Qj are two
real Givens matrices as specified in (6).

120 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

• If i = j, then multiplying the product out we get Q̂i ≡ Qi · Qj, which is
another Givens matrix, and(

ĉi ŝi

−ŝi ĉi

)
, ĉi = cicj − sisj , ŝi = cisj + sicj. (8)

• If |i − j| ≥ 2, then
Qi · Qj = Qj · Qi, (9)

which is literally swapping the two Givens matrices.
Next consider the product of the form: QiQi+1Gi, where Qi and Gi are two

i-th Givens matrices and Qi+1 is the (i + 1)-st Givens matrix, with 1 ≤ i ≤ n− 2.
Without loss of generality, we use Q1Q2G1 as an example. Given the three Givens
matrices in R

3×3

Q1 =

c1 s1

−s1 c1

1

 , Q2 =

1
c2 s2

−s2 c2

 , G1 =

α1 β1

−β1 α1

1

 ,

(10)
we want to find another three Givens matrices in R

3×3

Ĝ2 =

1
α̂2 β̂2

−β̂2 α̂2

 , Q̂1 =

ĉ1 ŝ1

−ŝ1 ĉ1

1

 , Q̂2 =

1
ĉ2 ŝ2

−ŝ2 ĉ2

 ,

(11)
so that

Q1Q2G1 = Ĝ2Q̂1Q̂2. (12)

We present Algorithm 1 (next page) for the computation of Ĝ2, Q̂1 and Q̂2.
Note that both approaches above for computing Q̂1 and Q̂2 (in exact arith-

metic) yield Q1Q2G1 = Ĝ2Q̂1Q̂2. In a similar fashion, given three Givens matrices
G2, Q1 and Q2 ∈ R

3×3, we can compute another three Givens matrices Q̂1, Q̂2

and Ĝ1 ∈ R
3×3 so that

G2Q1Q2 = Q̂1Q̂2Ĝ1, (13)

where G2 has a similar form as Ĝ2 in (11) but without the hats in the notations,
and the same situation holds for Ĝ1 and G1.

For the convenience of future reference, we call (12) a backward Givens swap,
and (13) a forward Givens swap, according to the direction of G1 (or G2) being
pushed. It is not hard to prove the backward stability of such swapping formulas.

Lastly, consider a special case of a backward Givens swap: Qn−1QnGn−1 with
Qn = diag [In−1,−1]. We want to find another Givens matrix Q̂n−1 so that

Qn−1QnGn−1 = Q̂n−1Qn. (14)

This boils down to inspect the products of their trailing 2 × 2 blocks:(
cn−1 sn−1

−sn−1 cn−1

)(
1

−1

)(
αn−1 βn−1

−βn−1 αn−1

)
=
(

ĉn−1 ŝn−1

−ŝn−1 ĉn−1

)(
1

−1

)

A Fast QR Algorithm for Companion Matrices 121

Algorithm 1 Givens swap of type I

(1) Compute

A := Q1Q2G1 =

c1α1 − s1c2β1 c1β1 + s1c2α1 s1s2

−s1α1 − c1c2β1 −s1β1 + c1c2α1 c1s2

−s2β1 −s2α1 c2

 =

× × ×
× × ×
× × ×

 .

(2) Compute a Givens matrix Ĝ2 so that

A1 := ĜT
2 A =

× × ×
× × ×

× ×

 .

(3) We have two different approaches to get Q̂1 and Q̂2.
• Either, let{

ĉ1 = A1(1, 1),
ŝ1 = −A1(2, 1), and

{
ĉ2 = A1(3, 3),
ŝ2 = −A1(3, 2),

since if there holds A1 = Q̂1Q̂2, A1 must also have the form

A1 =

ĉ1 ŝ1ĉ2 ŝ1ŝ2

−ŝ1 ĉ1ĉ2 ĉ1ŝ2

−ŝ2 ĉ2

 .

• Or, continue to find Q̂1 so that

A2 := Q̂T
1 A1 =

× × ×
× ×
× ×

 ;

and then find Q̂2 so that

A3 := Q̂T
2 A2 =

× × ×
× ×

×

 .

Since A3 is triangular and orthogonal, it must be an identity matrix.

which leads to {
ĉn−1 = cn−1αn−1 + sn−1βn−1,
ŝn−1 = − cn−1βn−1 + sn−1αn−1.

(15)

5.2. Initial QR factorization of C

We start the new QR algorithm by first finding the initial QR factorization of
C ≡ C(0). This can be easily done by applying a sequence of (transposes of)
Givens rotations

{
QT

i

}n−1

i=1
to C from the left side to zero out its subdiagonal

entries (which are 1’s) from top to bottom. The process can be expressed as

QT
n−1(Q

T
n−2(· · · (QT

2 (QT
1 C)) · · ·)) =⇒ R(0), (16)

122 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

where R is an upper triangular matrix and Qk is the k-th Givens rotation matrix
of the form (6).

Thus from equation (16), we can write

C = Q1Q2 · · ·Qn−1 · R(0).

Let Q(0) ≡ Q1Q2 . . . Qn−1. Then Q(0) is completely represented in terms of its
cosine and sine parameters: {ci, si}n

i=1 (with the assumptions cn = 1 and sn = 0).
As for R(0), it is straightforward to check that in terms of {ci, si}n

i=1 and {ai}n
i=1

we have:

R(0) = (R(0)
ij), where R

(0)
ij =

cisi−1 · · · s1ai − si if i = j,
cisi−1 · · · s1aj if i < j,
0 if i > j.

Or equivalently, we can use the following SSS generators to completely describe
R(0):

D(R(0)) ≡ di = cisi−1 · · · s1ai − si, if 1 ≤ i ≤ n,
U(R(0)) ≡ ui = cisi−1 · · · s1, if 1 ≤ i ≤ n − 1,
V(R(0)) ≡ vi = ai, if 2 ≤ i ≤ n,
W(R(0)) ≡ wi = 1, if 2 ≤ i ≤ n − 1.

Note that for now, p, the common column dimension of SSS generators, is 1.

5.3. Structured QR iteration: single shift case

In this section, by using a concrete 5 × 5 example, we describe in detail how to
implement the following implicit single shift QR iteration on an H as in Theorem
3.4, where σ ∈ R is a shift.

H − σI = QR,

Ĥ = RQ + σI = QT HQ.

Contrasting with the standard QR algorithm, where we chase a bulge along the
second subdiagonal of the Hessenberg iterate H , in our new QR algorithm, we
create and chase a bulge along the subdiagonal of R.

Before we start, we make two notations clear:

Ḡk : the Givens rotation used to generate a bulge at R(k + 1, k),
G̃k : the Givens rotation used to eliminate the bulge at R(k + 1, k),

where R(i, j) denotes the (i, j) entry of R.
Suppose that at the beginning of the QR iteration, we have

H = Q1Q2Q3Q4 · R = Z + xyT ,

where Z is orthogonal but not explicitly stored.

A Fast QR Algorithm for Companion Matrices 123

(1) Initiate bulge chasing. Let H0 = H . Choose a Givens rotation Ḡ1 of the form

Ḡ1 = diag
((

c̄1 s̄1

−s̄1 c̄1

)
, I3

)
, where c̄2

1 + s̄2
1 = 1,

so that the first column of Ḡ1, that is, the vector
(

c̄1 −s̄1 0 0 0
)T , is

proportional to,
(

h11 − σ h21 0 0 0
)T , the first column of H0 − σI.

Let
H1 ≡ ḠT

1 H0Ḡ1 = (ḠT
1 Q1)Q2Q3Q4 · RḠ1.

Then a bulge is created at the (2, 1) entry of RḠ1. In fact, if we formed RḠ1

explicitly, we should expect

RḠ1 =

× × × × ×
+ × × × ×

× × ×
× ×

×

,

where the bulge is indicted by a plus sign. Next choose

G̃1 = diag
((

c̃1 s̃1

−s̃1 c̃1

)
, I3

)
, where c̃2

1 + s̃2
1 = 1

so that R1 ≡ G̃T
1 (RḠ1) is upper triangular again. Let Q̄1 = ḠT

1 Q1, then

H1 = (ḠT
1 Q1)Q2Q3Q4G̃1 · G̃T

1 R0Ḡ1

= Q̄1Q2Q3Q4G̃1 · R1

= (Q̄1Q2G̃1)Q3Q4 · R1 (G̃1 pushed forward)

= (Ḡ2Q̂1Q̄2)Q3Q4 · R1 (backward Givens swap)

= Ḡ2 · Q̂1Q̄2Q3Q4 · R1.

(2) Second chasing. Let

H2 ≡ ḠT
2 H1Ḡ2 = Q̂1Q2Q3Q4 · R1Ḡ2,

where if explicitly formed,

R1Ḡ2 =

× × × × ×
× × × ×
+ × × ×

× ×
×

.

Thus the bulge has been “chased” from the (2, 1) position to the (3, 2)
position. To eliminate this bulge, we choose a Givens rotation G̃2 so that

124 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

R2 ≡ G̃T
2 (R1Ḡ2) becomes upper triangular again. Thus

H2 = Q̂1Q̄2Q3Q4G̃2 · G̃T
2 R1Ḡ2

= Q̂1(Q̄2Q3G̃2)Q4 · R2 (G̃2 pushed forward)

= Q̂1(Ḡ3Q̂2Q̄3)Q4 · R2 (backward Givens swap)

= Ḡ3 · Q̂1Q̂2Q̄3Q4 · R2. (Ḡ3 pushed forward).

(3) Third chasing. Similarly, let

H3 ≡ ḠT
3 H2Ḡ3 = Q̂1Q̂2Q̄3Q4 · R2Ḡ3,

where if explicitly formed,

R2Ḡ3 =

× × × × ×
× × × ×

× × ×
+ × ×

×

.

Thus the bulge has been chased from the (3, 2) position to the (4, 3) po-
sition. To eliminate this bulge, we choose a Givens rotation G̃3 so that
R3 ≡ G̃T

3 (R2Ḡ2) becomes upper triangular again. Thus

H3 = Q̂1Q̂2(Q̄3Q4G̃3) · G̃T
3 R2Ḡ3

= Q̂1Q̂2(Ḡ4Q̂3Q̄4) · R3 (backward Givens swap)

= Ḡ4 · Q̂1Q̂2Q̂3Q̄4 · R3. (G̃4 pushed forward).

(4) Final chasing. Let

H4 ≡ ḠT
4 H3Ḡ4 = Q̂1Q̂2Q̂3Q̄4 · R3Ḡ4,

where if explicitly formed,

R3Ḡ4 =

× × × × ×
× × × ×

× × ×
× ×
+ ×

.

Thus the bulge has been chased from (4, 3) to (5, 4). This leads us to choose
a Givens rotation G̃4 such that R4 ≡ G̃T

4 (R3Ḡ4) becomes upper triangular
again. Let Q̂4 ≡ Q̄4G̃4, then

H4 = Q̂1Q̂2Q̂3(Q̄4G̃4) · (G̃T
4 R3Ḡ4).

= Q̂1Q̂2Q̂3Q̂4 · R4.

Let Ĥ = H4. A cycle of QR iteration with single shift is then completed.

A Fast QR Algorithm for Companion Matrices 125

Write Ḡ ≡ Ḡ1Ḡ2Ḡ3Ḡ4, G̃ ≡ G̃1G̃2G̃3G̃4 and Q̂ = Q̂1Q̂2Q̂3Q̂4. Then the
structured single shift bulge chasing procedure presented above tells us

H4 = ḠT
4 ḠT

3 ḠT
2 ḠT

1 · H0 · Ḡ1Ḡ2Ḡ3Ḡ4 = ḠT · H0 · Ḡ,

R4 = G̃T
4 G̃T

3 G̃T
2 G̃T

1 · R0 · Ḡ1Ḡ2Ḡ3Ḡ4 = G̃T · R0 · Ḡ, (17)

H4 = Q̂ · R4.

Remark 5.1. Since the first column of Ḡ is proportional to that of H0 − σI,
according to the well known implicit Q theorem, Ḡ will be the same (up to sign
differences in each column) as the Q-factor of the QR decomposition of H0 − σI.

Next we discuss the computation and elimination of the bulges in terms of
the structured representations. Note that none of the Rk’s are formed explicitly
except certain entries. The explanation is as follows. Rk is represented via its
SSS generators, {di, ui, vi, wi}. Not all these generators are updated during the
intermediate steps of a bulge chasing cycle. We need to form explicitly the main
diagonal vector (di generators) and the first superdiagonal vector of Rk in order
to compute the bulges. To simplify the notations we temporarily write Rk as R,
in a general SSS form:

R =

. . . · · · ...
di uiv

T
i+1 uiwi+1v

T
i+2 · · · uiwi+1 · · ·wn−1v

T
n

di+1 ui+1v
T
i+2 · · · ui+1wi+2 · · ·wn−1v

T
n

di+2 · · · ui+2wi+3 · · ·wn−1v
T
n

. . .
...

,

where the i-th through (i+2)-nd rows are shown. Let h be the first superdiagonal
vector. That is, hi ≡ Ri,i+1 = uiv

T
i+1. During the bulge chasing, a bulge bi is

created by right multiplying a Givens matrix Ḡj =
(

ci −si

si ci

)
to a 2-by-2

upper triangular diagonal block:
(

d̂i ĥi

bi d̂i+1

)
=
(

di hi

0 di+1

)(
ci −si

si ci

)
. (18)

A new Givens matrix G̃j =
(

c̃i −s̃i

s̃i c̃i

)
is now computed based on

(
d̂i

bi

)
so

as to eliminate the bulge bi:
(

d̃i h̃i

0 d̃i+1

)
=
(

c̃i −s̃i

s̃i c̃i

)(
d̂i ĥi

bi d̂i+1

)
. (19)

126 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

Then the i-th and (i+1)-st rows of R should be updated, which is done as follows:

(
c̃i −s̃i

s̃i c̃i

)(
d̂i ĥi uiwi+1v

T
i+2 · · · uiwi+1 · · ·wn−1v

T
n

bi d̂i+1 ui+1v
T
i+2 · · · ui+1wi+2 · · ·wn−1v

T
n

)

=

((
d̃i h̃i

0 d̃i+1

) (
c̃i −s̃i

s̃i c̃i

)(
uiwi+1

ui+1

)(
vT

i+2 wi+2v
T
i+2 · · · wi+2 · · ·wn−1v

T
n

))

=
((

d̃i h̃i

0 d̃i+1

) (
ûi

ûi+1

)(
vT

i+2 wi+2v
T
i+2 · · · wi+2 · · ·wn−1v

T
n

))

=

(
d̃i h̃i ûiv

T
i+2 · · · ûiwi+2 · · ·wn−1v

T
n

0 d̃i+1 ûi+1v
T
i+2 · · · ûi+1wi+2 · · ·wn−1v

T
n

)
. (20)

That is, we only need to find the updated d̃i, d̃i+1, h̃i, ûi, and ûi+1. After this
step, the new superdiagonal entry hi+1 = ûi+1v

T
i+1 is formed. The next bulge will

be generated with another Givens matrix applied on the right to the next 2-by-2
diagonal block

(
d̃i+1 hi+1

0 di+2

)
,

and the above process repeats. Therefore, during the bulge chasing cycle, {di, ui}
are updated, and {hi} are formed. Clearly, we use each hi once a time and do not
need to store the entire h.

Equation (20) is sufficient for deriving hi+1 and thus further computing and
eliminating the bulges. However, the ûi it provides may not be an SSS generator of
the final R. As an example, the updated value of Ri,i+1 is h̃i, which is generally not
ûiv

T
i+1. Therefore, to get a final updated SSS form for R, we update all {ui, vi, wi}

at the end of the bulge chasing cycle. For example, in the process (17) above, the
SSS generators of R4 are obtained by multiplying three SSS matrices G̃T , R0, and
Ḡ using the fast SSS matrix-matrix multiplication formulas in Subsection 2.3.

Remark 5.2. An outcome of using those multiplication formulas is that the column
dimensions of R4’s SSS generators will grow additively by 2 (in case of single shift
bulge chasing), since both Ḡ and G̃ have the maximum off-diagonal rank 1. In
Subsection 5.5 we will show how to recover a compact representation for R4.

5.4. Structured QR iteration: double shift case

This section describes how to maintain real arithmetic by employing two shifts
σ and σ̄ at the same time, where σ̄ is the complex conjugate of σ (although in
this paper notations with bars do not necessarily mean complex conjugates). The

A Fast QR Algorithm for Companion Matrices 127

process of shifting σ and σ̄ successively is like

H − σI = Q(1)R(1),

H(1) = R(1)Q(1) + σI =
(
Q(1)

)T

H
(
Q(1)

)
,

H(1) − σ̄I = Q(2)R(2),

Ĥ = H(2) = R(2)Q(2) + σ̄I =
(
Q(1)Q(2)

)T

H
(
Q(1)Q(2)

)
,

which leads to

M ≡
(
Q(1)Q(2)

)(
R(2)R(1)

)
= (H − σI)(H − σ̄I) = H2 − sH + tI, (21)

with s = 2 Re(σ), t = |σ|2. Thus
(
Q(1)Q(2)

) (
R(2)R(1)

)
is the QR decomposition

of the real matrix M , and therefore Q(1)Q(2), as well as R(2)R(1), can be chosen
real, which means that Ĥ =

(
Q(1)Q(2)

)T
H
(
Q(1)Q(2)

)
is also real.

While the rationale for maintaining real arithmetic is exactly the same, the
difference of our new algorithm from the standard one lies in the use of the com-
pact representations for Q and R. Contrasting with the standard implicit double
shift QR algorithm where a 2-by-2 bulge is chased along the subdiagonal of the
Hessenberg iterate H , in our new algorithm the 2-by-2 bulge is chased along the
subdiagonal of R. Before we start, we make the following notations clear

F̄k+1 : the 1st Givens used to generate a nonzero at R(k + 2, k),
Ḡk : the 2nd Givens used to generate nonzeros at R(k + 1 : k + 2, k),
F̃k+1 : the 1st Givens used to eliminate the nonzero at R(k + 2, k),
G̃k : the 2nd Givens used to eliminate the nonzero at R(k + 1, k).

Let us use the same 5-by-5 example from the last subsection. Suppose that
at the beginning of the QR iteration, we have

H0 ≡ H = Q1Q2Q3Q4 · R = Z + xyT ,

where Z is orthogonal but not explicitly stored.
(1) Initiate bulge chasing. Given a pair of complex conjugate shifts σ and σ̄, we

compute the first column of M in (21):

Me1 = (H2 − sH + tI)e1 =
(

x1 x2 x3 0 · · · 0
)T

,

where

x1 = h2
11 + h12h21 − sh11 + t,

x2 = h21(h11 + h22 − s),
x3 = h21h32.

(22)

Then find two Givens rotations Ḡ1 and F̄2 such that

(
Ḡ1

)T (
F̄2

)T

x1

x2

x3

 =

×
0
0

 .

128 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

In other words, the first column of
(
F̄2Ḡ1

)
should be made proportional to

Me1. Let

H1 ≡ (F̄2Ḡ1

)T · H0 ·
(
F̄2Ḡ1

)

=
(
Ḡ1

)T · ((F̄2)T Q1Q2

)
Q3Q4 · R0F̄2Ḡ1

=
(
Ḡ1

)T ·
(
Q̄1Q̄2F̃1

)
Q3Q4 · R0F̄2Ḡ1 (forward Givens swap)

=
((

Ḡ1

)T
Q̄1

)
Q̄2Q3Q4 ·

(
F̃1R0

)
F̄2Ḡ1

= Q̂1Q̄2Q3Q4 · R̃0F̄2Ḡ1,

where Q̂1 ≡ (Ḡ1)T Q̄1, R̃0 ≡ F̃1R0, and if formed explicitly,

R̃0F̄2Ḡ1 =

× × × × ×
+ × × × ×
+ + × × ×

× ×
×

.

We see that there is a 2-by-2 bulge, indicted by plus signs. Next choose two
Givens rotations F̃2 and G̃1 to zero out entries (3, 1) and (2, 1) of R̃0F̄2Ḡ1 in

order. Let R̃1 ≡
(
G̃1

)T (
F̃2

)T

·
(
R̃0F̄2Ḡ1

)
, then we may write

H1 = Q̂1Q̄2Q3Q4

(
F̃2G̃1

)
· R̃1

= Q̂1

(
Q̄2Q3F̃2

)
Q4G̃1 · R̃1 (F̃2 pushed forward)

= Q̂1

(
F̄3Q̃2Q̄3

)
Q4G̃1 · R̃1 (backward Givens swap)

= F̄3

(
Q̂1Q̃2G̃1

)
Q̄3Q4 · R̃1 (F̄3 and G̃1 pushed forward.)

= F̄3

(
Ḡ2
̂̂
Q1Q̂2

)
Q̄3Q4 · R̃1 (backward Givens swap)

= F̄3Ḡ2 · ̂̂Q1Q̂2Q̄3Q4 · R̃1.

(2) Second chasing. Let

H2 ≡ (F̄3Ḡ2

)T · H1 ·
(
F̄3Ḡ2

)
= ̂̂

Q1Q̂2Q̄3Q4 ·
(
R̃1F̄3Ḡ2

)
,

where if explicitly formed,

R̃1F̄3Ḡ2 =

× × × × ×
× × × ×
+ × × ×
+ + × ×

×

.

A Fast QR Algorithm for Companion Matrices 129

Thus compared with R̃0F̄2Ḡ1, the 2-by-2 bulge has been chased to the right
for one column. Next choose two Givens rotations F̃3 and G̃2 to zero out

(4, 2) and (3, 2) entries in order. Let R̃2 ≡
(
G̃2

)T (
F̃3

)T

·
(
R̃1F̄3Ḡ2

)
, then

we may write

H2 = ̂̂
Q1Q̂2Q̄3Q4

(
F̃3G̃2

)
· R̃2

= ̂̂
Q1Q̂2

(
Q̄3Q4F̃3

)
G̃2 · R̃2

= ̂̂
Q1Q̂2

(
F̄4Q̃3Q̄4

)
G̃2 · R̃2 (backward Givens swap)

= F̄4
̂̂
Q1

(
Q̂2Q̃3G̃2

)
Q̄4 · R̃2 (F̄4 and G̃2 pushed forward)

= F̄4
̂̂
Q1

(
Ḡ3
̂̂
Q2Q̂3

)
Q̄4 · R̃2 (backward Givens swap)

= F̄4Ḡ3 · ̂̂Q1
̂̂
Q2Q̂3Q̄4 · R̃2. (Ḡ3 pushed forward).

(3) Final two steps of bulge chasing. Let

H3 ≡ (F̄4Ḡ3

)T · H2 ·
(
F̄4Ḡ3

)
= ̂̂

Q1
̂̂
Q2Q̂3Q̄4 ·

(
R̃2F̄4Ḡ3

)
,

where if explicitly formed,

R̃2F̄4Ḡ3 =

× × × × ×
× × × ×

× × ×
+ × ×
+ + ×

.

Thus compared with R̃1F̄3Ḡ2, the 2-by-2 bulge has been chased by one col-
umn to the lower right. Next choose two Givens rotations F̃4 and G̃3 to zero

out the (5, 3) and (4, 3) entries in order. Let R̃3 ≡
(
G̃3

)T (
F̃4

)T

·
(
R̃2F̄4Ḡ3

)
,

then we may write

H3 = ̂̂
Q1
̂̂
Q2Q̂3Q̄4

(
F̃4G̃3

)
· R̃3

= ̂̂
Q1
̂̂
Q2

(
Q̂3Q̃4G̃3

)
· R̃3 (Q̃4 ≡ Q̄4F̃4)

= ̂̂
Q1
̂̂
Q2

(
Ḡ4
̂̂
Q3Q̂4

)
· R̃3 (backward Givens swap)

= Ḡ4 · ̂̂Q1
̂̂
Q2
̂̂
Q3Q̂4 · R̃3. (Ḡ4 pushed forward).

Lastly, let

H4 ≡ (Ḡ4

)T · H3 ·
(
Ḡ4

)
= ̂̂

Q1
̂̂
Q2
̂̂
Q3Q̂4 ·

(
R̃3Ḡ4

)
,

130 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

where if explicitly formed,

R̃3Ḡ4 =

× × × × ×
× × × ×

× × ×
× ×
+ ×

.

Next choose a Givens rotation G̃4 to zero out the (5, 4) entry above to get

an upper triangular matrix R4 ≡
(
G̃4

)T

· R̃3Ḡ4. Now we may write

H4 = ̂̂
Q1
̂̂
Q2
̂̂
Q3Q̂4G̃4 · R4

= ̂̂
Q1
̂̂
Q2
̂̂
Q3
̂̂
Q4 · R4. (̂̂Q4 ≡ Q̂4G̃4).

Let Ĥ = H4. A cycle of QR iteration with a pair of complex conjugate shifts

{σ, σ̄} is then completed. Define Q̂ ≡ ̂̂
Q1
̂̂
Q2
̂̂
Q3
̂̂
Q4, and

W̄ ≡ F̄2Ḡ1F̄3Ḡ2F̄4Ḡ3Ḡ4

=
(
F̄2F̄3F̄4

) · (Ḡ1Ḡ2Ḡ3Ḡ4

)

≡ F̄ · Ḡ,

W̃ ≡ F̃1F̃2G̃1F̃3G̃2F̃4G̃3G̃4

=
(
F̃1F̃2F̃3F̃4

)
·
(
G̃1G̃2G̃3G̃4

)

≡ F̃ · G̃.

We can then summarize the structured double shift bulge chasing procedure as:

H4 = W̄T · H0 · W̄ = (F̄ Ḡ) · H0 · (F̄ Ḡ),

R4 = W̃T · R0 · W̄ = (F̃ G̃) · H0 · (F̄ Ḡ),

H4 = Q̂ · R4.

Remark 5.3. Since the first column of W̄ is proportional to that of H2 − sH + tI
(with s = 2 Re(σ), t = |σ|2), according to the well known implicit Q theorem, W̄
will be the same (up to sign differences in each column) as the Q-factor of the QR
decomposition of H2 − sH + tI.

Remark 5.4. Similar to the single shift case, none of the Rk’s are formed explicitly,
except few diagonal vectors which are needed for computing the bulges. The SSS
generators {di, ui} of Rk are updated during the process. At the end of a bulge
chasing cycle, {vi, wi}, are updated (also {ui}, in fact), and this can be done effi-
ciently by applying the fast SSS matrix-matrix multiplication formulas. However,
an outcome of using those multiplication formulas is that the column dimensions
of R’s SSS generators will grow by 4 in case of double shift bulge chasing, since

A Fast QR Algorithm for Companion Matrices 131

both W̄ and W̃ have the maximum off-diagonal rank to be 2. In the next subsec-
tion, we will show how to recover a compact representation for R4, or in general
Rn−1.

5.5. Recovery of the compact SSS representation of R

In both single and double shift cases, we computed the SSS representation of Rn−1

(n = 5 for the 5-by-5 example we considered) through the formula

Rn−1 = G̃T · R0 · Ḡ,

where for simplicity of notation, we have written in case of double shift iteration:
W̃ = F̃ G̃ as G̃, W̄ = F̄ Ḡ as Ḡ. As pointed out in Remarks 5.2 and 5.4, the
column dimensions of the SSS generators of Rn−1 increase by 2 and 4 in single
and double shift cases, respectively. However, the mathematical ranks of the off-
diagonal blocks of Rn−1 do not increase starting from n = 2. The reason is that
given H0 = Z + xyT , where Z is orthogonal but never explicitly stored, we can
represent Rn−1 as a rank-one modification to an orthogonal matrix:

Rn−1 = Q̂T Hn−1 = Q̂T ḠT H0Ḡ =
(
Q̂T ḠT ZḠ

)
+
(
Q̂T ḠT x

)
· (ḠT y

)T
.

According to Theorem 3.4, rank(R12) ≤ 2 for any 2-by-2 blocking partitioning.
To recover a compact representation of Rn−1, we do the following.

(1) Compute x̂ = Q̂T ḠT x and ŷ = ḠT y. As just shown, the computed Rn−1

in a redundant SSS form can be viewed as a rank-one perturbation to an
orthogonal matrix, that is,

Rn−1 − x̂ŷT is an orthogonal matrix.

(2) Find a sequence of Givens rotations {X1, X2, . . . , Xn−1}, and let

X ≡ X1X2 · · ·Xn−1,

so that
Xx̂ = e1.

Apply X to Rn−1− x̂ŷT from the left-hand side. Now XRn−1−e1ŷ
T remains

orthogonal. On the other hand, since Rn−1 is upper triangular and X is upper
Hessenberg, XRn−1 − e1ŷ

T is also upper Hessenberg.
(3) Thus we can find another sequence of Givens rotations {Yn−1, Yn−2, . . . , Y1},

let Y ≡ Y1Y2 · · ·Yn−1, so that(
XRn−1 − e1ŷ

T
)
Y T = I.

(4) The last equation provides an alternative way to express Rn−1, that is,

Rn−1 = XT Y + XT e1ŷ
T = XT Y + x̂ŷT .

Both X are Y have orthogonal upper Hessenberg matrices with similar struc-
ture as that of Q, so that they can be written as SSS matrices with the maxi-
mum off-diagonal rank to be 1. The rank-one matrix x̂ŷT can also be written
in SSS form with off-diagonal rank to be 1. By applying the fast SSS matrix-
matrix multiplication in Subsection 2.3 to XT Y we obtain an SSS form for

132 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

XT Y with generator sizes bounded by 2 (the sizes increase additively). Then
another fast SSS addition (Subsection 2.2) makes Rn−1 = (XT Y) + (x̂ŷT) a
new SSS matrix with generator sizes bounded by 3. That means, we get a
new compact representation for Rn−1. Here although theoretically, according
to Theorem 3.4 it is possible to further make the generator sizes no larger
than 2, it does not make a significant difference in practice. We allow the
sizes to be 3 for the sake of convenience in the programming. The above re-
covery process also applies to all subsequent QR iterations and it guarantees
the generators sizes to be bounded by 3. Another implication of the equation
above is that in exact arithmetics, XT Y + x̂ŷT is an upper triangular matrix.

5.6. Deflation and Convergence Criterion

After showing the details of the fast structured bulge chasing schemes we provide
the deflation technique and the convergence criterion in terms of SSS representa-
tions.

Deflation is an important concept in the practical implementation of the
QR iteration method. It amounts to setting small subdiagonal elements of the
Hessenberg matrix to zero. After deflation, it splits the Hessenberg matrix into two
smaller subproblems which may be independently refined further. Theoretically,
assume that deflation occurs to an intermediate Hessenberg matrix

H = Q1 · · ·Qn−1 · R,

and a subdiagonal entry hi,i−1 of H becomes 0. This corresponds to the fact that
the Givens matrix Qi−1 in the Q-factor sequence of H becomes an identity matrix:

H = (Q1 · · ·Qi−2) · Qi−1 · (Qi · · ·Qn−1) · R
= (Q1 · · ·Qi−2) · I · (Qi · · ·Qn−1) · R. (23)

In traditional deflation schemes H will be treated as two subproblems individually.
That means here we have to look for a new orthogonal-plus-rank-one representa-
tion such as (4) for each subproblem. It is not obvious so far how we can quickly
get those representations based on the original orthogonal-plus-rank-one represen-
tation. However, instead of seeking new representations, we will keep the original
orthogonal-plus-rank-one representation, reuse the original Q- and R-factors, and
in the meantime, keep track of the identity matrices such as Qi−1. The identity
matrix Qi−1 in (23) splits the Qj factors into two subgroups (corresponding to the
two subproblems in traditional deflation schemes). In later bulge chasing steps,
operations will be done within each subgroup. That is, we maintain global repre-
sentations for Q- and R-factors, but keep the actual structured operations locally
within subgroups.

We also need to take care of deflation criteria based on the low-rank struc-
tures. In traditional computations there are various deflation criteria, such as the
one proposed by Wilkinson which is used in LAPACK [2] and a new one proposed
by Ahues and Tisseur [1]. For our new QR algorithm, we can adopt similar criteria.
The difference is that since the Hessenberg iterate H is not explicitly formed, we

A Fast QR Algorithm for Companion Matrices 133

need to compute relevant elements of H on the fly through compact representa-
tions of Q and R. For example, Wilkinson’s deflation criterion will set hi,i−1 to
zero if

|hi,i−1| ≤ τ · (|hi−1,i−1| + |hi,i|), (24)
where τ is a given tolerance. In terms of the elements of Q and R we have
(

hi−1,i−1 ×
hi,i−1 hi,i

)
=
(−si−2 ci−2ci−1 ×

−si−1 ci−1ci

)

ui−2v
T
i−1 ×

di−1 ui−1v
T
i

di

 ,

where × denotes certain element in the corresponding matrix. This gives us

hi,i−1 = −si−1di−1,
hi−1,i−1 = −si−2(ui−2v

T
i−1) + ci−2ci−1di−1,

hi,i = −si−1(ui−1v
T
i) + ci−1cidi.

When the criterion (24) is satisfied, we want to set hi,i−1 to zero. However, since
H is not explicitly stored, we choose to do this by making si−1 zero. There are
two possible scenarios:

1. If |si−1| ≤ O(ε), with ε being the machine precision, it’s straightforward: we
will just set si−1 ≡ 0 and ci−1 ≡ sign(ci−1) without changing anything else.

2. If |si−1| > O(ε), things become tricky. We first multiply (Qi−1Qi · · ·Qn−1) to
R to get H(i−1 : n, i−1 : n) in its SSS form. We then find another sequence
of Givens rotation matrices (Q̂i−1Q̂i · · · Q̂n−1), whose transpose applied to
the left side of H(i− 1 : n, i− 1 : n) will yield a new upper triangular matrix
R̂. Note that:
(a) Q̂i−1 is automatically an identity matrix, since hi,i−1 is small enough

to be ignored;
(b) all matrix-matrix multiplications are done quickly by updating SSS gen-

erators.
In the standard QR algorithm, we say that the algorithm converges if the

Hessenberg iterate Hk eventually becomes a real quasi triangular matrix (called
the Schur form). In our new QR algorithm for real companion matrices, we say
that the algorithm converges if the Q-factor in its trigonometric parametrization
form Q = Q1Q2 · · ·Qn−1 satisfies the following convergence criterion: for any two
consecutive Givens rotations {Qk, Qk+1} (k = 1, 2, . . . , n − 2), one of them must
be an identity matrix.

5.7. Summary of the new QR algorithm for C

The gist of our new QR algorithm for companion matrices is the usage of compact
representations for Q (as a product of a sequence of Givens rotations) and for R
(in terms of its SSS form) during the QR iteration process. The feasibility of such
compact representations for Q and R is guaranteed by the fact that the Hessenberg
iterates of the companion matrix during QR iteration process have low-rank off-
diagonal blocks (the maximum off diagonal rank of H never exceeds 3). Similar
low-rank properties extend to the Q- and R-factors of H .

134 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

In terms of compact representations of Q and R, rather than explicitly form-
ing and updating structured matrices for the Hessenberg iterates H as done in [4]
and [6], we may summarize our new QR iteration method in Algorithm 2.

6. Balancing Strategy

We also briefly mention the balancing strategy. Before QR iterations for the eigen-
values of a matrix A we usually apply a diagonal similarity transformation to A for
the purpose of better accuracy and efficiency. That is, we compute the eigenvalues
of DAD−1 where D is a diagonal matrix. The matrix D is often chosen such that
the norms of each row and the corresponding column of DAD−1 to be close.

A similar balancing strategy as in [4] can be used. In our new fast eigensolver
for the companion matrix C, we have exploited the fact that the Hessenberg it-
erates under the QR iteration have low-rank off-diagonal blocks, so we are able
to use compact representations for the Q- and and R-factors. However, after bal-
ancing these rank structures for the iterates of DCD−1 may be destroyed, where
D = diag(d1, . . . , dn). That is, The Hessenberg iterates for DCD−1 may no longer
have low-rank off-diagonal blocks. However, notice

DCD−1 =

a1
d1
d2

a2 . . . d1
dn−1

an−1
d1
dn

an

d2
d1

0 . . . 0 0
0 d3

d2
. . . 0 0

...
...

. . .
...

...
0 0 . . . dn

dn−1
0

. (25)

If we can select D such that
d2

d1
=

d3

d2
= · · · =

dn

dn−1
≡ α

for certain α, then DCD−1 becomes the multiple of a new companion matrix:

DCD−1 = α ·

a1
α

a2
α2 . . . an−1

αn−1
an

αn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

≡ α · Ĉ,

where Ĉ is the companion matrix corresponding to the polynomial p(αx)/αn, with
p(x) being the polynomial (2) corresponding to the original companion matrix C.
This means that we can choose a geometric scaling (di = αi), and apply the fast
QR iterations to Ĉ so as to preserve the low-rank structures. After the eigenvalues
of the new companion matrix Ĉ are obtained we can multiply them by α to get
those of C.

Some efficient balancing algorithms for a given matrix A based on the ap-
proximation of Perron vectors of |A| are developed in [12]. It was also shown that

A Fast QR Algorithm for Companion Matrices 135

Algorithm 2 New structured QR algorithm for a real companion matrix C

Input: the first row of C:
(

a1 a2 . . . an−1 an

)
Output: Q: in terms of {c(Q), s(Q)};

R: in terms of {d(R), u(R), v(R), w(R)}.
(1) Initialization

(a) Compute QR factorization of C: C = Q1Q2 . . . Qn−1 · R.
(b) Find x and y such that C = Z + xyT . [Note that only {ci(Q), si(Q)},

{di(R), ui(R), vi(R), wi(R)}, x and y are explicitly stored.]
(2) Repeat

(a) Modified Bulge Chasing with shift(s)
(i) Determine what shift to use (Francis single or double shift or ex-

ceptional shift).
(ii) For i = 1, find Ḡi to create a bulge on subdiagonal of R and then

find G̃i to eliminate it.
(iii) For i = 2, . . . , n − 1:
(iv) Update Q by Givens swaps: Qi−1QjG̃i−1⇒ḠiQ̂i−1Q̂i. Store Ḡi.
(v) Update R by bulge elimination: find G̃i to eliminate the bulge

in RḠi. For example, for single shift:
Update di(R), di+1(R), form the bulge bi in RḠi, and update

hi, as in (18).
Compute G̃i and update di(R), di+1(R) as in (19).
Update ui(R), ui+1(R) as in (20).

(vi) Endfor
(vii) Merge G̃n−1 into Qn−1: Q̂n−1 := Qn−1G̃n−1. Each Q̂i becomes the

new Qi.
(viii) Get updated SSS representation for R by two SSS matrix multi-

plications (see, e.g. (17)).
(b) Deflation:

(i) If Hi+1,i is small enough to be thrown away and if Qi is not an
identity matrix, update Qi, . . . , Qn−1 and the corresponding parts
of SSS generators of R̂.

(c) Restore Compact Representation of R

(i) Q̂ and Ḡ are available through the parametric representations of Q̂i

and Ḡi, respectively. Let x̂ := Q̂T ḠT x, ŷ = ḠT y, then R̂ satisfies:
R̂ = Ẑ + x̂ŷT for some orthogonal Ẑ.

(ii) Find X so Xx̂ = e1 =⇒ XR̂ − e1ŷ
T is orthogonal and upper

Hessenberg.
(iii) Find Y so that (XR̂ − e1ŷ

T)Y T = I.
(iv) Compute SSS generators {di(R), ui(R), vi(R), wi(R)} of R :=

XT Y + x̂ŷT : first use SSS multiplications to obtain an SSS form
for XT Y with generator sizes no larger than 2. Then use SSS ad-
ditions to obtain an SSS form for R with generator sizes no larger
than 3.

Until convergent

136 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

if A is irreducible and x and y are the right and left Perron vectors of |A|, then D =
diag(1/x1, . . . , 1/xn) minimizes ‖DAD−1‖∞, and D = diag(

√
y1/x1, . . . ,

√
yn/xn)

minimizes ‖DAD−1‖2. Here C is a companion matrix, and so is |C|. The matrix
C has a right Perron vector with entries xi = αn−i, where α is the maximum pos-
itive eigenvalue of |C|, or equivalently the largest positive root of xn − |a1|xn−1 −
· · · − |an−1|x − |an|. Therefore, a geometric scaling with such an α minimizes the
infinity-norm of DCD−1. In our algorithm, however, only orthogonal transforma-
tions are applied. Ideally, we should look for a geometric scaling strategy such that
‖DCD−1‖2 is minimized. Empirically, we find the following criterion for choosing
α to be useful: choosing α to make

Range{|ĉ1|, |ĉ2|, . . . , |ĉn|, 1} ≡ max{|ĉ1|, . . . , |ĉn|, 1}
min{|ĉ1|, . . . , |ĉn|, 1}

as small as possible, where ĉi = ai

αi .
In practice, α is often selected to be a power of the machine radix so as to

avoid errors in computing DCD−1. In our numerical experiments we have tried
different powers of 2 as α (see the next section), although more work needs to be
done on a systematic way of choosing α.

7. Numerical Experiments

We have tested our new structured QR algorithm on many different examples and
it is stable in practice, although it is still an open problem to show whether the
new algorithm is stable or not. We implemented the new QR-iteration method
in FORTRAN 90 for computing the eigenvalues of real companion matrices. The
codes are available online.1 Numerical experiments are run on a laptop with an
Intel Pentium M 1.7GHz CPU and 512MB RAM. Results are summarized in the
following two subsections to illustrate both the performance, i.e., O(n2) complexity
and the stability in practice.

We first point out that among all our numerical tests, the program runs stably
and we did not observe any significant failure or corruption of the orthogonal-plus-
rank-one structures by using the compact SSS QR factors. The low-rank Hessen-
berg structures are well preserved in the experiments.

7.1. O(n2) complexity Tests

We use real polynomials with uniformly random coefficients as test polynomials.
The degree of the polynomials doubles from 25 up to 102, 400. We also show the
relative backward error

‖ḠT · C0 · Ḡ − Q(m)R(m)‖∞
‖C0‖∞ ,

where C0 denotes the initial companion matrix, m is the number of iterations
needed for convergence, Qm and Rm are explicitly formed Q- and R-factors of the

1http://www.math.ucla.edu/˜jxia/work/companion/

A Fast QR Algorithm for Companion Matrices 137

n (size) DGEEV(sec) New SSS(sec) iter. # rel. BkErr
25 0.01 0.01 83 1 × 10−15

50 0.03 0.03 161 2 × 10−15

100 0.12 0.09 309 3 × 10−15

200 0.33 0.22 584 7 × 10−15

400 1.70 0.51 1200 2 × 10−14

800 12.33 1.98 2165 3 × 10−14

1,600 95.82 7.43 4170 1 × 10−13

3,200 865.22 56.11 8125
6,400 - 296.21 15569
12,800 - 1,302.22 30551
25,600 - 5,465.76 62080
51,200 - 21,080.34 116708
102,400 - 83,583.64 252822

Table 4. Numerical results on new O(n2) companion eigensolver.

final convergent Schur form of C0, and Ḡ is the accumulated orthogonal similarity
transformation.

Remark 7.1. The break-even size of the current new companion eigensolver imple-
mentation versus LAPACK is about n = 50. For the test problem of size 102, 400,
it took the new companion eigensolver about 23 hours to converge all the roots;
on the other hand, the LAPACK routine DGEEV can’t even run for problems of size
about 8, 000 since it uses O(n2) storage; even if the memory was not an issue, it
would take DGEEV more than 300 days to converge on the same machine since it’s
an O(n3) method.

Remark 7.2. From Table 4 and Figure 1, we clearly see the quadratic (i.e. O(n2))
complexity of the new QR iteration algorithm 1, see Figure 1 (a). The average
iteration number needed per eigenvalue is less than 3, see Figure 1 (b). In the
mean time, we observe nearly linear growth in both backward and forward errors.

Note that Figure 1 (a) reports the ratio between the running time for matrices
of sizes n = 25 × 2k and n = 25 × 2k−1. Since the new companion eigensolver is
an O(n2) algorithm, we expect the ratio to be close to 4 for large n.

7.2. Backward Stability Tests

If the new QR algorithm for companion matrix is backward stable in eigenproblem
sense, then according to error analysis by Van Dooren and Dewilde [13], and further
by Edelman and Murakami [16], the new algorithm is also backward stable in
polynomial sense, more precisely, the “calculus” definition holds: “the first order
perturbations of the matrix lead to first order perturbations of the coefficients”,
see [16] for details.

138 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

0 5 10
0

1

2

3

4

5

6

7

8

9

n

tim
e

ra
tio

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

n

av
er

ag
e

ite
r

pe

r
ei

ge
nv

al
ue

(b)

Figure 1. New companion eigensolver, with test matrices of size
25 × 2n−1, 1 ≤ n ≤ 13.

Following Toh and Trefethen [27] and Edelman and Murakami [16], we explore
the following degree 20 monic real coefficient polynomials:

(1) “Wilkinson polynomial”: zeros 1, 2, 3, . . . , 20.
(2) the monic polynomial with zeros [−2.1 : 0.2 : 1.7].
(3) p(z) = (20!)

∑20
k=0 zk/k!.

(4) the Bernoulli polynomial of degree 20.
(5) the polynomial z20 + z19 + z18 + · · · + z + 1.
(6) the univariate polynomial with zeros 2−10, 2−9, 2−8, . . . , 29.
(7) the Chebyshev polynomial of degree 20.

In addition, we tested some random polynomials of degree 100, 200, . . . , 1600:

(8) random coefficients with uniform distribution.

Like what Edelman and Murakami did in their paper [16], for each example
above, we first computed the coefficients either exactly or with ultra-high preci-
sion using MPFUN90 (Multiple Precision package by David Bailey, [3]). Then we
rounded these numbers to double precision (in F90). And we took the rounded
polynomials stored in F90 to be our official test cases.

A Fast QR Algorithm for Companion Matrices 139

For all test cases, we computed two sets of relative backward errors. One is
the norm-wise matrix relative backward error:

‖E‖∞
‖Ĉ‖∞

≡ ‖ḠT · Ĉ · Ḡ − Q(m)R(m)‖∞
‖Ĉ‖∞

,

where Ĉ denotes the scaled companion matrix after balancing in (25), Ḡ is the
accumulated orthogonal similarity transformation, and Q(m)R(m) converges to the
Schur form of Ĉ. The other is the component-wise coefficient relative backward
error:

|δ ĉi|
|ĉi| ≡ |c̃i − ĉi|

|ĉi| ,

where ĉ corresponds to the coefficient of the characteristic polynomial of Ĉ, and
c̃i is the ith coefficient of the polynomial recovered from the computed zeros by
using ultra-high precision, e.g. MPFUN90.

Test (1) (2) (3) (4) (5) (6) (7)
α 8 1 8 2 1 1/4 1/2

‖Ĉ‖∞ 7 3 4 2 2 22 4
rel bkerr 10−15 10−15 10−16 10−15 10−15 10−16 10−15

Table 5. Test (1–7): matrix norm-wise backward errors.

7.2.1. Test (1-7), degree 20.

Remark 7.3. 1. The last two rows of Table 6 show (1) xmax: the maximum
positive root of pb(x) = xn − |c1|xn−1 − · · · − |cn−1|x1 − |cn|, and (2) α: the
particular scaling factor chosen so that the maximum coefficient backward
error is minimized. As we can see, such α usually doesn’t agree well with
xmax. Although using xmax as scaling factor will minimize ‖DCD−1‖∞, the
magnitudes of the coefficients of the new polynomial under such scaling could
vary wildly.

2. The empty entries for Test 4 and 7 correspond to zero coefficients.

7.2.2. Test(8), random polynomials, degree 100, 200, . . .1600.

Remark 7.4. 1. From Table 7, we can see that the new companion eigensolver
has small backward error in matrix-norm sense, it also finds roots with small
(coefficient) backward errors. In our random polynomial experiments, we
choose α = 1. When the size of polynomial gets bigger, to balance the corre-
sponding companion matrix with geometric scaling limits our option.

2. Where the “average abs bkerr” (average absolute backward error) is com-
puted as average of {log10 |ci|} , and the “average rel bkerr” (average rela-
tive backward error) is computed as average of

{
log10

|δci|
|ci|
}

.

140 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

index/Test (1) (2) (3) (4) (5) (6) (7)
1 10−15 10−14 10−14 10−14 10−14 10−14 -
2 10−15 10−14 10−14 10−14 10−13 10−14 10−15

3 10−14 10−15 10−14 - 10−13 10−13 -
4 10−14 10−12 10−14 10−14 10−14 10−13 10−15

5 10−14 10−14 10−14 - 10−14 10−13 -
6 10−14 10−13 10−14 10−14 10−13 10−13 10−15

7 10−14 10−14 10−14 - 10−13 10−13 -
8 10−14 10−14 10−14 10−14 10−13 10−13 10−15

9 10−14 10−14 10−14 - 10−13 10−13 -
10 10−14 10−15 10−14 10−14 10−13 10−13 10−14

11 10−14 10−13 10−14 - 10−13 10−13 -
12 10−14 10−14 10−14 10−14 10−13 10−13 10−14

13 10−13 10−13 10−14 - 10−13 10−13 -
14 10−13 10−14 10−14 10−14 10−13 10−13 10−14

15 10−13 10−13 10−14 - 10−13 10−13 -
16 10−13 10−13 10−14 10−14 10−13 10−13 10−14

17 10−13 10−14 10−14 - 10−14 10−13 -
18 10−13 10−13 10−14 10−13 10−14 10−13 10−14

19 10−13 10−12 10−14 - 10−14 10−12 -
20 10−13 10−13 10−14 10−14 10−14 10−12 10−14

max bkerr 10−13 10−12 10−14 10−13 10−13 10−12 10−14

xmax 296.2 6.1 38.2 12.6 2.0 1319.8 2.6
α 8 1 8 2 1 1/4 1/2

Table 6. Test (1–7): coefficient-wise backward errors with appro-
priate α.

size matrix-wise polynomial coeff.-wise
‖Ĉ‖∞ rel bkerr average abs fwderr average abs fwderr

100 5 × 101 3 × 10−15 10−14 10−13

200 9 × 101 7 × 10−15 10−13 10−13

400 2 × 102 2 × 10−14 10−12 10−12

800 4 × 102 3 × 10−14 10−12 10−11

1600 8 × 102 1 × 10−13 10−11 10−11

Table 7. Test (8): backward errors in matrix and polynomial coefficients.

8. Conclusions

In this paper we presented a new fast QR algorithm for computing the eigenvalues
of a real companion matrix. The algorithm is backward stable in practice. The
success of the new method relies on (i) compact (SSS) representations for Q and

A Fast QR Algorithm for Companion Matrices 141

R, (ii) a new technique called Givens rotation swaps to update Q in an efficient
fashion, and (iii) exploring the special rank structure of R for the purpose of
efficient compression. The overall complexity is O(n2), though we have not yet
derived the counts in detail. Our suspect is that the counts are similar to those in
[6].

We also expect to propose a modified version with stability proof in the near
future.

Acknowledgements

The authors are grateful to Professor Yuli Eidelman at Tel Aviv University and
to the two anonymous referees for their valuable suggestions on this paper. We
also thank Professor James Demmel and Doctor David Bindel at the University of
California at Berkeley for their kind help in improving and testing the algorithm.

References

[1] Mario Ahues and Francoise Tisseur, A new deflation criterion for the QR algorithm,
Technical Report CRPC-TR97713-S, Center for Research on Parallel Computation,
January 1997.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK
Users’ Guide, Release 2.0, SIAM, Philadelphia, PA, USA, second edition, 1995.

[3] D. Bailey, Software: MPFUN90 (Fortran-90 arbitrary precision package), available
online at http://crd.lbl.gov/˜dhbailey/mpdist/index.html

[4] D. Bindel, S. Chandresekaran, J. Demmel, D. Garmire, and M. Gu, A fast and
stable nonsymmetric eigensolver for certain structured matrices, Technical report in
progress, 2005.

[5] D. A. Bini, F. Daddi, and L. Gemignani, On the shifted QR iteration applied to
companion matrices, Electronic Transactions on Numerical Analysis 18 (2004), 137–
152.

[6] D. A. Bini, Y. Eidelman, L. Gemignani and I. Gohberg, Fast QR eigenvalue algo-
rithms for Hessenberg matrices which are rank-one perturbations of unitary matrices,
Technical Report no.1587, Department of Mathematics, University of Pisa, 2005.

[7] S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semi-
separable matrices, SIAM J. Matrix Anal. Appl. 25 no. 2 (2003), 373–384.

[8] S. Chandrasekaran, M. Gu, and W. Lyons, A fast and stable adaptive solver for
hierarchically semi-separable representations, Technical Report UCSB Math 2004-20,
U.C. Santa Barbara, 2004.

[9] Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D.
White, Fast stable solvers for sequentially semi-separable linear systems of equations
and least squares problems, Technical report, University of California, Berkeley, CA,
2003.

[10] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D.
White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl 27 (2005), 341–364.

142 S. Chandrasekaran, M. Gu, J. Xia and J. Zhu

[11] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, J. Zhu, Superfast and stable algorithms
for Toeplitz systems of linear equations, submitted to SIAM J. Mat. Anal. Appl.,
under revision.

[12] T.-Y. Chen and J.W. Demmel, Balancing sparse matrices for computing eigenvalues,
Lin. Alg. and Appl. 309 (2000), 261–287.

[13] P. Van Dooren and P. Dewilde, The eigenstructure of an aribtrary polynomial matrix:
Computational aspects, Lin. Alg. and Appl. 50 (1983), 545–579.

[14] Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equa-
tions Operator Theory 34 (1999), 293–324.

[15] Y. Eidelman, I. Gohberg and V. Olshevsky, The QR iteration method for Hermitian
quasiseparable matrices of an arbitrary order, Lin. Alg. and Appl. 404 (2005), 305–
324.

[16] A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues,
Mathematics of Computation 64 (1995), 763–776.

[17] G. Golub and C. V. Loan, Matrix Computations, The John Hopkins University Press,
1989.

[18] J. G. F. Francis, The QR transformation. II, Comput. J. 4 (1961/1962), 332–345.

[19] V. N. Kublanovskaya, On some algorithms for the solution of the complete eigenvalue
problem, U.S.S.R. Comput. Math. and Math. Phys. 3 (1961), 637–657.

[20] C. Moler, Roots – of polynomials, that is, The Mathworks Newsletter 5 (1991), 8–9.

[21] V. Pan, On computations with dense structured matrices, Math. Comp. 55 (1990),
179–190.

[22] B. Parlett, The symmetric eigenvalue problems, SIAM, 1997.

[23] B. Parlett, The QR algorithm, Computing in Science and Engineering 2 (2000),
38–42. Special Issue: Top 10 Algorithms of the Century.

[24] G. Sitton, C. Burrus, J. Fox, and S. Treitel, Factoring very-high-degree polynomials.
IEEE Signal Processing Mag. 20 no. 6 (2003), 27–42.

[25] M. Stewart, An error analysis of a unitary Hessenberg QR algorithm, Tech. Rep. TR-
CS-98-11, Department of Computer Science, Australian National University, Can-
berra 0200 ACT, Australia, 1998.

[26] F. Tisseur, Backward stability of the QR algorithm, TR 239, UMR 5585 Lyon Saint-
Etienne, October 1996.

[27] K.-C. Toh and L. N. Trefethen. Pseudozeros of polynomials and pseudospectra of
companion matrices. Numer. Math. 68 (1994), 403–425.

[28] M. Van Barel and A. Bultheel, Discrete Linearized Least Squares Rational Approxi-
mation on the Unit Circle, J. Comput. Appl. Math. 50 (1994), 545–563.

[29] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, London,
1965.

[30] J. Xia, Fast Direct Solvers for Structured Linear Systems of Equations, Ph.D. Thesis,
University of California, Berkeley, 2006.

[31] J. Zhu, Structured Eigenvalue Problems and Quadratic Eigenvalue Problems, Ph.D.
Thesis, University of California, Berkeley, 2005.

A Fast QR Algorithm for Companion Matrices 143

Shiv Chandrasekaran
Department of Electrical and Computer Engineering
University of California at Santa Barbara
USA
e-mail: shiv@ece.ucsb.edu

Ming Gu
Department of Mathematics
University of California at Berkeley
USA
e-mail: mgu@math.berkeley.edu

Jianlin Xia
Department of Mathematics
University of California at Los Angeles
USA
e-mail: jxia@math.ucla.edu

Jiang Zhu
Department of Mathematics
University of California at Berkeley
e-mail: zhujiang@math.berkeley.edu

