

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2012 Society for Industrial and Applied Mathematics
Vol. 33, No. 2, pp. 388–410

ON THE COMPLEXITY OF SOME HIERARCHICAL STRUCTURED
MATRIX ALGORITHMS∗

JIANLIN XIA†

Abstract. In recent years, hierarchical structured matrices have been widely used in fast solu-
tions of integral equations, PDEs, structured matrix (such as Toeplitz) problems, companion eigen-
problems, etc. In this paper, we systematically study the complexity of some hierarchical structured
matrix algorithms, in terms of hierarchically semiseparable (HSS) matrices. Several important as-
pects are considered. We perform detailed complexity analysis for some typical HSS algorithms, with
the aid of certain graph techniques. This analysis helps us provide some significant improvements to
classical HSS methods. One improvement is to propose more efficient HSS construction and solution
algorithms. Another improvement is a recompression procedure which reorthonormalizes some HSS
generators and converts noncompact HSS forms to compact ones. A precise theoretical justification
of the compactness is also given. The third improvement is to relax the rank requirement in HSS op-
erations. Unlike many classical HSS methods where the appropriate off-diagonal (numerical) ranks
are often required to be bounded, we allow the ranks to increase. Certain general rank patterns
are proposed, so that similar performance can be achieved with the maximum rank unbounded.
These improvements significantly enhance both the efficiency and the applicability of HSS methods.
Numerical examples from some applications are included to support the analysis.

Key words. rank structure, hierarchically semiseparable (HSS) matrix, HSS construction and
ULV factorization, recompression, relaxation of rank requirement

AMS subject classifications. 65F05, 65F30

DOI. 10.1137/110827788

1. Introduction. In recent years, rank structured matrices have attracted much
attention and are widely used in fast solutions of many numerical problems, includ-
ing certain PDEs, integral equations, special structured (such as Toeplitz) matrices,
companion eigenvalue problems, etc. See [1, 4, 6, 15, 16, 19, 24, 22, 36, 37, 40] for
a partial list of references. It is observed that some dense intermediate matrices in
these problems have a low-rank property, or their off-diagonal blocks have small ranks
or numerical ranks. For example, in the direct solution of elliptic PDEs, the Schur
complements in the factorization have this property [2, 11, 33, 35, 41]. Many rank
structured matrix representations have been proposed to make use of this property.
They provide data-sparse representations or approximations for dense matrices. An
important class of rank structured representations are hierarchical structured ma-
trices, such as H-matrices [7, 26, 27, 29], H2-matrices [5, 28, 30], and hierarchically
semiseparable (HSS) matrices [9, 14, 42]. With these structures, a matrix is hierarchi-
cally partitioned into blocks at multiple levels. Hierarchical structured representations
and operations enable one to reuse and share information across different levels so as
to achieve high efficiency.

In this paper, we focus on HSS representations, which have a nice binary tree
structure called the HSS tree. HSS forms have been used to develop highly efficient
structured solvers and effective preconditioners for both dense and sparse linear sys-

∗Received by the editors March 17, 2011; accepted for publication (in revised form) by N. Mas-
tronardi February 21, 2012; published electronically May 17, 2012. This work was supported in part
by NSF grants DMS-1115572 and CHE-0957024.

http://www.siam.org/journals/simax/33-2/82778.html
†Department of Mathematics, Purdue University, West Lafayette, IN 47907 (xiaj@math.purdue.

edu).

388

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 389

tems [9, 14, 33, 39, 43]. For example, based on HSS methods and the multifrontal
method [18, 32], a structured sparse direct solver is proposed in [41] for solving two-
dimensional (2D) Poisson equations and 2D elasticity equations with nearly linear
complexity and storage.

Classical HSS methods for dense matrices rely on an assumption that appropri-
ate off-diagonal blocks (called HSS blocks) of the dense matrix have small bounded
(numerical) ranks. Let n be the order of the matrix and let r be the maximum rank
(called HSS rank) of all the HSS blocks. Then the matrix can be converted into an
HSS matrix in O(rn2) flops or less, and a linear system with this HSS coefficient ma-
trix can be solved in O(r2n) flops with the aid of ULV-type factorizations [9, 14, 42].
Many other fast HSS algorithms are also developed.

However, existing studies on HSS matrices generally do not include detailed com-
plexity analysis. In fact, different HSS algorithms with the same order of complexity
may have significantly different prefactors in the flop counts. This indicates the pos-
sibility of improving standard HSS algorithms. In particular, HSS construction algo-
rithms as in [42] involve HSS blocks across different levels which makes the flop count
nontrivial. Here, we provide a graph technique where an HSS tree is converted into a
Pascal triangle so as to count the number of HSS blocks across different levels during
the HSS construction. Then, systematic flop counts for a sequence of HSS algorithms
can be conveniently conducted. We can also make some useful observations. For
example, the HSS construction scheme in [42] for a general dense matrix with certain
block sizes costs 6rn2 flops, and then it needs 42r2n to compute a ULV factorization
and 37rn to solve the ULV system. In contrast, while a triangular HSS factorization
of the dense matrix costs 11rn2 flops, it needs only 10rn to solve a triangular HSS
system. Such a comparison provides a way to choose different algorithms in different
circumstances. These counts can also help study the performance of generalizations
of HSS methods such as the sparse structured direct solver in [41].

We then provide several useful strategies for improving existing HSS methods and
for developing new fast ones. Based on different internal operations and different ways
of accessing matrix data, we can get more efficient HSS construction and factorization
algorithms. For example, a modified ULV factorization scheme can improve the cost
from 42r2n (as in [14]) to 74

3 r2n. We also show some HSS methods which specifically
takes advantage of symmetry, such as a ULV factorization scheme with 9r2n cost.

As another improvement, a procedure for reorthonormalizing and recompressing
noncompact HSS forms is proposed. It is useful in improving the efficiency and
reliability of HSS forms arising from indirect construction methods such as those
based on randomized sampling [31, 34] or strong rank-revealing LU factorizations [25],
and those in sparse factorizations [41]. The recompression procedure also provides a
precise theoretical justification of the compactness of HSS representations.

Furthermore, we enhance the flexibility and applicability of HSS methods by
relaxing the requirement of bounded HSS ranks. In practical problems such as direct
solutions of Helmholtz equations and Toeplitz linear systems, related off-diagonal
ranks depend on the size (n) of appropriate dense matrices. In these two cases, the
maximum HSS rank is actually O(log n) [20, 37] under certain conditions. In this
paper, instead of requiring the HSS rank to be bounded by a constant, we allow the
ranks of the HSS blocks to increase following certain function patterns of the block
sizes so that the HSS ranks depend on n. We show that with these rank patterns,
we can still get the same or similar order of complexity as before. This allows us to
apply regular HSS methods to broader classes of applications. It is also possible to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

390 JIANLIN XIA

generalize such rank relaxation techniques to other structured methods.
The remaining sections are organized as follows. In section 2, we briefly review

HSS structures. Section 3 presents systematic flop counts for some HSS algorithms
with the aid of some graph techniques. Section 4 shows some useful improvements to
existing HSS algorithms and demonstrates the performance with numerical examples.
An HSS recompression procedure is given in section 5. Techniques for relaxing clas-
sical rank requirements in HSS methods are presented in section 6. We draw some
concluding remarks in section 7.

2. Review of HSS structures. We first briefly review some concepts of HSS
structures. The following notation is used in this paper:

1. Assume T is a full binary tree in its postordering with 2k − 1 nodes labeled
as i = 1, 2, . . . , 2k − 1. That is, each node i of T is either a leaf, or is a
nonleaf node with the left and right children c1 and c2, respectively, which
are postordered so that c1 < c2 < i. Use sib(i) and par(i) to denote the
sibling and the parent of a node i, respectively. The root node of T is 2k− 1,
which is written as root(T).

2. Let A be an n × n real matrix and let I = {1, 2, . . . , n} be the set of all
row/column indices. Assume ti ⊂ I is a subset of I with contiguous indices.
We let I = tci ∪ ti ∪ tri , where all indices in tci are smaller than those in ti, and
all indices in tri are larger than those in ti.

3. A|ti×tj is the submatrix of A with row index set ti and column index set tj .
4. By the compression of a block A|ti×tj , we mean a rank-revealing QR (RRQR)

factorization or a truncated SVD of A|ti×tj . For simplicity, the former is used
mostly in this paper, and sometimes, we write A|ti×tj ≈ UiA|t̂i×tj

, which

means that the second factor is still stored in A|ti×tj with row index set t̂i.
5. diag(. . .) represents a block diagonal matrix formed by the blocks in (. . .).

An HSS representation is generally defined recursively [9, 14, 42]. Here, we use a
postordered HSS form defined in [42].

Definition 2.1. Assume A is an n× n matrix and I = {1, 2, . . . , n}. Let T be
a full binary tree with 2k − 1 nodes labeled as i = 1, 2, . . . , 2k − 1, and let ti ⊂ T be
an index set associated with each node i of T . We say T is a postordered HSS tree
and A is in an HSS form if the following conditions hold:

1. T is a postordered full binary tree (with the root 2k − 1 at level 0).
2. There is one index set ti associated with each node i of T which is defined

hierarchically. For each nonleaf node i, tc1 ∪ tc2 = ti, tc1 ∩ tc2 = ∅, and
t2k−1 = I.

3. There exist matrices Di, Ui, Vi, Ri, Wi, Bi (called HSS generators) associated
with each node i satisfying the following relations for i = 1, 2, . . . , 2k − 1:

Di ≡ A|ti×ti =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
,(2.1)

Ui =

(
Uc1

Uc2

)(
Rc1

Rc2

)
, Vi =

(
Vc1

Vc2

)(
Wc1

Wc2

)
.(2.2)

Here, D2k−1 ≡ A, and U2k−1, V2k−1, R2k−1, W2k−1, B2k−1 are empty ma-
trices.

For a nonleaf node i, the generators Di, Ui, Vi are recursively defined and are not
explicitly stored. The HSS form conveniently represents the rank structure of certain
off-diagonal blocks as defined next.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 391

Definition 2.2. Let

(2.3) A−
i =

(
A|ti×tci

A|ti×tri

)
, A

|
i =

(
A|tci×ti

A|tri×ti

)
.

The blocks A−
i and A

|
i are called the HSS block row and column associated with node

i, respectively. (See Figure 2.1.) The maximum (numerical) rank of all HSS blocks is
called the HSS rank of A.

3

6

1

2

4

5

3

6

(i) One level of HSS blocks. (ii) Two levels of HSS blocks.

Fig. 2.1. HSS (off-diagonal) block rows A−
i , i = 1, 2, . . . , 6.

Clearly, the columns of Ui form a basis for the column space of A−
i , and the rows

of V T
i form a basis for the row space of A

|
i. Thus, Ui and Vi are called basis matrices in

this paper, or cluster bases in [5]. They are often made to have orthonormal columns
for good stability.

The following is a block 4× 4 HSS matrix example:

(2.4) A =

⎛
⎜⎜⎝

D1 U1B1V
T
2 U1R1B3W

T
4 V T

4 U1R1B3W
T
5 V T

5

U2B2V
T
1 D2 U2R2B3W

T
4 V T

4 U2R2B3W
T
5 V T

5

U4R4B6W
T
1 V T

1 U4R4B6W
T
2 V T

2 D4 U4B4V
T
5

U5R5B6W
T
1 V T

1 U5R5B6W
T
2 V T

2 U5B5V
T
4 D5

⎞
⎟⎟⎠ .

See Figure 2.2. If A is symmetric, we can set [42]

(2.5) Di = DT
i , Vi = Ui, Bsib(i) = BT

i .

V6
TU3B3

V2
TU1B1

V5
TU4B4

D1

D2

D4

D5

B3

B6
W2

R2R1

W1

B1

B21
U2, V2U1, V1

W5

R5R4

W4

B4

B5
U5, V5U4, V4

D1 D2 D4 D5

2

3

4 5

6

7

level

0

1

2

Fig. 2.2. HSS matrix pattern for (2.4) and the corresponding HSS tree.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

392 JIANLIN XIA

3. Complexity of hierarchical construction and solution schemes. In
hierarchical compression schemes for computing structured matrix representations
and their factorizations, it often involves simultaneous compression of blocks across
different levels [14, 28, 42, 43]. Here, in the context of HSS representations, we present
an innovative way of counting the detailed complexity of such compression with the
aid of some graph results. These counts are hardly done in [14, 42, 43] and most other
HSS literature. For convenience, the flop counts of some basic matrix operations are
listed in Table 3.1. They can be found, say, in [17, 23].

Table 3.1

Flop counts of some basic matrix operations, with low order terms dropped. The RRQR fac-
torization we use is based on the modified Gram–Schmidt algorithm with column pivoting as in
[23].

Operation Flops

QR factorization of an m× q tall matrix (m > q) 2q2
(
m− q

3

)

Product of the Q factor and an m× r matrix 2rq(2m − q)
Product of an m× q matrix and a q × r matrix 2mqr
LU factorization of an m×m matrix 2

3
m3

Solution of an order m triangular system Lx = b m2

RRQR factorization of an m× q matrix with rank r 4mqr − 2r2(m + q) + 4
3
r3

3.1. An analytical result for binary trees. In hierarchical compression
schemes, later compression steps are usually designed to take advantage of compressed
forms from previous steps so as to improve the efficiency. Here, we briefly rephrase the
major steps of the HSS construction algorithm in [42] with more systematic notation
in [43] and then show the detailed complexity analysis. This is done with the aid of
the following definition given in [43].

Definition 3.1. The visited set Vi associated with a node i of a postordered
binary tree T is

Vi = {j | j is a left node and sib(j) ∈ pred(i)},

where pred(i) is the set of predecessors associated with node i given by

pred(i) =

{
{i} if i = root(T),
{i} ∪ pred(par(i)) otherwise.

See Figure 3.3(b) below for an example. Clearly, Vi is the set of visited nodes
(before i) whose siblings have not been visited. As pointed out in [43], the set Vi

essentially corresponds to a stack which is often used in the postordering traversal of
binary trees such as elimination trees in the multifrontal method [18, 32] and HSS
trees in HSS methods. This stack is obtained as follows. For i = 1, 2, . . . , if i is a left
node, push i onto the stack. Otherwise, pop a node from the top of the stack. Then
before the visit of i, the nodes in the stack form Vi. For convenience, we denote the
elements of Vi by

(3.1) Vi = {j1, j2, . . . , js | j1 < j2 < · · · < jsi} ,

where si is the cardinality of Vi (later, we sometimes write si as s to simplify the
subscripts when no confusion is caused).

The use of Vi helps clearly describe the HSS construction algorithm, and si will
be involved in the flop count. According to the definition, each j ∈ Vi corresponds

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 393

to a right node sib(j) ∈ pred(i) and also a right edge in proot(T)→i, the path from
root(T) to i. (A right edge is an edge connecting a nonleaf node with its right child.)
Then it is not hard to verify the following lemma.

Lemma 3.2. For Vi in Definition 3.1 with cardinality si as in (3.1), we have the
following:

1. pred(i) = {v | sib(v) ∈ Vi} ∪ pred(j1), where j1 is given in (3.1).
2. si = sc1 = sc2 − 1 for c1 and c2, the left and right children of i, respectively.
3. si is equal to the number of right edges in proot(T)→i.

Based on this lemma, we have the following result.
Theorem 3.3. Assume the HSS tree T is a perfect binary tree with the root at

level 0. Let si be the cardinality of Vi as in (3.1). Then at tree level l, a node i has
possible si value j ∈ {1, 2, . . . , l}, and the number of nodes i with si being the same
value si ≡ j is f l

j =
(
l
j

)
for j = 1, 2, . . . , l.

Proof. For a node i at level l, there are at most l right edges in proot(T)→i.
Then the third statement in Lemma 3.2 indicates that the possible values of si are
{1, 2, . . . , l}.

To find f l
j for a fixed j = 1, 2, . . . , l, we rearrange T into a new graph G by

merging certain nodes. That is, at each level l, all the nodes with the same si value
j (Figure 3.1) are merged into one single node, which is the jth node (from the left)
at level l of G. According to Lemma 3.2, this can be performed by merging all nodes
i with the same number of right edges in proot(T)→i. Then there are l nodes at level
l of G. Note that all paths in G from its root (the top node) to the jth node at level
l have the same number of right paths. Thus, proot(T)→i in T is transformed into a
path in G. See Figure 3.2(a).

7

6

s1=0

3

42 51

14

1310

119 128

15
31

s2=1 s4=1 s8=1

s10=1s6=1

s14=1

s5=2 s9=2 s11=2

s13=2

s12=3

s3=0

s7=0
s15=0

s31=0

Fig. 3.1. si values for the nodes i of an HSS tree, and the nodes to be merged.

Therefore, f l
j is simply the number of top-down paths from the root to the jth

node at level l of the new graph. It is known that this number is the binomial
coefficient

(
l
j

)
, with the aid of the corresponding Pascal triangle as illustrated in

Figure 3.2(b).

3.2. Complexity of HSS construction. Here, we show systematic complexity
analysis for HSS constructions using the results in the previous subsection. We refor-
mulate the major steps of the algorithm in [42] with clearer notation. The algorithm
traverses the HSS tree T following the postordering and hierarchically compresses

the HSS blocks A−
i and A

|
i in (2.3), where A|ti×tci

and A|tci×ti have been partially
compressed in previous steps. By ignoring appropriate U, V basis matrices, we need
only to compress certain blocks Ψi and Φi as in Figure 3.3 instead of A|ti×tci

and
A|tci×ti , respectively. This is explained as follows. For simplicity, we mainly consider

A−
i . We assume r is the maximum numerical rank of all the HSS blocks of A for a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

394 JIANLIN XIA

given relative tolerance τ . (Note that, for different τ , the numerical rank r may vary.
Sometimes, we may also specify a fixed r when we compress an HSS block or truncate
off-diagonal singular values. In this paper, for convenience, we use a single symbol r.)

(si =0)

(si =0)

(si =0)

(si =0)

(si =0)

(si =1)

(si =1)

(si =1)

(si =1)

(si =2)

(si =2)

(si =2)

(si =3)

(si =3) (si =4)

2

3 3

1 4 6 4 1

1

1

1

1

1

1

1

(a) G after merging the nodes (b) A sample Pascal triangle (when

in Figure 3.1. Figure 3.1 has 31 nodes).

Fig. 3.2. Merging nodes in T so as to find f l
j with the aid of a Pascal triangle.

i

j1

j2

1 2

3

4

(a) Block compression in HSS construction. (b) Vi = {j1, j2, . . . } (solid nodes) in T .

Fig. 3.3. How previously compressed blocks participate in later compression with the assistance
of the visited set Vi.

For node i = 1, compute the following compression or RRQR factorization:

A−
i = A|t1×tr1

≈ U1A
(1)|t̂1×tr1

, A
|
i = A|Ttr1×t1 ≈ V1A

(1)|T
tr1×t̂1

.

For node i > 1, the compression is done hierarchically. If i is a leaf, by recursion,
A|ti×tci

is in a compressed form A|ti×tci
≈ ΨiṼ

T
i , where Ṽi is given by existing V

basis matrices, and Ψi is the contribution from the previous i− 1 compression steps,
associated with nodes j1, j2, . . . , js in (3.1) due to the hierarchy (Figure 3.3):

(3.2) Ψi =
(

A(i−1)|ti×t̂j1
· · · A(i−1)|ti×t̂js

)
.

Thus, the compression of the HSS block row A−
i ≈ (ΨiṼ

T
i A|ti×tri

) can be ef-

fectively done on (Ψi A|ti×tri
), where we ignore a matrix diag(Ṽi, I) which has

orthonormal columns. Compute an RRQR factorization

(3.3)
(
Ψi A|ti×tri

)
≈ Ui

(
(A(i)|t̂i×t̂j1

· · · A(i)|t̂i×t̂js
) A|t̂i×tri

)
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 395

where the column partition of (A(i)|t̂i×t̂j1
· · · A(i)|t̂i×t̂js

) follows that of Ψi in

(3.2). The corresponding HSS block column is similarly compressed to get Vi.
If i is a nonleaf node, suppose c1 and c2 are the left and right children of i,

respectively. Let

(3.4) Ψi =

(
Ψc1

Ψc2

)
=

(
(A(i−1)|t̂c1×t̂j1

· · · A(i−1)|t̂c1×t̂js
)

(A(i−1)|t̂c2×t̂j1
· · · A(i−1)|t̂c2×t̂js

)

)
.

Compute the compression

(3.5)

(
Ψc1 A(i−1)|t̂c1×tri

Ψc2 A(i−1)|t̂c2×tri

)
≈
(
Rc1

Rc2

)(
(A(i)|t̂i×t̂j1

· · · A(i)|t̂i×t̂js
) A(i)|t̂i×tri

)
,

where the column partition of (A(i)|t̂i×t̂j1
· · · A(i)|t̂i×t̂js

) follows that of Ψi in

(3.4). Similarly, we compress the associated HSS block column to get (Wc1
Wc2

). In

addition, we set

(3.6) Bc1 = A(i−1)|t̂c1×t̂c2
, Bc2 = A(i−1)|t̂c2×t̂c1

.

Note c2 = i− 1.
The algorithm is summarized in Algorithm 1.

Algorithm 1 (HSS construction).

for nodes (separators) i = 1, 2, . . . , root(T),
if i is a leaf

− (Row compression) Form (Ψi A|ti×tri
) with (3.2) and compute Ui as

in (3.3)
− (Column compression) Compute Vi similarly

else

− (Row compression) Form (
Ψc1 A(i−1)|t̂c1×tr

i

Ψc2 A(i−1)|t̂c2×tr
i

) with (3.4) and compute

(Rc1
Rc2

) as in (3.5)

− (Column compression) Compute (Wc1
Wc2

) similarly

− Form Bc1 and Bc2 as in (3.6) for the children c1, c2 of i
end

end

To simplify the complexity count, we assume that the HSS tree T is a perfect
binary tree with 2k − 1 nodes (k leaves) and L ≈ log2 k levels, the numerical rank
of any HSS block is r 	 n, and any bottom/leaf level HSS block row dimension is
m = O(r). To avoid unnecessary compression for full rank blocks at the leaf level, we
let m > r. Also let ni be the column size of A|ti×tri

.
We count the costs levelwise. Two useful formulas are needed:

∑
i at level l

si =

l∑
j=1

j

(
l

j

)
=

1

2
l2l,(3.7)

∑
i at level l

ni =
2l∑
j=1

(
k − j

k

2l

)
m =

1

2
km(2l − 1).(3.8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

396 JIANLIN XIA

The formula (3.7) is a direct result of Theorem 3.3, and (3.8) is based on the fact that
each level l has 2l nodes with ni values (k − j k

2l)m, j = 1, 2, 3, . . . , 2l.

First, we count the costs associated with all leaves. Clearly,
(
Ψi A|ti×tri

)
in

(3.3) has size m × (rsi + ni). From Table 3.1, (3.3) costs 4m(sir + ni)r − 2r2(m +
(sir + ni)) +

4
3r

3 flops for each leaf i. The total for all leaves is then

C1 =
∑
i: leaf

(
4m(sir + ni)r − 2r2(m+ (sir + ni)) +

4

3
r3
)

= (4mr2 − 2r3)
∑
i: leaf

si + (4mr − 2r2)
∑
i: leaf

ni +

(
4

3
r3 − 2mr2

)
2L

≈ 2rk2m2 − r2k2m,

where (3.7) and (3.8) are used together with k ≈ 2L, and some low order terms are
dropped since r,m 	 n.

Next, consider nonleaf nodes. The left-hand side of (3.5) has size 2r× (rsi + ni).
Thus, (3.5) costs 8r2(rsi + ni) − 2r2(2r + (rsi + ni)) +

4
3r

3 for each nonleaf node i.
The total block-row compression cost for all nonleaf nodes can be similarly counted:

C2 =
L−1∑
l=1

∑
i at level l

(
8r2(rsi + ni)− 2r2(2r + (rsi + ni)) +

4

3
r3
)

≈ 3r2k2m.

The cost for all block-column compression or the computation of V,W generators
is also C1 + C2. Thus, the total HSS construction cost is

Cconstr = 2 (C1 + C2) ≈ 2
(
2rk2m2 − r2k2m+ 3r2k2m

)
= 4

(
1 +

r

m

)
rn2.

For example, if m = 2r, we have

Cconstr ≈ 6rn2.

Note that the storage of this HSS matrix can be easily verified to be

Smem ≈ (m2 + 2mr + 2r2)
n

m
.

If m = 2r, we have Smem ≈ 5rn.

3.3. Complexity of HSS factorization and solution. For a given HSS form,
we can quickly compute ULV-type factorizations and solutions [14, 42]. The funda-
mental idea of ULV HSS factorizations can be illustrated in terms of a block 2 × 2
HSS form

(3.9)

(
Dj UjBjV

T
i

UiBiV
T
j Di

)
m
m

,

where j = sib(i), the generators Ui and Vi have sizes m × r, and Bi has size r × r.
Compute a QL factorization of Ui and update Di as D̂i:

(3.10) Ui = Qi

(
0

Ũi

)
m− r
r

, D̂i = QT
i Di.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 397

Uj is similarly factorized and Dj is updated. We have

(3.11)

(
QT

j

QT
i

)(
Dj UjBjV

T
i

UiBiV
T
j Di

)
=

⎛
⎜⎜⎝

D̂j

(
0

Ũj

)
BjV

T
i(

0

Ũi

)
BiV

T
j D̂i

⎞
⎟⎟⎠ .

Then compute a QR factorization of D̂T
i and update Vi as

(3.12) D̂T
i = WiD̃

T
i , Ṽi = WT

i Vi.

D̂T
j is similarly factorized and Vj is updated. We have(

QT
j

QT
i

)(
Dj UjBjV

T
i

UiBiV
T
j Di

)(
Wj

Wi

)
(3.13)

=

⎛
⎜⎜⎜⎝

(
D̃j;1,1 0

D̃j;2,1 D̃j;2,2

) (
0

Ũj

)
Bj

(
Ṽ T
i;1 Ṽ T

i;2

)
(

0

Ũi

)
Bi

(
Ṽ T
j;1 Ṽ T

j;2

) (
D̃i;1,1 0

D̃i;2,1 D̃i;2,2

)
⎞
⎟⎟⎟⎠ ,

where D̃i, Ṽi, D̃j, and Ṽj are partitioned conformably. Then the blocks D̃j;1,1 and

D̂i;1,1 can be eliminated, and the rest of the blocks are merged into a new matrix.
That is, nodes j and i are eliminated, and their parent node p becomes a leaf with
generators

(3.14) Dp =

(
D̃j;2,2 ŨjBj Ṽ

T
i;2

ŨiBiṼ
T
j;2 D̃i;2,2

)
, Up =

(
ŨjRj

ŨiRi

)
, Vp =

(
Ṽj;2Wj

Ṽi;2Wi

)
.

After this step, we have a smaller HSS form and the elimination continues recursively.
This is summarized in Algorithm 2.

Algorithm 2 (HSS ULV factorization).

for nodes (separators) i = 1, 2, . . . , root(T)− 1
if i is a leaf

− (Introducing zeros into off-diagonal blocks) Compute a QL factorization
of Ui and update Di as in (3.10)

− (Introducing zeros into diagonal blocks) Compute a QR factorization of
D̂T

i and update Vi as in (3.12)
− (Partial elimination) Eliminate D̃i;1,1 in (3.13)

else

− (Merging) Form Di, Ui, Vi as in (3.14) (with j, i, and p in (3.14) replaced
by c1, c2, and i, respectively, where c1, c2 are the children of i)

end

end

To get the complexity of this ULV factorization, we list the individual costs of
the operations associated with each node in Table 3.2, where Table 3.1 is used.

Then it can be easily verified that the total ULV factorization cost is about

(3.15) Cfact ≈
4

3
m2n+ 6rmn+

148

3
kr3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

398 JIANLIN XIA

Table 3.2

Operations associated with each leaf of T in the HSS factorization scheme described in this
section, where some low order terms are dropped. For a nonleaf node, replace m in the table by 2r.

Operation Flops Times needed

QR factorization of a size m × r matrix 2r2
(
m− r

3

)
×1

Product of this Q factor and an m×m matrix 2rm(2m − r) ×1
QR factorization of a size m ×m matrix 2

3
m3 ×1

Product of this Q factor and an m× r matrix 2rm2 ×1
Product of two r × r matrices in the merge process 2r3 ×4

When m = 2r, we have Cfact ≈ 42r2n, which is slightly tighter than the bound 46r2n
in [14]. In such a situation, it can be similarly shown that the ULV factors can be
used to solve a system with one right-hand side in Csol = 37rn flops. (Later, the
complexity of other algorithms is similarly obtained and the details are omitted.)

Another HSS solution method is to directly factorize a dense matrix into triangu-
lar HSS factors. The case of symmetric positive definite matrices is discussed in [43].
The case of general nonsymmetric matrices can be considered in a way similar to the
HSS construction algorithm. The costs of the dense-to-triangular-HSS factorization
and the triangular HSS solution by substitution are

Cfact ≈ 6rn2 +mn2 + 6kr2n and Csol ≈ mn+ 4rn+ 8kr2,

respectively.
The complexity of these algorithms with m = 2r is summarized in Table 3.3.

Table 3.3

Complexity of some HSS algorithms (with the low order terms dropped) when m = 2r, where
all leaf level HSS block rows have row sizes m, and the HSS rank of the matrix is r.

Operation Complexity

HSS construction (bottom-up) 6rn2

ULV HSS factorization 42r2n

ULV HSS solution 37rn

Dense-to-triangular-HSS factorization 11rn2

Triangular HSS solution 10rn

4. Selected improvements.

4.1. HSS construction. One improvement to the HSS construction algorithm
is to use a top-down construction procedure. For node i with children c1 and c2, the
HSS block associated with i is given by

(4.1)
(
A|ti×tci

A|ti×tri

)
=

(
A|tc1×tcc1

A|tc1×trc2
A|tc2×tcc1

A|tc2×trc2

)
.

Thus, (A|ti×tci
A|ti×tri

) is first compressed; then its compressed form participates
in the compression of the HSS blocks associated with c1 and c2 which include the
subblocks on the right-hand side of (4.1).

The cost can be similarly counted with (3.7)–(3.8). When m = 2r, the complexity
is 4rn2 flops, which is less than the bottom-up construction in the previous section.
However, this top-down procedure accesses the matrix entries globally and may not
be suitable for parallelization.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 399

4.2. ULV HSS factorization. For a given HSS matrix, an improvement to the
ULV factorization algorithm is to replace the full QR factorization of D̂T

i in (3.12) by a

partial one, as in [42]. That is, partition D̂i in (3.11) as D̂i = (D̂i;1,1 D̂i;1,2

D̂i;2,1 D̂i;2,2
) m − r

r

and compute an LQ factorization(
D̂i;1,1 D̂i;1,2

)
=
(
D̃1;1,1 0

)
WT

i .

Also let (
D̃i;2,1 D̃i;2,2

)
=
(
D̂i;2,1 D̂i;2,2

)
Wi.

Then we also get a form (3.13). It can be verified that the cost of such a factorization
is Cfact ≈ 4

3km
3 + 128

3 kr3 + 6km2r flops. With m = 2r, we have Cfact ≈ 116
3 r2n.

A further improvement is to replace the QR factorization in (3.12) by an LU one
and the matrix multiplication in (3.12) by a triangular solution. That is, compute
LU factorizations Di = D̃iTi, and let Ṽi = T−T

i Vi. This is done similarly for j. Then
the following operation also yields a form as on the right-hand side of (3.13):

(
QT

j

QT
i

)(
Dj UjBjV

T
i

UiBiV
T
j Di

)(
T−1
j

T−1
j

)
.

We can verify that the complexity is

(4.2) Cfact ≈
2

3
m2n+ 5rmn+ 24kr3.

The saving over (3.15) is 2
3m

2n + rmn + 100
3 kr3 flops. When m = 2r, we have

Cfact ≈ 74
3 r2n, as compared with 42r2n of (3.15).

4.3. Symmetry. Significant improvements can be made specifically for symmet-
ric matrices. If A is symmetric, in the HSS construction, only either the block row
compression or block column compression is needed. A straightforward implementa-
tion of the bottom-up construction in section 3.2 as in [42] costs 3rn2 flops, and a
top-down procedure costs 2rn2, where m = 2r is assumed.

For a symmetric positive definite HSS matrix, the general ULV factorization al-
gorithm in [14] does not specifically take advantage of the symmetry. A modified
ULV scheme is proposed in [42], where after introducing zeros into the off-diagonal
blocks just like (3.11), the diagonal blocks D̂i are partially eliminated with Cholesky
factorizations. This version costs 113

3 r2n flops when m = 2r.
It can be further improved. Before the step (3.11), compute a full Cholesky

factorizationDi = LiL
T
i . In this way, we can avoid the dense matrix product QT

i Di in

(3.11). That is, by letting Ûi = L−1
i Ui and computing a QR factorization Ûi = QiŨi,

we have(
QT

1 L
−1
1

QT
2 L

−1
2

)(
D1 U1B1U

T
2

U2B2U
T
1 D2

)(
L−T
1 Q1

L−T
2 Q2

)

=

⎛
⎜⎜⎜⎝

(
I

I

) (
0

Ũ1B1Ũ
T
2

)
(

0

Ũ2B
T
1 Ũ

T
1

) (
I

I

)
⎞
⎟⎟⎟⎠ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

400 JIANLIN XIA

Then Ũ1B1Ũ
T
2 participates in later eliminations. Here, there are no explicit matrix

multiplications involving Qi, and the partial diagonal elimination is straightforward.
In such a scheme, the total complexity is

Cfact =
1

3
m2n+ rmn+

28

3
kr3 + 2r2n.

If m = 2r, this is only about 9r2n. Table 4.1 lists the complexity of some symmetric
HSS algorithms.

Table 4.1

Complexity of some symmetric HSS algorithms (with the low order terms dropped) for sym-
metric positive definite problems when m = 2r, where all leaf level HSS block rows have row sizes
m and the HSS rank of the matrix is r.

Operation Complexity

HSS construction (bottom-up version) 3rn2

HSS construction (top-down version) 2rn2

Dense to triangular HSS factorization 11
2
rn2

ULV HSS factorization 9r2n

4.4. Numerical experiments. We demonstrate the performance of some im-
portant HSS algorithms for a linear system

(4.3) Ax = b, with A = αI +B =
(
α+

√
|xi − xj |

)
n×n

,

where the points xi = cos((2i+1)π/2n) are the zeros of the nth Chebyshev polynomial,
and α is chosen to make A positive definite. B is illustrated to have a small numerical
HSS rank r in [9, 13]. Thus, A has the low-rank property. The right-hand side b
is obtained by b = Ax∗ with the exact solution x∗ being random. The preliminary
implementation is in MATLAB and the flop counts, timing, and accuracies are shown
in Tables 4.2, 4.3, and 4.4, respectively.

Table 4.2

Complexity (floating point operations or flops) of some HSS algorithms applied to a symmetric
system (4.3), where all leaf level HSS block rows have row sizes m = 30, and the relative tolerance
in the compression is τ = 10−8.

n 256 512 1024 2048 4096

Direct HSS
Construction 2.26E6 1.11E7 4.87E7 1.98E8 7.88E8
ULV solution 4.55E5 1.08E6 2.24E6 4.44E6 8.67E6

Triangular HSS
Factorization 4.34E6 2.09E7 9.28E7 3.82E8 1.57E9
Solution 2.74E4 6.20E4 1.30E5 2.62E5 5.19E5

n 8192 16384 32768 65536 131072

Direct HSS
Construction 3.09E9 1.18E10 4.47E10 1.67E11 6.17E11
ULV solution 1.64E7 3.03E7 5.53E7 9.96E7 1.78E8

Triangular HSS
Factorization 6.29E9 2.52E10 9.90E10 3.89E11 1.52E12
Solution 1.01E6 1.94E6 3.69E6 6.94E6 1.30E7

The flop counts are consistent with the theoretical counts. For example, the di-
rect HSS construction (symmetric version of Algorithm 1) and the ULV factorization
(symmetric version of Algorithm 2) have roughly O(n2) and O(n) complexities, re-
spectively. Also, the rows in Table 4.3 for the timing follow similar patterns. For

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 401

Table 4.3

Preliminary timing in seconds (MATLAB) corresponding to Table 4.3. (Note that the difference
between the solution timings of the two methods is small. This is because the solution time is small
for such sizes and is mainly for memory access which is similar for both methods.)

n 256 512 1024 2048 4096

Direct HSS
Construction 1.09E−1 1.15E−1 4.18E−1 1.95E0 8.27E0
ULV solution 4.20E−2 1.74E−2 6.43E−2 1.02E−1 1.74E−1

Triangular HSS
Factorization 1.10E−1 1.57E−1 5.31E−1 2.48E0 1.17E1
Solution 6.90E−2 1.26E−2 5.04E−2 7.71E−2 1.35E−1

n 8192 16384 32768 65536 131072

Direct HSS
Construction 4.00E1 1.73E2 7.34E2 2.88E3 1.11E4
ULV solution 3.18E−1 6.33E−1 1.24E0 2.48E0 5.71E0

Triangular HSS
Factorization 5.28E1 2.14E2 1.09E3 4.22E3 1.79E4
Solution 2.49E−1 4.75E−1 9.71E−1 2.13E0 4.85E0

Table 4.4

Accuracy corresponding to Table 4.3, where the error is
‖x−x∗‖

2
‖x∗‖2 and the residual is

‖Ax−b‖2
‖b‖2 .

n 256 512 1024 2048 4096

Direct ULV HSS
Error 1.41E−9 1.92E−9 2.19E−9 1.69E−9 1.70E−9
Residual 1.29E−9 1.14E−9 2.17E−9 1.61E−9 1.66E−9

Triangular HSS
Error 1.27E−9 2.32E−9 7.34e− 10 1.77E−9 1.80E−9
Residual 1.25E−9 1.27E−9 7.09e− 10 1.64E−9 1.64E−9

n 8192 16384 32768 65536 131072

Direct ULV HSS
Error 6.33E−9 3.07E−9 2.62E−9 1.36E−9 2.37E−9
Residual 3.88E−9 1.76E−9 1.92E−9 1.36E−9 2.32E−9

Triangular HSS
Error 2.33E−9 3.88E−9 2.86E−9 1.89E−9 1.88E−9
Residual 1.99E−9 2.15E−9 1.64E−9 1.49E−9 1.83E−9

example, the ULV solution time roughly doubles when n doubles. In addition, both
methods give satisfactory accuracies, as in Table 4.4.

From another point of view, we can compare the HSS rank with its estimate
based on the actual costs. The flop count of the bottom-up symmetric HSS con-
struction is Cconstr ≈ 2rn2 + 2r2n2/m, which indicates that r can be estimated by

r̃ = m
2 (
√

1 + 2 C
mn − 1) with the actual cost C. The estimate r̃ can be viewed as an

average rank value, while r is an upper bound. These results are shown in Table 4.5.

Table 4.5

Estimated HSS rank r̃, as compared with the actual HSS rank r (an upper bound), based on the
complexity of the symmetric HSS construction algorithm applied to (4.3).

n 256 512 1024 2048 4096 8192 16384
HSS rank r 15 16 17 18 19 20 20
Estimated r̃ 13 15 16 16 16 16 15

5. HSS recompression. An important improvement to HSS methods is to re-
compress noncompact HSS representations. During the operations of HSS matrices
we may get HSS forms where the U, V generators are not orthogonal or which are not
compact enough even though the actual HSS rank is small. Such HSS matrices arise
in sparse factorizations [41] and other construction schemes such as those based on
randomized sampling [31, 34] or strong rank-revealing LU factorizations [25].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

402 JIANLIN XIA

As an example, we consider adding two HSS matrices A and C with the same HSS
tree structure and block partition. Assume that their generators are Di(A), Ui(A),
. . . , and Di(C), Ui(C), . . . , respectively. Then, obviously, the sum A + C is an HSS
matrix with generators

Di(A+ C) = Di(A) +Di(C), Bi(A+ C) = diag (Bi(A), Bi(C)) ,

Ui(A+ C) =
(
Ui(A) Ui(C)

)
, Ri(A+ C) = diag (Ri(A), Ri(C)) ,(5.1)

Vi(A+ C) =
(
Vi(A) Vi(C)

)
, Wi(A+ C) = diag (Wi(A),Wi(C)) .

We see that the sizes of the HSS generators associated with the off-diagonal blocks
of A+C increase additively. However, the HSS rank of A+C may be much smaller,
and the HSS form is not sufficiently compact. To enhance the effectiveness of the HSS
representation we can use recompression techniques to recover a compact HSS form.

In general, we consider recompressing an HSS matrix A represented by generators
Di, Ui, . . . , Bi. The details are explained as follows. The next proposition forms the
foundation of the recompression technique here. It shows a nested representation for

the HSS block row A−
i and column A

|
i associated with a node i as in (2.3). Here for

convenience, we permute A−
i and A

|
i and rewrite them as

(5.2)

A−
i ≡ A−

i Πi =
(
A|ti×tj A|ti×(I\(ti∪tj))

)
, A|

i ≡ ΠT
i A

|
i =

(
A|tj×ti

A|(I\(ti∪tj))×ti

)
.

That is, Πi permutes A|ti×tj to the front of A−
i , and ΠT

i permutes A|tj×ti to the top

of A−
i .
Proposition 5.1. Assume A is an HSS matrix as defined in Definition 2.1. For

a node i < root(T) with sibling j and parent p, the corresponding HSS blocks A−
i and

A|
i in (5.2) have the following forms:

A−
i = UiSiV̂

T
i , with Si =

(
Bi RiSp

)
, V̂i = diag

(
Vj , ΠpV̂p

)
,(5.3)

A|
i = ÛiTiV

T
i , with Ti =

(
Bj

T T
p WT

j

)
, Ûi = diag

(
Uj, ΠpÛp

)
,(5.4)

where Πp is a permutation matrix as defined in (5.2), V̂i and Ûi have orthonormal

columns, and Sp, Tp, Ûp, V̂p are empty matrices when p = root(T).
Proof. We prove (5.3) by induction, and (5.4) can be proved similarly. The result

is obvious for a node i with par(i) = 2k − 1. Assuming (5.3) holds for a nonleaf
node i < 2k − 1, we show it also holds for the children c1 and c2 of i. Clearly,
A|tc1×tc2

= Uc1Bc1V
T
c2 . Since

A−
i =

(
A|tc1×(I\(tc1∪tc2))

A|tc2×(I\(tc1∪tc2))

)
Πi, UiSiV̂

T
i =

(
Uc1Rc1

Uc2Rc2

)
SiV̂

T
i ,

we have A|tc1×(I\(tc1∪tc2))
= Uc1Rc1S

T
i V̂

T
i ΠT

i . Thus,

A−
c1 =

(
A|tc1×tc2

A|tc1×(I\(tc1∪tc2))

)
=
(
Uc1Bc1V

T
c2 Uc1Rc1SiV̂

T
i ΠT

i

)
= Uc1

(
Bc1 Rc1Si

)
diag

(
V T
c2 , (ΠiV̂i)

T
)

≡ Uc1Sc1 V̂
T
c1 .

Therefore, (5.3) holds for c1. Similarly, it holds for c2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 403

This proposition also justifies the precise definition of the compactness of an HSS
form traditionally used in HSS methods.

Definition 5.2. An HSS matrix A as defined in Definition 2.1 is said to be in
a compact form if its HSS rank is small, and the column sizes of all Ui and Vi are

close to the ranks of A−
i and A

|
i, respectively. Also, we say A is in a proper form if

it is compact and all Ui and Vi have orthonormal columns.
According to this proposition, we design a recompression scheme with two stages.

In the first stage or a forward stage, we compress Ui and Vi and make the columns of
each to be orthonormal, which is done in a postordering traversal of the HSS tree. In
the second stage or a backward stage, we compress Si and Ti in (5.3)–(5.4) to further
make the HSS form a compact one, which is done in a reverse-postordering traversal.
This procedure is more systematic than a preliminary one in our technical report [12].
We use tilded notation R̃, W̃ , etc. to denote the generators after compression, and
hatted notation R̂, Ŵ , etc. to denote intermediate temporary forms of the generators.

5.1. Forward stage. In the first stage, we traverse the tree bottom-up for nodes
i = 1, 2, . . . The generators Ui and Vi are compressed and Ri,Wi, and Bi are updated.
If i is a leaf, compute QR factorizations

(5.5) Ui = ŨiFi, Vi = ṼiGi,

where Ũi and Ṽi are the new generators. That is, after this compression step, Ui

and Vi are updated to Ũi and Ṽi, respectively. The matrices Fi and Gi are passed to
generators Ri and Wi, respectively, as in

(5.6) R̂i = FiRi, Ŵi = GiWi.

If i is a nonleaf node, Ui and Vi are compressed indirectly. For example, Ui is
implicitly given by

Ui =

(
Uc1Rc1

Uc2Rc2

)
=

(
Ũc1R̂c1

Ũc2R̂c2

)
=

(
Ũc1

Ũc2

)(
R̂c1

R̂c2

)
,

where Ũc1 and Ũc2 are compressed by recursion, and have orthonormal columns. Thus
it suffices to compute QR factorizations

(5.7)

(
R̂c1

R̂c2

)
=

(
R̃c1

R̃c2

)
Fi,

(
Ŵc1

Ŵc2

)
=

(
W̃c1

W̃c2

)
Gi.

This gives the new generators R̃c1 , R̃c2 , W̃c1 , W̃c2. Then use (5.6) to update Ri, Wi.
If i is also a right node, update

(5.8) B̃i = FiBiG
T
j , B̃j = FjBjF

T
i ,

where j = sib(i), and Fj and Gj are available from the jth compression step (associ-
ated with node j which has been visited before).

Repeat these steps along the postordering traversal of T . At the end of this stage,
we have A in a new HSS form with generators D̃i, Ũi, . . . , B̃i. After this stage, all
Ũi and Ṽi generators have orthonormal columns (and full column ranks).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

404 JIANLIN XIA

5.2. Backward stage. This is a top-down stage, or the reverse-postordering
traversal of the nodes i = root(T)−1, root(T)−2, . . . , 1. For convenience, we still use
Di, Ui, . . . , Bi to denote the generators of A after the forward stage and use tilded

notation for the new generators. Here, we compress A−
i and A|

j via the compression
of Si and Tj in Proposition 5.1, respectively, where j = sib (i).

If a node i satisfies par(i) = root(T), we compute an SVD for Si = Bi:

(5.9) Si = PiS̃iQ
T
i .

Then we update Rc1 ,Wc1 , Rc2 ,Wc2 for the children c1, c2 of i with

(5.10)

(
R̂c1

R̂c2

)
=

(
Rc1

Rc2

)
Pi,

(
Ŵc1

Ŵc2

)
=

(
Wc1

Wc2

)
Qi.

This implicitly updates Ui, Vi. Accordingly, set B̃i = S̃i and T̃i = Bj , where j =
sib (i).

If i satisfies par(i)
= root(T), according to Proposition 5.1, we compress Si and
Tj. Let p = par(i), j = sib(i). The proof in Theorem 5.3 shows that the compression
of Si and Tj can be done via

(5.11) Ŝi =
(
Bi R̂iS̃p

)
and T̂ T

j =
(
BT

i ŴiT̃p

)
,

respectively, where R̂i, S̃p, Ŵi, and T̃p are results from the recompression step asso-
ciated with p by recursion (with i set to be p in (5.10), (5.12), and (5.13)). Compute
SVDs

Ŝi = PiS̃iX
T
i ≡ PiS̃i

(
XT

i,1 XT
i,2

)
,(5.12)

T̂ T
j = Qj T̃jY

T
i ≡ Qj T̃j

(
Y T
j,1 Y T

j,2

)
,(5.13)

where XT
i and Y T

i are partitioned according to the column partitions in (5.11). The

fact that A−
i and A|

j share a common block A|ti×tj = UiBiV
T
j yields

Bi = PiS̃iX
T
i,1 = Yj,1T̃

T
j QT

j .

Thus, we set

B̃i(≡ PT
i BiQj) = PT

i Yj,1T̃
T
j = S̃iX

T
i,1Qj ,(5.14)

R̃i = PT
i R̂i, W̃j = QT

j Ŵj .(5.15)

Next, if i is also a leaf node, we update Ui and Vi as

(5.16) Ũi = UiPi, Ṽi = ViQi,

respectively. Otherwise, we compute the update (5.10).
The recompression is then done recursively. When it finishes, A is in a compact

HSS form with generators D̃i, Ũi, . . . , B̃i.

5.3. Algorithm and analysis. We summarized the procedure as follows.

Algorithm 3 (HSS recompression).

for nodes (separators) i = 1, 2, . . . , root(T)− 1 (Forward stage)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 405

if i is a leaf
− Compress Ui and Vi as in (5.5) and update Ri and Wi as in (5.6)

else

− Compute QR factorizations in (5.7) and update Ri and Wi as in (5.6)
end

if i is a right node, update Bi and Bj as in (5.8) for j = sib(i)
end

Set Di, Ui, etc. to be D̃i, Ũi, etc., respectively
for nodes (separators) i = root(T)− 1, root(T)− 2, . . . , 1 (Backward stage)

if par(i) = root(T)
− Compute an SVD for Bi as in (5.9) and update Rc1 ,Wc1 , Rc2 ,Wc2 as in

(5.10) for the children c1, c2 of i
− Set B̃i = S̃i and T̃i = Bj

else

− Form Ŝi and T̂ T
j as in (5.11) and compute SVDs as in (5.12) and (5.13)

− Compute B̃i as in (5.14) and R̃i and W̃j as in (5.15)
end

if i is a leaf, update Ui and Vi as in (5.16)
end

Set Di, Ui, etc. to be D̃i, Ũi, etc., respectively.

Next, we briefly discuss the effectiveness of this recompression procedure and the
complexity.

Theorem 5.3. After the two stages of recompression, the new HSS representation
of A is in a proper form.

Proof. After the first stage, all Ũi and Ṽi have orthonormal columns due to (5.5)
and (5.7). This property is also preserved in the second stage as in (5.10) and (5.16).
We just need to show that the second stage produces a compact HSS form. Let the
new generators after the second stage be D̃i, Ũi, . . . , B̃i.

We show that the second stage recursively yields Sp in the following form for a
node p = par(i):

(5.17) Sp = PpS̃pZ
T
p , Zp ≡ diag

(
I, Zpar(p)

)
Xp,

where Zp has orthonormal columns, and Zp = Qp if par(p) = root(T), or by (5.12)
otherwise. We show the result also holds for i. That is,

Si =
(
Bi RiSp

)
=
(
Bi RiPpS̃pZ

T
p

)
(5.18)

=
(
Bi R̂iS̃p

)
diag

(
I, ZT

p

)
= Ŝidiag

(
I, ZT

p

)
= PiS̃iX

T
i diag

(
I, ZT

p

)
= PiS̃iZ

T
i ,

where (5.12) is used, and Zi = diag (I, Zp)Xi. This verifies the recursion and confirms

that the compression of Si can be done by compressing Ŝi in (5.11). Thus,

A−
i = UiSiV̂

T
i = Ui(PiS̃iZ

T
i)V̂

T
i = (UiPi)S̃i(Z

T
i V̂

T
i) = ŨiS̃i(V̂iZi)

T ,

where both Ũi and V̂iZi have orthonormal columns, and S̃i has full rank. Therefore,
the column size of Ũi is the rank of A−

i , and A−
i is in a compact compressed form. A

similar result holds for A|
i.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

406 JIANLIN XIA

The complexity of the algorithm can be conveniently counted. For simplicity,
we make assumptions about the generator sizes and ranks as indicated in Table 5.1.
Then it can be verified that the total cost of the forward and backward stages is

Crecom = r1

(
8mr0 + 12r20 + 12r0r1 −

8

3
r21 − 4mr1

)
n

m

+ r

(
4mr1 + 24r21 + 28rr1 +

20

3
r2
)

n

m
.

Table 5.1

Generator sizes before and after the two stages of recompression, where r1 is the rank of each
Ui and Vi initially, and r is the HSS rank satisfying r < r1.

Generator Initial size After first stage After second stage
Ui, Vi m× r0 m× r1 m × r

Ri,Wi, Bi r0 × r0 r1 × r1 r × r

As an example, we consider recompressing an HSS matrix where r0 = 2r1 = 4r
and m = 2r. See Table 5.2 for the recompression cost and the comparison of ULV
operation costs before and after the recompression.

Table 5.2

Costs of HSS operations for an HSS matrix before and after recompression, where the HSS rank
is r, and m = 2r, r0 = 2r1 = 4r (before recompression, as in Table 5.1).

HSS recompression ULV factorization ULV solution
Before recompression \ 736r2n 148rn
After recompression 413r2n 46r2n 37rn

6. Relaxation of rank requirements in HSS operations. In this section,
we propose another useful improvement to classical HSS methods from a different
point of view.

Existing HSS algorithms often assume the HSS ranks to be bounded [39, 41, 42,
etc.]. Sometimes, the bound may be pessimistic (see, e.g., r as a bound for r̃ in
Table 4.5). In [14], a special rank pattern for HSS blocks is used. A concept of rank
functions is also given in [8]. Here, we relax the HSS rank requirement by proposing
several general rank patterns. For simplicity, assume all HSS block rows corresponding
to level l of the HSS tree have the same row size mL−l, where the bottom/leaf HSS
block rows have row dimensions m0 (constant) so that there are totally L levels with

(6.1) m0 ≈ n/2L, mL−l = m02
L−l.

Also assume r0 is maximum rank of bottom level HSS blocks. At level l, we allow the
numerical ranks of the HSS blocks to be bounded by

rL−l = (L− l + 1)r0 =

(
log2

mL−l

m0
+ 1

)
r0.

That is, rL−l increases as mL−l increases (and as l decreases).
For HSS construction algorithms such as the one described in section 3.2, the cost

associated with each tree node at level l is O(r2L−ln) flops. There are 2
l nodes at level

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 407

l. Using (6.1) and the fact that
∑L

l=0(L− l+ 1)22l ≈ 12× 2L, we have the total cost
for the HSS construction:

Cconstr =
L∑

l=0

O(r2L−ln)2
l = O

(
r20n

L∑
l=0

(L − l + 1)22l

)
= O(r202

Ln) = O(n2).

Thus, after relaxing the rank requirement, we do not increase the order of the com-
plexity.

Similarly, for ULV HSS factorizations, the cost associated with each tree node is
O(rL−l

3) flops. Using
∑L

l=0(L− l + 1)32l ≈ 52× 2L, we have the total cost

Cfact =
L∑

l=0

O(r3L−l)2
l = O

(
r30

L∑
l=0

(L − l + 1)32l

)
= O(n).

The assumption (6.2) indicates rL−l = O(r0 log2 mL−l), and the HSS rank is
bounded by O(log2 n). More generally, we can allow rl to be

(6.2) rL−l = O ((r0 log2 mL−l)
p) = O (rp0(L − l + 1)p) ,

where p is a positive integer. For example, when p = 2 we have

Cfact =
L∑

l=0

r60(L− l + 1)62l ≈ O(r602
L) = O(n).

Similarly, the storage remains O(n) under the new rank condition.

We can further relax the rank requirements so that rL−l increases as O(m
1/p
L−l),

where p is a positive integer. The derivations are similar. For example, for p = 3 and
2, the HSS construction costs are now

Cconstr =
L∑

l=0

O
(
m

1/3
L−l

)2
n2l =

L∑
l=0

O
((

m02
L−l
)2/3)

n2l = O(n2) and

Cconstr =
L∑

l=0

O
(
m

1/2
L−l

)2
n2l =

L∑
l=0

O
(
m02

L−l
)
n2l = O(n2 log2 n),

respectively.
In addition, we can generalize the rank pattern used in [14]. That is, assume

rL−l = αL−lr0.

|α| =
√
2 is discussed in [14]. Here, we estimate the counts for a general α. For

example,

Cconstr =
L∑

l=0

O(r2L−ln)2
l = nr20

L∑
l=0

O
(
α2(L−l) × 2l

)
= nr20α

2LO

(
L∑

l=0

(
2

α2

)l
)

=

⎧⎪⎨
⎪⎩

O(n2) if |α| <
√
2,

O
(
n2 logn

)
if |α| =

√
2,

O
(
n1+log2 α2

)
if |α| >

√
2.

Therefore, it is desirable to choose |α| ≤
√
2.

All of these results are summarized in the following theorem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

408 JIANLIN XIA

Theorem 6.1. Suppose an order n matrix A is recursively partitioned into L =
O(log2

n
m0

) levels of HSS blocks following a perfect binary tree, so that the bottom level

HSS block row size is m0. Let mL−l = O(m02
L−l) be the row dimensions of the HSS

block rows at level l, and let rl be their maximum numerical rank.
1. When rl = O((log2 ml)

p) (so that maxl rL−l = O((log2 n)
p)) with an integer

p ≥ 0, an HSS form of A can be constructed in Cconstr flops, a ULV factoriza-
tion of the HSS form needs Cfact flops, and the HSS form or its ULV factor
needs memory size Smem, where

Cconstr = O(n2), Cfact = O(n), Smem = O(n).

(These are the same counts as in the classical situation [14, 42, etc.] where
rl = O(1) or p = 0.)

2. When rL−l = O(m
1/p
L−l) (so that maxl rL−l = O(n1/p)) with an integer p > 0,

we have the following counts:
(a) If p > 3, then the counts are

Cconstr = O(n2), Cfact = O(n), Smem = O(n).

(b) If p = 3, then the counts are

Cconstr = O(n2), Cfact = O(n log2 n), Smem = O(n).

(c) If p = 2, then the counts are

Cconstr = O(n2 log2 n), Cfact = O(n3/2), Smem = O(n log2 n).

3. When rL−l = αL−lr0 with α > 0, we have the following counts:
(a) If |α| < 3

√
2,

Cconstr = O(n2), Cfact = O(n), Smem = O(n).

(b) If |α| = 3
√
2,

Cconstr = O(n2), Cfact = O(n log2 n), Smem = O(n).

(c) If 3
√
2 < |α| <

√
2,

Cconstr = O(n2), Cfact = O(nlog2 α3

), Smem = O(n).

(d) If |α| =
√
2,

Cconstr = O(n2 log2 n), Cfact = O(n3/2), Smem = O(n log2 n).

These results indicate that we can allow flexible rank patterns to achieve similar
results, and enhance the applicability of HSS methods. Moreover, notice that the
memory sizes (and also the solution costs) are both nearly linear in n. It is possible
to generalize them to other structured matrices such as sequentially semiseparable
matrices [10], quasiseparable matrices [3, 19], and H2 matrices. Similar results can
also be derived for structured sparse solvers based on HSS matrices as in [41].

As a numerical example, we consider some ill-conditioned Toeplitz matrices, which
are converted into Cauchy-like matrices with the aid of displacement structures (see,
e.g., [21, 38]). It is shown that these Cauchy-like matrices have the low-rank property

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF HIERARCHICAL STRUCTURED ALGORITHMS 409

Table 6.1

Complexity of two HSS algorithms applied to some Cauchy-like matrices in Toeplitz linear
system solutions.

n 256 512 1024 2048 4096 8192 16384 32768 65536

HSS construction (cost
n2) 40.54 52.9 59.4 59.9 60.1 60.1 59.3 58.9 58.7

ULV HSS solution (cost
104n

) 2.0 2.0 2.2 1.9 1.9 2.0 2.0 2.0 2.0

and the HSS rank is bounded by O(log n) [15, 37]. It can also be shown that the ranks
satisfy part 1 of Theorem 6.1 with p = 1. Here, we just use the low-rank property
and ignore any further special structures so as to test the performance of regular HSS
algorithms. See Table 6.1, which verifies that with the relaxed rank bounds, the order
of the complexity is still similar to that with the classical rank bound, although the
prefactor or constant in the count may be larger.

7. Conclusions. This paper gives systematic complexity analysis for some HSS
algorithms. Detailed flop counts are conducted. This helps the development of several
strategies for improving existing HSS methods and for developing new fast ones,
including modified HSS construction and solution and new HSS recompression. We
also relax classical rank requirements to allow more flexibility in using HSS methods.
The analysis is verified by some numerical examples. The ideas are also useful in
sparse structured methods.

Acknowledgments. The author is very grateful to the anonymous referees for
their valuable suggestions. The author would also like to thank Professors Shivkumar
Chandrasekaran, Ming Gu, and Dan Jiao for some useful discussions.

REFERENCES

[1] M. Bebendorf, Why finite element discretizations can be factored by triangular hierarchical
matrices, SIAM J. Numer. Anal., 45 (2007), pp. 1472–1494.

[2] M. Bebendorf, Efficient inversion of Galerkin matrices of general second-order elliptic dif-
ferential operators with nonsmooth coefficients, Math. Comp., 74 (2005), pp. 1179–1199.

[3] T. Bella, Y. Eidelman, I. Gohberg, and V. Olshevsky, Computations with quasiseparable
polynomials and matrices, Theoret. Comput. Sci., 409 (2008), pp. 158–179.

[4] D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg,A fast implicit QR eigen-
value algorithm for companion matrices, Linear Algebra Appl., 432 (2010), pp. 2006–2031.

[5] S. Börm, Construction of data-sparse H2-matrices by hierarchical compression, SIAM J. Sci.
Comput., 31 (2009), pp. 1820–1839.

[6] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators, Numer. Math.,
101 (2005), pp. 221–249.

[7] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with
applications, Eng. Anal. Bound. Elem, 27 (2003), pp. 405–422.

[8] W. Chai and D. Jiao, An H2-matrix-based integral-equation solver of reduced complexity
and controlled accuracy for solving electrodynamic problems, IEEE Trans. Antennas and
Propagation, 57 (2009), pp. 3147–3159.

[9] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS
representations via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 67–81.

[10] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

[11] S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, On the numerical rank of
the off-diagonal blocks of Schur complements of discretized elliptic PDEs, SIAM J. Matrix
Anal. Appl., 31 (2010), pp. 2261–2290.

[12] S. Chandrasekaran, M. Gu, X. S. Li, and J. Xia, Some fast algorithms for hierarchically
semiseparable matrices, LBNL Technical Report LBNL-62897, Berkeley, CA, 2007.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

410 JIANLIN XIA

[13] S. Chandrasekaran, M. Gu, and W. Lyons, A fast adaptive solver for hierarchically semisep-
arable representations, Calcolo, 42 (2005), pp. 171–185.

[14] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[15] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, A superfast algorithm for Toeplitz
systems of linear equations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1247–1266.

[16] S. Delvaux and M. Van Barel, A QR-based solver for rank structured matrices, SIAM. J.
Matrix Anal. Appl., 30 (2008), pp. 464–490.

[17] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[18] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear

equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.
[19] Y. Eidelman, I. Gohberg, and V. Olshevsky, The QR iteration method for Hermitian

quasiseparable matrices of an arbitrary order, Linear Algebra Appl., 404 (2005), pp. 305–
324.

[20] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical
matrix representation, Comm. Pure Appl. Math., 64 (2011), pp. 697–735.

[21] M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl., 58 (1984), pp. 75–95.
[22] I. Gohberg, T. Kailath, and I. Koltracht, Linear complexity algorithms for semiseparable

matrices, Integral Equations Operator Theory, 8 (1985), pp. 780–804.
[23] G. H. Golub and C. V. Loan, Matrix Computations, 3rd ed., The Johns Hopkins University

Press, Baltimore, MD, 1996.
[24] L. Grasedyck, R. Kriemann, and S. Le Borne, Parallel black box H-LU preconditioning for

elliptic boundary value problems, Comput. Vis. Sci., 11 (2008), pp. 273–291.
[25] M. Gu and J. Xia, A numerically stable and superfast algorithm for solving Toeplitz systems

of linear equations, in Proceedings of the SIAM Conference on Applied Linear Algebra
(LA09), Monterey, CA, 2009.

[26] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108.

[27] W. Hackbusch, Hierarchische Matrizen: Algorithmen und Analysis, Springer, Berlin, 2009.
[28] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Comput-

ing, 69 (2002), pp. 1–35.
[29] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application

to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.
[30] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures on Applied

Mathematics, H. Bungartz, R. H. W. Hoppe, and C. Zenger, eds., Springer, Berlin, 2000,
pp. 9–29.

[31] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix-vector multiplication, J. Comput. Phys., 230 (2011), pp. 4071–4087.

[32] J. W. H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM
Rev., 34 (1992), pp. 82–109.

[33] W. Lyons, Fast Algorithms with Applications to PDEs, Ph.D. thesis, University of California,
Santa Barbara, CA, 2005.

[34] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274.

[35] P. G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, J.
Sci. Comput., 38 (2009), pp. 316–330.

[36] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[37] P. G. Martinsson, V. Rokhlin, and M. Tygert, A fast algorithm for the inversion of general
Toeplitz matrices, Comput. Math. Appl., 50 (2005), pp. 741–752.

[38] V. Pan, On computations with dense structured matrices, Math. Comp., 55 (1990), pp. 179–
190.

[39] Z. Sheng, P. Dewilde, and S. Chandrasekaran, Algorithms to Solve Hierarchically Semi-
separable Systems, Oper. Theory Adv. Appl. 176, Birkhäuser, Basel, 2007, pp. 255–294.

[40] R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi, A bibliography on semisep-
arable matrices, Calcolo, 42 (2005), pp. 249–270.

[41] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large
structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–
1411.

[42] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[43] J. Xia and M. Gu, Robust approximate Cholesky factorization of rank-structured symmetric
positive definite matrices, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2899–2920.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

