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Summary
In this work, we provide new analysis for a preconditioning technique called
structured incomplete factorization (SIF) for symmetric positive definite matri-
ces. In this technique, a scaling and compression strategy is applied to construct
SIF preconditioners, where off-diagonal blocks of the original matrix are first
scaled and then approximated by low-rank forms. Some spectral behaviors after
applying the preconditioner are shown. The effectiveness is confirmed with
the aid of a type of two-dimensional and three-dimensional discretized model
problems. We further show that previous studies on the robustness are too con-
servative. In fact, the practical multilevel version of the preconditioner has a
robustness enhancement effect, and is unconditionally robust (or breakdown
free) for the model problems regardless of the compression accuracy for the
scaled off-diagonal blocks. The studies give new insights into the SIF precon-
ditioning technique and confirm that it is an effective and reliable way for
designing structured preconditioners. The studies also provide useful tools for
analyzing other structured preconditioners. Various spectral analysis results can
be used to characterize other structured algorithms and study more general
problems.
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1 INTRODUCTION

Designing effective and robust preconditioners is typically the key issue in iterative solutions of large symmetric posi-
tive definite (SPD) linear systems. An effective preconditioner can significantly reduce the number of iterations. In the
meantime, it is often preferable to have robust preconditioners that remain positive definite. Various types of robust pre-
conditioners have been designed,1–6 where some stabilization strategies are often used. A commonly used stabilization
strategy is diagonal compensation for preserving positive definiteness, where positive numbers are added to diagonal
entries according to the off-diagonal entries that are dropped during incomplete factorizations.

In recent years, low-rank compression methods have often been used to design effective preconditioners, and are
typically based on the low-rank approximation of certain dense off-diagonal blocks. The resulting structured approxima-
tions are used as preconditioners. Such structured preconditioners can be quickly applied and it is convenient to control
the accuracy of how they approximate the original matrix. On the other hand, it is usually nontrivial to analyze the
effectiveness.
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Recently, a robust preconditioning technique called structured incomplete factorization (SIF) is proposed in Reference
7 for SPD matrices. The technique relies on a scaling and compression strategy reformulated from an earlier article.8 In the
strategy, off-diagonal blocks are not directly compressed. Instead, they are first scaled by the inverses of the Cholesky fac-
tors of relevant diagonal blocks and the scaled off-diagonal blocks are then approximated by low-rank forms. It is shown
in References 7,8 that the resulting SIF preconditioners have some attractive features. For example, some effectiveness
results can be conveniently shown for the preconditioners. The effectiveness means that the scaled off-diagonal blocks
can be aggressively compressed so as to yield effective multilevel SIF preconditioners that can improve the condition
numbers and eigenvalue distributions. (Here, the effectiveness estimate or quantification is generally done in terms of
the condition numbers and eigenvalue distributions.) In other words, by using low-rank approximations (with very small
ranks) to the scaled off-diagonal blocks, the resulting preconditioners can greatly accelerate the convergence of iterative
solution. The low-rank forms make it fast to apply the preconditioners. Practical numerical tests have shown superior
convergence results as compared with standard structured preconditioning based on direct off-diagonal compression.7
The scaling and compression strategy is later also followed by a series of other work9–12 for designing structured pre-
conditioners for both dense and sparse matrices. Related ideas also appear in some work for preconditioning sparse
matrices.13–16

The analysis in Reference 7 aims at general SPD matrices and ignores specific properties and backgrounds. Thus,
some of the results are very conservative. For example, the analysis in Reference 7 for a multilevel SIF preconditioner is
based on some restrictive robustness requirements. Specifically, the effectiveness and robustness analysis requires that
the matrix is not too ill conditioned, the off-diagonal compression accuracy is not too low, or the number of levels is not
too large. These requirements are needed in order to guarantee the positive definiteness of the preconditioner. However,
the requirements either limit the applicability of the preconditioner or make the preconditioner too expensive. On the
other hand, many practical tests have shown nice performance even though such requirements are not met.

In addition, there are two types of SIF preconditioners in Reference 7, one based on Cholesky factorizations and
another based on a so-called ULV factorization.17,18 The analysis is done for Cholesky SIF preconditioning while the
implementation is for ULV SIF preconditioning since the latter has better scalability and stability. The effectiveness of
ULV SIF preconditioning is not clear.

In this work, we revisit the analysis for the SIF preconditioning technique and give new insights into the effectiveness
and robustness. Our aim is to provide better understanding of the performance in terms of both general spectral analysis
and studies of some model problems and show that it is possible to relax the robustness requirements in Reference 7. The
main contributions are as follows.

1. We provide more intuitive studies on the effectiveness of SIF preconditioning, especially some spectral analysis for
ULV SIF preconditioners and show that they are as effective as the Cholesky SIF preconditioners. This confirms that
ULV SIF preconditioners are the better choice in practice due to the nice stability and scalability.

2. We give concrete illustrations of the effectiveness of SIF preconditioning in terms of a type of two-dimensional
(2D) and three-dimensional (3D) discretized model problems that has often been used to study some similar pre-
conditioners in other work.13–15 Singular values of the scaled off-diagonal blocks are derived and are used to
show the condition number and eigenvalue distribution after preconditioning. Explicit forms of the precondition-
ers are also derived so as to understand the behaviors of the scaling and compression strategy in multilevel SIF
preconditioning.

3. Furthermore, our studies indicate that multilevel SIF preconditioning has an implicit Schur complement compensa-
tion effect,8,19 which can help enhance the robustness of the resulting preconditioners. In fact, for the model problems,
we can show that the requirements in Reference 7 needed to guarantee positive definiteness are too conservative
and may be relaxed. Actually, the multilevel SIF preconditioners are unconditionally robust or breakdown free for
those problems. That is, the SIF preconditioners remain positive definite regardless of the off-diagonal compression
accuracy and the number of levels. More specifically, in the multilevel scaling and compression strategy, the lead-
ing singular values of the scaled off-diagonal blocks remain unchanged. Such studies give a good indication that SIF
preconditioners likely have much better robustness than predicted in Reference 7.

Our studies give new perspectives for the SIF preconditioning technique and the scaling and compression strategy,
and confirm that the technique is an effective and reliable way to design new structured preconditioners with guaranteed
performance. That is, it is beneficial to combine scaling with off-diagonal compression in the design of structured pre-
conditioners. Our work suggests that it is feasible to obtain even stronger analysis results for SIF preconditioning applied
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to specific applications. It also provides useful tools for analyzing and understanding other structured preconditioners.
Various spectral analysis results can be used to characterize other structured algorithms and study more general problems.
The work also suggests new directions for improving SIF preconditioning.

Our discussions include three parts. We provide some spectral analysis to illustrate the effectiveness of SIF precon-
ditioning in Section 2. The effectiveness of SIF preconditioning is further demonstrated in terms of the model problems
in Section 3. Section 4 discusses the robustness of multilevel SIF schemes. The analysis is also aided by some numerical
evidences. To facilitate the discussions, we list commonly used notation as follows.

• 𝜆(A) denotes an eigenvalue of a symmetric matrix A and 𝜆j(A) denotes the jth smallest eigenvalue of A.
• 𝜎j(C) denotes the jth largest singular value of a matrix C.
• 𝜅(A) is the 2-norm condition number of A.
• diag(⋅) denotes a (block) diagonal matrix with the given (block) diagonals.
• Ir is the r × r identity matrix.
• When an n × n matrix A is partitioned, the partitioning is denoted by the splitting of its index set {1 ∶ n}. For example,

{1 ∶ n} = {1 ∶ n1} ∪ {n1 + 1 ∶ n} denotes a block 2 × 2 partitioning of A with the (1, 1) and (2, 2) diagonal blocks
corresponding to the index sets {1 ∶ n1} and {n1 + 1 ∶ n}, respectively.

2 SPECTRAL ANALYSIS FOR SIF PRECONDITIONING

In this section, we first give a quick review of SIF preconditioning for SPD matrices and then revisit the effectiveness in
terms of some spectral analysis.

2.1 Review of SIF preconditioning for SPD matrices

The SIF preconditioning strategy is built upon a scaling and compression strategy.7,8 In this strategy, off-diagonal blocks
are first scaled and then compressed so as to justify the effectiveness and to better control of the performance. The basic
idea from Reference 7 is as follows.

Consider an order-n block 2 × 2 SPD matrix

A ≡

(
A11 A12
AT

12 A22

)
, (1)

where the two diagonal blocks are assumed to have Cholesky factorizations

Aii = LiLT
i , i = 1, 2. (2)

(Here, bold fonts are used for the subscripts in order to be consistent with later notation.) Suppose A12 is k1 × k2. Then A
can be factorized as

A =
(

L1
L2

)( Ik1 C
CT Ik2

)(
LT

1
LT

2

)
, with C = L−1

1 A12L−T
2 . (3)

Suppose the full SVD of C and its rank-r truncation look like

C =
(

Ũ1 Û1
)( Σ̃1

Σ̂1

)(
ŨT

2
ÛT

2

)
≈ Ũ1Σ̃1ŨT

2 , (4)

where Σ̃1 is a diagonal matrix for the r singular values of C that are supposed to be greater than or equal to a tolerance 𝜏:
𝜎1(C) ≥ … ≥ 𝜎r(C) ≥ 𝜏. That is, 𝜎r+1(C) ≤ 𝜏 is the largest dropped singular value of C. With the truncated SVD, A can be
approximated by
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Ã ≡

(
L1

L2

)(
Ik1 Ũ1Σ̃1ŨT

2
Ũ2Σ̃1ŨT

1 Ik2

)(
LT

1
LT

2

)
.

Then we get a prototype SIF preconditioner

Ã = L̃L̃T , (5)

where

L̃ ≡

(
L1

L2Ũ2Σ̃1ŨT
1 L2D̃2

)
, with D̃2D̃T

2 = Ik2 − Ũ2Σ̃
2
1ŨT

2 . (6)

In practice, a ULV-type factorization17,18 is used to enhance the scalability since it avoids the sequential computation
of large Schur complements and uses a hierarchical scheme where local factorizations at each level can be done simul-
taneously. Let Q1 be an orthogonal matrix constructed from Ũ1 with Ũ1 as the first r columns and Q2 be constructed
similarly from Ũ2. Then Equation (5) becomes a ULV factorization with L̃ a ULV factor

L̃ =
(

L1
L2

)(
Q1

Q2

)
Π
(

H
In−2r

)
, (7)

where H is the lower triangular Cholesky factor of a 2r × 2r matrix
(

Ir Σ̃1
Σ̃1 Ir

)
and Π is a permutation matrix used to

assemble
(

Ir Σ̃1
Σ̃1 Ir

)
like

ΠT

(
Ik1 diag(Σ̃1, 0)

diag(Σ̃1, 0) Ik2

)
Π = diag

((
Ir Σ̃1
Σ̃1 Ir

)
, In−2r

)
. (8)

Generalization of the prototype preconditioner to practical multilevel schemes is also made in Reference 7. The pro-
cedure above with 1-level partitioning of A is called a 1-level (or prototype) SIF scheme. For convenience, we call the
preconditioner Equation (5) with the factor in Equation (6) a 1-level Cholesky SIF preconditioner and Equation (5) with
the factor in Equation (7) a 1-level ULV SIF preconditioner. The same idea may be applied to A11 and A22 to yield approx-
imate factors L̃1 ≈ L1 and L̃2 ≈ L2, respectively. If L̃1 and L̃2 are used to replace L1 and L2, respectively, in the procedure
above, then the procedure is a 2-level SIF scheme. Similarly, a general l-level SIF scheme can be obtained.

The work7 provides some analysis results on the effectiveness the 1-level Cholesky SIF preconditioner. It is shown
that the preconditioned matrix has a form

L̃−1AL̃−T =
(

Ik1 Ĉ
ĈT Ik2

)
, (9)

where

Ĉ = Û1Σ̂1ÛT
2 D̃−T

2 , ||Ĉ||2 = 𝜎r+1(C). (10)

Thus, the 2-norm condition number of the preconditioned matrix is

𝜅(L̃−1AL̃−T) = 1 + 𝜎r+1(C)
1 − 𝜎r+1(C)

. (11)

2.2 Spectral analysis for Cholesky and ULV SIF preconditioning

The effectiveness analysis in Reference 7 is done only for the Cholesky SIF scheme in Section 2.1. On the other hand, the
actual implementation is based on the ULV SIF schemes which have better scalability and stability. Here, we show that
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both types of schemes are similarly effective and also give a more intuitive explanation of the effectiveness by extending
Equation (10).

Theorem 1. Suppose the smaller of the row and column sizes of C in Equation (3) is k. For the Cholesky SIF factor L̃ in
Equation (6), the Equation (9) holds with the nonzero singular values of Ĉ in Equation (10) given by

𝜎j(Ĉ) = 𝜎r+j(C) ≤ 𝜏, j = 1, 2,… , k − r. (12)

For the ULV SIF factor L̃ in Equation (7), we have

L̃−1AL̃−T = diag

(
In−2(k−r),

(
Ik−r C
C

T
Ik−r

))
, (13)

where C is an (k − r) × (k − r) matrix with singular values

𝜎j(C) = 𝜎r+j(C) ≤ 𝜏, j = 1, 2,… , k − r. (14)

Accordingly, for L̃ in either Equations (6) or (7), the eigenvalues of L̃−1AL̃−T are

1, 1±𝜎r+1(C),… , 1±𝜎k(C), (15)

where the eigenvalue 1 has multiplicity n − 2(k − r) with n the order of A.

Proof. For L̃ in Equation (6), the proof for Equation (10) Theorem 2.5 of Reference 7, already implies Equation (12). That
is, any eigenvalue 𝜆(ĈĈT) of ĈĈT satisfies

𝜆(ĈTĈ) = 𝜆(D̃−1
2 Û2Σ̂

T
1 Σ̂1ÛT

2 D̃−T
2 ) = 𝜆(D̃−T

2 D̃−1
2 Û2Σ̂

T
1 Σ̂1ÛT

2 )

= 𝜆

(
(I − Ũ2Σ̃

2
1ŨT

2 )
−1Û2Σ̂

T
1 Σ̂1ÛT

2

)
= 𝜆(Û2Σ̂

T
1 Σ̂1ÛT

2 )

∈
{
𝜎2

r+1(C),… , 𝜎2
k(C), 0,… , 0

}
,

where the last equality in the second line is due to the Sherman-Morrison-Woodbury formula and the result ŨT
2 Û2 = 0.

The eigenvalues of L̃−1AL̃−T can then be immediately obtained based on Equation (9).
For the ULV SIF factor L̃ in Equation (7), since the matrix Ã in Equation (5) remains the same as the Cholesky SIF case,

the same result as above holds for the eigenvalues of L̃−1AL̃−T . On the other hand, the preconditioned matrix L̃−1AL̃−T

differs. It can be shown that Equation (13) holds with

C = (Q̂T
1 Û1)Σ̂1(Q̂T

2 Û2)T ,

where we let Q1 = (Ũ1 Q̂1), Q2 = (Ũ2 Q̂2) based on the construction of Q1 and Q2. It can be verified that Q̂T
1 Û1 and Q̂T

2 Û2

are orthogonal matrices. The singular values of C are then obvious. ▪

This theorem means that the Cholesky and ULV SIF preconditioners produce similar preconditioned matrices. The
eigenvalues of the preconditioned matrices are the same. Note that if A is preconditioned with just the block diag-
onal preconditioner diag(A11,A22), it is known that the preconditioned matrix has eigenvalues 1±𝜎1(C),… , 1±𝜎k(C)
and a repeated eigenvalue 1 of multiplicity n − k. The condition number after preconditioning is 1+𝜎1(C)

1−𝜎1(C)
. By keeping

the r largest singular values of C as in the Cholesky or ULV SIF preconditioning, the r largest (smallest) eigenvalues
1±𝜎1(C),… , 1±𝜎r(C) are mapped to 1. The condition number of the preconditioned matrix becomes Equation (11). As
pointed out in Reference 7, the result Equation (11) also leads to a decay magnification effect. That is, if the singular values
𝜎i(C) decays slightly, then 𝜅(L̃−1AL̃−T) decays much faster, so that an aggressive truncation of 𝜎j(C) leads to a reasonable
condition number.

In practical implementations, ULV SIF preconditioners are preferred since they avoid the computation of explicit
Schur complements and have better scalability. They also mainly use orthogonal rotations (like Q1,Q2) in the intermediate
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factorizations and have better stability. On the other hand, Cholesky SIF preconditioners are often more convenient for
analysis. Thus in our later analysis, we just use the Cholesky SIF scheme.

For general l-level SIF schemes, results similar to Equation (11) can be obtained,7 provided that the SIF precondition-
ers remain positive definite. This positive definiteness requirement will be investigated in Section 4.

3 EFFECTIVENESS OF SIF PRECONDITIONING FOR 2D AND 3D
DISCRETIZED PROBLEMS

We then illustrate the effectiveness of SIF preconditioning via a type of model problems so as to obtain more concrete esti-
mates. Consider the finite difference discretization of−Δ on 2D or 3D grids with Dirichlet boundary conditions. Five-point
and seven-point stencils are used for the 2D and 3D cases, respectively. We would like to analyze the performance of SIF
preconditioning when it is applied to the discretized matrix A and give specific effectiveness and robustness estimates.

Analysis for such a model problem is important due to multiple reasons.

1. As already mentioned in Reference 7, multilevel SIF preconditioners can be directly applied to sparse matrices due to
some attractive features. For example, the fast sparse matrix-vector products can be used to quickly compress scaled
off-diagonal blocks like in Equation (3) based on randomized SVDs.20 This can help significantly reduce the cost to
construct a multilevel SIF preconditioner from about O(n2) flops in Reference 7 to roughly O(n) flops (with r = O(1)).
See Remark 2 below for more details. Such randomized structured approximation is similar to the procedures used
in References 21–24. (Some similar preconditioners not based on randomization have also been applied to sparse
matrices.13–15)

2. This model problem is a useful representative discretized problem and can help us gain better insights into the per-
formance of SIF preconditioning for sparse discretized problems. In fact, the model problem has often been used to
analyze and understand low-rank compression-based multilevel preconditioners in other work.13–15

3. This model problem is actually a somewhat challenging problem for standard structured preconditioners like HSS
ones that are based on direct off-diagonal compression, since the off-diagonal blocks of A involve a negative identity
submatrix that is not compressible in the usual sense. On the other hand, off-diagonal scaling like in Equation (3)
leads to reasonable decay in the singular values of the scaled off-diagonal blocks, as can be seen later.

4. Our results here for the model problem can further serve as tools for studying other similar structured preconditioners.
In fact, even for the multilevel SIF scheme, it is still feasible to perform various analysis such as spectral analysis for
the scaled off-diagonal blocks. Indeed, some strong claims can be made, as shown in the remaining discussions.

The discretized matrix A from the model problem has a block tridiagonal form. Without loss of generality, we suppose
that the discretization uses the five-point stencil on an N × M mesh in two dimensions and the seven-point stencil on an
N × N × M mesh in three dimensions. Also suppose that the outermost ordering of the mesh points is in the last direction,
so that A has M diagonal blocks T. In the 2D case, each diagonal block T corresponds to a one-dimensional slice of the
mesh and has size  ≡ N. In the 3D case, T corresponds to a 2D slice of the mesh and has size  ≡ N2. It is known that
the diagonal block T in the 2D case has eigenvalues 2𝜂j, where

𝜂j = 1 + 2 sin2 j𝜋
2(N + 1)

, j = 1, 2,… ,N. (16)

The eigenvalues of the diagonal block T in the 3D case are 2 + 2(𝜂j + 𝜂k), j, k = 1, 2,… ,N. Based on these results, it is
convenient to write out the eigenvalues of A (which won't be used in this article). Also assume any partitioning of A does
not split the T blocks in the analysis later. A has the index set {1 ∶ M }. Later, when we refer to the model problem, we
assume this setup is used.

Remark 1. Note that, like various other related model problem studies in References 13–15,25, the focus here is not on
how to solve such “easy” discretized problems. Rather, we use the model problems to gain useful insights into the behav-
iors of the techniques under consideration. Here, we use the model problems to better understand the potential of SIF
preconditioning. As shown in our numerical tests later, multilevel structured preconditioners based on straightforward
off-diagonal compression have difficulties to handle the model problems. On the other hand, SIF preconditioning works
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significantly better. Even for such standard model problems, the analysis for SIF preconditioning is nontrivial. We antici-
pate that the analysis here can serve as a starting point for studying and designing SIF preconditioners for more practical
discretized problems. Readers who are interested in numerical evidences for practical sparse problems are referred to
References 7,10,11,14,15.

Remark 2. The computational complexity of the SIF scheme for sparse matrices can be understood as follows. In an l-level
SIF scheme, the factorizations of the diagonal blocks in Equation (2) are done via an (l − 1)-level scheme. A key operation
is to compute a truncated SVD of C in Equation (3). This can be done conveniently via matrix-vector multiplications and
randomized SVDs20 in the following way. Let

Y = CX = L−1
1 (A12(L−T

2 X)),

where X is a skinny Gaussian random matrix with column size equal to the desired truncation rank r for C plus a small
constant. Since L1 and L2 are structured and A12 is sparse, Y can be quickly computed via structured solutions and sparse
matrix-vector multiplications. Y can be used to extract an approximate column basis matrix Ũ1 for C. We then have a
low-rank approximation C ≈ Ũ1(ŨT

1 C). Thus, the costs at level l of an l-level ULV SIF scheme includes the formation of
Y , the compression of Y , and the computation of the Q,H matrices like in Equation (7). The total costs of constructing
and applying the l-level SIF preconditioner can be counted by recursion similarly to the counts in many other hierarchical
structured methods.26 Larger l means more hierarchical levels in the SIF structured approximation. This can potentially
improve the efficiency if it is expensive to directly factorize the intermediate diagonal blocks. However, larger l means
more approximation levels which may reduce effectiveness of preconditioning. On the other hand, smaller l may be used
if there are fast ways to factorize the intermediate diagonal blocks at a certain hierarchical level. This would help avoid
too many levels of approximations in the SIF scheme. If l = O(log n), it can be shown that it costs O(r2nlog2n) flops to
construct the preconditioner, where n is the size of A. The cost to apply the preconditioner to a vector is O(rn log n). A
larger r means better effectiveness in preconditioning but higher costs. In practice, the parameters l, r need to be carefully
tuned for specific problems so as to reach the optimal total iterative solution cost. The technical details of the complexity
are omitted since the algorithm design or implementation is not our focus here.

3.1 Singular values of the scaled off-diagonal blocks

A key point in the analysis of the effectiveness and robustness of SIF preconditioning for the model problem is to derive
the singular values of the scaled off-diagonal blocks. In this subsection, we focus on the scaled off-diagonal block C in
Equation (3) from the 1-level SIF scheme. Results on the multilevel SIF scheme will be given in Section 4.1. Suppose the
partitioning in Equation (1) follows the index set

{1 ∶ M } = {1 ∶ m1 } ∪ {m1 + 1 ∶ (m1 + m2) }, (M = m1 + m2), (17)

such that A11 corresponds to the leading m1 diagonal blocks T in A, A22 corresponds to the remaining m2 diagonal blocks
T in A, and

A12 =
(

0 0
−I 0

)
. (18)

Suppose A11 and A22 have Cholesky factorizations as in Equation (2). We would like to derive the singular values of
C = L−1

1 A12L−T
2 .

The specific forms of L1 and L2 can be conveniently written down as follows. Let

S1 = T, Si = T − S−1
i−1, i = 2, 3,… (19)

Suppose the Cholesky factorization of Si is

Si = KiKT
i . (20)
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Then Lk for k = 1, 2 has the following form:

Lk ≡

⎛⎜⎜⎜⎝
K1

−K−T
1 ⋱

⋱ ⋱
−K−T

mk−1 Kmk

⎞⎟⎟⎟⎠ . (21)

(Here, the subscripts in bold fonts are associated with the partitioning of A as in Equation (1), and the subscripts in
regular fonts are for the original block tridiagonal partitioning of A due to the discretization.)

Let the eigenvalue decomposition of T be

T = QΛ1QT , with Λ1 = diag (𝜆1(T), 𝜆2(T),… , 𝜆 (T)) , (22)

where the eigenvalues are ordered as 𝜆1(T) < 𝜆2(T) < … < 𝜆 (T). Then all Si and S−1
i have the same eigenvector matrices

Q because of Equation (19). Corresponding to Equation (19), let the eigenvalue decomposition of Si be

Si = QΛiQT , with Λi = Λ1 − Λ−1
i−1, i = 2, 3,… (23)

Again, Λi = diag(𝜆1(Si), 𝜆2(Si),… , 𝜆 (Si)) with the eigenvalues 𝜆1(Si) < 𝜆2(Si) < … < 𝜆 (Si).
The following lemma will be used frequently later, and shows that the eigenvalues of Si decreases with increasing i.

Lemma 1. Let d1 > 2 and di = d1 − d−1
i−1 for i = 2, 3,… Then

1 < di < di−1, (24)

d−1
1 + d−1

1 d−1
2 d−1

1 + · · · + d−1
1 · · · d−1

i−1d−1
i d−1

i−1 · · · d−1
1 = d−1

i . (25)

Accordingly, Λi in Equation (23) satisfies

Λ−1
1 + Λ−1

1 Λ−1
2 Λ−1

1 + · · · + Λ−1
1 · · · Λ−1

i−1Λ
−1
i Λ−1

i−1 · · · Λ
−1
1 = Λ−1

i . (26)

Proof. We prove this by induction. Equations (24) to (25) are obviously true for i = 1, 2. Suppose they hold for i − 1 with
i > 3. We show they also hold for i. Let wi = d−1

1 + d−1
1 d−1

2 d−1
1 + · · · + d−1

1 · · · d−1
i−1d−1

i d−1
i−1 · · · d−1

1 . Since d1 > 2, di−1 > 1, we
have di = d1 − d−1

i−1 > 1. Then

di − di−1 = d1 − d−1
i−1 − (d1 − d−1

i−2) = d−1
i−2 − d−1

i−1 = wi−2 − wi−1

= −d−1
1 … d−1

i−2d−1
i−1d−1

i−2 … d−1
1 < 0,

and Equation (24) holds. Also,

wi = wi−1 + d−1
1 · · · d−1

i−1d−1
i d−1

i−1 · · · d−1
1 = d−1

i−1 + d−1
1 · · · d−1

i−1d−1
i d−1

i−1 … d−1
1

= d−1
i d−1

i−1(di + d−1
1 · · · d−1

i−2d−1
i−1d−1

i−2 · · · d−1
1 )

= d−1
i d−1

i−1(d1 − d−1
i−1 + d−1

1 · · · d−1
i−2d−1

i−1d−1
i−2 · · · d−1

1 )
= d−1

i d−1
i−1(d1 − wi−1 + d−1

1 · · · d−1
i−2d−1

i−1d−1
i−2 · · · d−1

1 ) = d−1
i d−1

i−1(d1 − wi−2)
= d−1

i d−1
i−1(d1 − d−1

i−2) = d−1
i d−1

i−1di−1 = d−1
i .

It is known that, for the 2D or 3D model problem, all the eigenvalues of T are greater than 2. Then Equations (23) and
(25) yield Equation (26). ▪

We are now ready to present the following theorem.
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Theorem 2. For the discretized matrix A from the 2D or 3D model problem partitioned as in Equation (1) following
Equation (17), the nonzero singular values of L−1

1 A12L−T
2 are

𝜎j(L−1
1 A12L−T

2 ) =
√

𝜆j(S−1
m1
)𝜆j(S−1

m2
), j = 1, 2,… , ,

where the Si matrices are given in Equation (19).

Proof. According to Equation (21), for k = 1, 2,

L−1
k =

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

I
−S−1

1 ⋱
⋱ ⋱

−S−1
mk−1 I

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

K1
⋱

⋱
Kmk

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
−1

=
⎛⎜⎜⎜⎝

K−1
1

⋱
⋱

K−1
mk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

I
S−1

1 I
⋮ ⋮ ⋱

S−1
mk−1 … S−1

1 S−1
mk−1 … S−1

2 … I

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

K−1
1

K−1
2 S−1

1 K−1
2

⋮ ⋮ ⋱
K−1

mk
S−1

mk−1 … S−1
1 K−1

mk
S−1

mk−1 … S−1
2 … K−1

mk

⎞⎟⎟⎟⎠ . (27)

With A12 in Equation (18), we have

L−1
1 A12L−T

2 =
(

0
−K−1

m1
Z

)
, (28)

where Z is the first row of L−T
2 as follows:

Z =
(

K−T
1 S−1

1 K−T
2 · · · S−1

1 · · · S−1
m2−1K−T

m2

)
. (29)

Thus, the nonzero singular values of L−1
1 A12L−T

2 are given by

𝜎j(L−1
1 A12L−T

2 ) =
√

𝜆−j(K−1
m1

ZZTK−T
m1

) =
√

𝜆−j(ZZTS−1
m1
), j = 1, 2,… , . (30)

(Notice that 𝜎j's are ordered from the largest to the smallest, and 𝜆j's are ordered from the smallest to the largest.)
According to Equations (19) and (23),

ZZT = S−1
1 + S−1

1 S−1
2 S−1

1 + · · · + S−1
1 · · · S−1

m2−1S−1
m2

S−1
m2−1 · · · S−1

1

= Q
(
Λ−1

1 + Λ−1
1 Λ−1

2 Λ−1
1 + · · · + Λ−1

1 · · · Λ−1
m2−1Λ

−1
m2
Λ−1

m2−1 · · · Λ
−1
1

)
QT

= QΛ−1
m2

QT , (31)

where the last equality is due to Lemma 1. Thus,

ZZTS−1
m1

= QΛ−1
m2
Λ−1

m1
QT .

The result then follows from Equation (30). ▪

In fact, we can further write the explicit SVD of L−1
1 A12L−T

2 as follows, which will be useful later.
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Corollary 1. With Q and Λi in Equation (23), let the full SVD of Ki in Equation (20) be

Ki = QΛ
1
2
i V T

i . (32)

Then the SVD of L−1
1 A12L−T

2 is

L−1
1 A12L−T

2 = U1Σ1UT
2 , with

U1 =
(

0
Vm1

)
, Σ1 = Λ

− 1
2

m1
Λ

− 1
2

m2
,

UT
2 = −Λ

1
2
m2

(
Λ

− 1
2

1 V T
1 Λ−1

1 Λ
− 1

2
2 V T

2 · · · Λ−1
1 · · · Λ−1

m2−1Λ
− 1

2
m2

V T
m2

)
. (33)

Proof. With Equations (29), (19), (23), and (32), we have

−K−1
m1

Z = −K−1
m1

(
K−T

1 S−1
1 K−T

2 … S−1
1 … S−1

m2−1K−T
m2

)
= −Vm1Λ

− 1
2

m1
QT

(
QΛ

− 1
2

1 V T
1 S−1

1 QΛ
1
2
2 V T

2 … S−1
1 … S−1

m2−1QΛ
− 1

2
m2

V T
m2

)
= −Vm1Λ

− 1
2

m1

(
Λ

− 1
2

1 V T
1 Λ−1

1 Λ
− 1

2
2 V T

2 … Λ−1
1 …Λ−1

m2−1Λ
− 1

2
m2

V T
m2

)
= Vm1(Λ

− 1
2

m1
Λ

− 1
2

m2
)
[
−Λ

1
2
m2

(
Λ

− 1
2

1 V T
1 Λ−1

1 Λ
− 1

2
2 V T

2 … Λ−1
1 …Λ−1

m2−1Λ
− 1

2
m2

V T
m2

)]
.

Then Equation (28) yields the SVD in Equation (33), as long as U2 has orthonormal columns. In fact, according to
Lemma 1,

UT
2 U2 = Λm2(Λ

−1
1 + Λ−1

1 Λ−1
2 Λ−1

1 + · · · + Λ−1
1 · · · Λ−1

m2−1Λ
−1
m2
Λ−1

m2−1 · · · Λ
−1
1 ) = I.

▪

Based on Theorem 2, we can obtain specific expressions of 𝜎j(L−1
1 A12L−T

2 ) for the model problem in two or three
dimensions. For example, the 2D case (where  = N) looks as follows.

Corollary 2. Suppose the same conditions as Theorem 2 hold, and furthermore, A is from the 2D model problem. Let 𝜃j =
𝜂j +

√
𝜂2

j − 1, j = 1, 2,… ,N, where 𝜂j is given in Equation (16). Then

𝜎j(L−1
1 A12L−T

2 ) =
√
𝛾m1,j𝛾m2,j, j = 1, 2,… ,N,

where

𝛾m,j =
𝜃m

j − 𝜃−m
j

𝜃m+1
j − 𝜃−m−1

j

, m = m1,m2. (34)

Proof. 𝜂j's in Equation (16) are the eigenvalues of 1
2

T. It is known that the eigenvalues of S−1
m are (see, eg, Reference 15)

𝜆j(S−1
m ) = 𝛾m,j =

sinh(m cosh−1(𝜂j))
sinh((m + 1) cosh−1(𝜂j))

, j = 1, 2,… ,N.

Since ecosh−1(𝜂j) = 𝜃j, we have

sinh(m cosh−1(𝜂j)) =
𝜃m

j − 𝜃−m
j

2
.

This yields Equation (34). The results then follow from Theorem 2. ▪
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F I G U R E 1 Nonzero singular values 𝜎j(L−1
1 A12L−T

2 ) for the
three-dimensional model problem discretized on a 32 × 32 × 32 mesh

0 200 400 600 800 1000

Index j

0

0.2

0.4

0.6

0.8

1

For the 3D model problem, we just show 𝜎j(L−1
1 A12L−T

2 ) numerically with the discretization on a 32 × 32 × 32 mesh.
See Figure 1. We can observe reasonable decay in the nonzero singular values.

Remark 3. The studies in this subsection indicate that, although A12 in Equation (18) has a negative identity block that
is not compressible in the usual sense, after the scaling, L−1

1 A12L−T
2 has decaying singular values and becomes reasonably

compressible. This then further fits the effectiveness results in Section 2.2. It confirms that the scaling and compression
framework can serve as a useful guideline for designing effective structured preconditioners. Instead of straightforward
off-diagonal low-rank compression, it is beneficial to integrate diagonal information into off-diagonal blocks before they
are compressed.

3.2 Effectiveness of 1-level SIF preconditioning

With the studies in the previous subsection, we can give concrete effectiveness estimates for the 1-level SIF preconditioner.

Corollary 3. Suppose the same conditions as in Theorem 2 hold. Let L̃ be the 1-level Cholesky SIF factor obtained with
rank-r truncated SVD in Equation (4). Then the eigenvalues of L̃−1AL̃−T are

1, 1 ±
√

𝜆r+1(S−1
m1
)𝜆r+1(S−1

m2
),… , 1 ±

√
𝜆 (S−1

m1
)𝜆 (S−1

m2
), (35)

where the eigenvalue 1 has multiplicity n − + r with n the order of A. Furthermore, if A is from the 2D model problem,
then with the same notation as in Corollary 2,

||I − L̃−1AL̃−T||2 =
√
𝛾m1,r+1𝛾m2,r+1 < 𝜂r+1 −

√
𝜂2

r+1 − 1,

𝜅(L̃−1AL̃−T) =
1 +

√
𝛾m1,r+1𝛾m2,r+1

1 −
√
𝛾m1,r+1𝛾m2,r+1

<

√
𝜂r+1 + 1
𝜂r+1 − 1

. (36)

Proof. Theorems 1 and 2 yield Equation (35). For the 2D case, since 𝜃j > 1, we have

𝛾m,j <
𝜃m

j

𝜃m+1
j + 𝜃−m

j − 𝜃−m−1
j

<
𝜃m

j

𝜃m+1
j

= 1
𝜃j
.

Thus,

𝜎j(L−1
1 A12L−T

2 ) =
√
𝛾m1,r+1𝛾m2,r+1 <

1
𝜃j

= 𝜂j −
√

𝜂2
j − 1, j = 1, 2,… ,N.

This leads to Equation (36). In addition,
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𝜅(L̃−1AL̃−T) <
1 + 𝜂r+1 −

√
𝜂2

r+1 − 1

1 − 𝜂r+1 +
√

𝜂2
r+1 − 1

=
√

𝜂r+1 + 1
𝜂r+1 − 1

.

▪

To get more specific estimates, we suppose m1 and m2 in Equation (17) are large enough. Then

𝜎j(L−1
1 A12L−T

2 ) ≈ 1
𝜃j
, 𝜅(L̃−1AL̃−T) ≈

√
1 + sin−2 (r + 1)𝜋

2(N + 1)
,

For sufficiently large N and small r, we have

𝜅(L̃−1AL̃−T) ≈

√
2(N + 1)
(r + 1)𝜋

. (37)

Thus, if r = O(1), then 𝜅(L̃−1AL̃−T) = O(
√

N). If r is a small fraction of N, then 𝜅(L̃−1AL̃−T) = O(1).
These studies give concrete estimates of effectiveness for a given truncation rank r. In other words, they show how to

choose r to achieve a desired condition number 𝜅(L̃−1AL̃−T). For the 3D case, a bound on 𝜅(L̃−1AL̃−T) can be similarly
derived and is omitted.

3.3 Explicit form of the 1-level SIF preconditioner

We can understand the behavior of SIF preconditioning from another perspective by looking at the actual forms of the
preconditioners for the model problem.

Theorem 3. Suppose the same conditions as in Theorem 2 hold. Let r be the truncation rank for the SVD truncation step in
Equation (4) and let Q̃ be the matrix given by the first r columns of Q in Equation (22). Then the 1-level SIF preconditioner is

L̃L̃T ≡

(
A11 Ã12

ÃT
12 A22

)
, with Ã12 =

(
0 0

−Q̃Q̃T 0

)
. (38)

Proof. For the lower triangular Cholesky factor Lk of Akk for k = 1, 2 in Equation (21), L−1
k has the form Equation (27).

Also, the SVD of L−1
1 A12L−T

2 is given in Corollary 1. Note that in the SVD of Ki in Equation (32), Vi is orthogonal and the

singular values in Λ
1
2
i are ordered from the smallest to the largest. In the SIF scheme, we truncate the SVD of L−1

1 A12L−T
2

in Equation (33) by keeping the r largest singular values in Σ1. That is, the r smallest singular values in Λ
1
2
m1

and Λ
1
2
m2

are kept. Use Λ̃
1
2
i to denote the leading r × r principal submatrix of Λ

1
2
i and use Ṽi to denote the singular vectors in Vi in

Equation (32) that correspond to Λ̃
1
2
i . Then in the SIF scheme, L−1

1 A12L−T
2 is approximated by a rank-r truncated SVD as

follows:

L−1
1 A12L−T

2 = U1Σ1UT
2 ≈ Ũ1Σ̃1ŨT

2 , (39)

where

Ũ1 =
(

0
Ṽm1

)
, Σ̃1 = Λ̃

− 1
2

m1
Λ̃

− 1
2

m2
,

ŨT
2 = −Λ̃

1
2
m2

(
Λ̃

− 1
2

1 Ṽ T
1 Λ̃−1

1 Λ̃
− 1

2
2 Ṽ T

2 … Λ̃−1
1 …Λ̃−1

m2−1Λ̃
− 1

2
m2

Ṽ T
m2

)
. (40)

Accordingly, in the SIF preconditioner, A12 = L1(L−1
1 A12L−T

2 )L2 is approximated by
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Ã12 ≡ L1Ũ1Σ̃1ŨT
2 LT

2 =
(

0
Km1 Ṽm1 Σ̃1ŨT

2 LT
2

)
. (41)

From Equations (21), (32), and (40),

L2Ũ2 = −
⎛⎜⎜⎜⎝

K1
−K−T

1 ⋱
⋱ ⋱

−K−T
m2−1 Km2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

Ṽ1Λ̃
− 1

2
1

Ṽ2Λ̃
− 1

2
2 Λ̃−1

1
⋮

Ṽm2Λ̃
− 1

2
m2

Λ̃−1
m2−1 …Λ̃−1

1

⎞⎟⎟⎟⎟⎟⎠
Λ̃

1
2
m2
.

Notice that for i = 1,… ,m2,

KiṼi = QΛ
1
2
i V T

i Ṽi = Q

(
Λ̃

1
2
i

0

)
, K−T

1 Ṽi = QΛ
− 1

2
i V T

i Ṽi = Q

(
Λ̃

− 1
2

i
0

)
.

Then for i = 2,… ,m2,

− K−T
i−1Ṽi−1Λ̃

− 1
2

i−1Λ̃
−1
i−2 …Λ̃−1

1 + KiṼiΛ̃
− 1

2
i Λ̃−1

i−1 …Λ̃−1
1

= −Q
(

I
0

)
Λ̃−1

i−1 …Λ̃−1
1 + Q

(
I
0

)
Λ̃−1

i−1 …Λ̃−1
1 = 0.

Thus,

L2Ũ2 =
⎛⎜⎜⎜⎝

K1Ṽ1Λ̃
− 1

2
1

0
⋮
0

⎞⎟⎟⎟⎠ Λ̃
1
2
m2

= −

⎛⎜⎜⎜⎜⎜⎝
Q

(
Λ̃

1
2
i

0

)
Λ̃

− 1
2

i

0
⋮
0

⎞⎟⎟⎟⎟⎟⎠
Λ̃

1
2
m2

= −
(

Q̃
0

)
Λ̃

1
2
m2
.

Therefore, from Equation (41),

Ã12 =

(
0

−Km1 Ṽ T
m1
Σ̃1Λ̃

1
2
m2

(
Q̃T 0

) )

=
⎛⎜⎜⎝

0

−Q

(
Λ̃

1
2
m1
0

)
(Λ̃

− 1
2

m1
Λ̃

− 1
2

m2
)Λ̃

1
2
m2

(
Q̃T 0

) ⎞⎟⎟⎠ =
(

0 0
−Q̃Q̃T 0

)
.

▪

Note that originally A12 has a negative identity subblock so it is not clear what rank-r truncated SVD should be used
in standard off-diagonal compression. Theorem 3 indicates that the SIF preconditioning technique chooses −Q̃Q̃T as the
truncated SVD, where Q̃ corresponds to the eigenspace associated with the r smallest eigenvalues of Si. Such a truncation
leads to the quantification of the effectiveness as in the previous subsection.

3.4 Effectiveness of multilevel SIF preconditioning

We now look at the effectiveness of multilevel SIF preconditioning for the model problem. Suppose the discretized matrix
A is hierarchically partitioned, with the finest level partitioning following the index set splitting

{1 ∶ M } = {1 ∶ m1 } ∪ {m1 + 1 ∶ (m1 + m2) } ∪ · · · ∪ {(m1 + · · · + ms−1) + 1 ∶ M }, (42)

where m1 + m2 +…+ ms = M.
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Model Problem 2D 3D

r 2 4 8 2 4 8

SIF l = 1 13.84 8.36 4.74 9.44 6.74 5.22

l = 2 15.76 8.61 4.75 11.46 7.61 5.56

l = 3 24.12 10.89 5.03 18.98 11.52 7.64

l = 4 44.32 18.01 6.76 32.65 21.23 13.32

l = 5 86.64 34.05 11.59 58.86 40.07 25.58

Standard l = 1 37.95 37.88 37.51 14.55 14.55 14.55

l ≥ 2 Breakdown (approximation not SPD)

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; SIF, structured incomplete factorization; SPD,
symmetric positive definite.

T A B L E 1 Condition number
𝜅(L̃−1AL̃−T) with A from the 2D and
3D model problems when the
preconditioner L̃L̃T is generated with
the l-level SIF scheme

We can use induction and explicit computations similar to the proof of Theorem 3 to show the following result. The
details are omitted.

Corollary 4. Suppose the multilevel SIF scheme is applied to the discretized matrix A from the 2D or 3D model problem,
where A is hierarchically partitioned with the finest level partitioning following the index splitting Equation (42). Then the
resulting SIF preconditioner Ã ≡ L̃L̃T that is the same as A except

Ãmk,mk+1 = Ãmk+1,mk = −Q̃Q̃T , k = 1, 2,… , s. (43)

Thus in the multilevel SIF scheme, the compression of any scaled off-diagonal block replaces the corresponding −I
subblock in A by −Q̃Q̃T .

We can also illustrate the effectiveness of the l-level SIF preconditioner L̃L̃T for the model problems based on the
results in Reference 7. The spectral analysis is much more sophisticated, since it depends on how the singular values
and singular vectors of the approximately scaled off-diagonal blocks approximate those of the exact ones. Here, we just
numerically illustrate how the condition number varies when l increases. In Table 1, we use the 2D model problem
discretized on a 64 × 64 mesh and the 3D model problem discretized on a 32 × 32 × 32 mesh to test 𝜅(L̃−1AL̃−T), and
the original condition numbers 𝜅(A) are 1.71 × 103 and 440.69, respectively. Clearly, after l-level SIF preconditioning,
all the condition numbers remain reasonably small when l increases, even for r as small as 2. In comparison, if we use
standard off-diagonal compression (here, by just keeping r diagonal entries in the off-diagonal −I blocks), the resulting
approximation fails to be positive definite for the multilevel cases.

In the test, we can also refine the meshes and increase the problem sizes. For example, for the 2D model problem,
we test N × N meshes with N = 64, 128, 256, 512. The right-hand side vector is obtained with the exact solution given
by a vector of all ones. The preconditioner form in Corollary 4 of this section is used to avoid the impact of different
implementations of the algorithm. If we let r = 4 and l = 4, the preconditioned conjugate gradient (PCG) method takes
24, 33, 44, 60 steps, respectively, to reach relative residuals smaller than 10−6. If we let r be a small portion of N (ie, N∕16)
and let l increase with N, then PCG needs 24, 29, 30, 32 steps, respectively. These multilevel test results roughly follow
similar patterns in the estimates for the prototype case after Corollary 3. Numerical tests for more practical problems can
be found in References 7,10,11,14,15.

Note that the effectiveness results in Reference 7 has some strict robustness requirements in order to guarantee that
the multilevel SIF scheme does not break down or the approximation to A remains positive definite. In the following
section, we show that such requirements are too conservative and may be relaxed.

4 ROBUSTNESS OF MULTILEVEL SIF PRECONDITIONING FOR 2D AND
3D DISCRETIZED PROBLEMS

The 1-level SIF scheme always produces a positive definite approximation to any SPD matrix A. This is not the case for
multilevel SIF schemes. The generalization to multiple levels is done through recursive applications of the 1-level scheme
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to the diagonal blocks in the hierarchical partition of A. For convenience, we organize the partitioning procedure with a
binary tree  . The matrix A is partitioned hierarchically according to the nodes at each level of the tree. The leaf nodes
correspond to the individual index sets at the bottom level partitioning in Equation (42). The index set associated with a
parent node is the union of the child index sets. Thus, if a node p of  has two children i and j, the corresponding diagonal
block App is then partitioned as

App =
(

Aii Aij
AT

ij Ajj

)
. (44)

In the following, we study the robustness of the l-level SIF scheme applied to A from the 2D and 3D model problems in
Section 3. The 1-level SIF scheme is applied to all diagonal blocks of A like App in Equation (44). Similarly to Equation (2),
let Li and Lj be the lower triangular Cholesky factors of Aii and Ajj, respectively. In the multilevel scheme, Li and Lj are
further approximated by L̃i and L̃j, respectively, which are obtained via the recursive application of the 1-level SIF scheme.

Like in Equation (3), the condition for the multilevel preconditioner to exist is that

(
I L̃−1

i AijL̃−T
j

L̃−1
j AT

ijL̃
−T
i I

)
is SPD for

any pair of siblings i, j. This needs ||L̃−1
i AijL̃−T

j ||2 < 1, which may not hold for a general SPD matrix A. In Reference 7,
a condition [(1 + 𝜏)l − 1]𝜅(A) < 1 is used to guarantee the existence of the l-level SIF preconditioner. This condition essen-
tially means that the condition number of A cannot be too large, the truncation rank r cannot be too small, or the number
of levels l cannot be too large. Here, we would like to use the model problems to show that these requirements are too
conservative.

Indeed, when A is from the 2D or 3D model problems, we show that the multilevel SIF scheme is uncondition-
ally robust, that is, it never breaks down and always produces SPD approximations to A. In fact, as a stronger result,
it can be shown that L̃−1

i AijL̃−T
j always preserves the leading r singular values of L−1

i AijL−T
j when a fixed numerical

rank r is used in the compression of the scaled off-diagonal blocks at all the hierarchical levels of  . The details are as
follows.

4.1 Singular values of scaled off-diagonal blocks within multilevel SIF schemes

Here, we study 𝜎j(L̃−1
i AijL̃−T

j ) in detail. The following lemma will be used.

Lemma 2. Consider Si in Equations (19) and (23). For k > 1, let

S̃k = Q
(
Λ̃k

Λk

)
QT ,

where Λ̃k is an r × r diagonal matrix with the r smallest eigenvalues of Sk and Λk is any ( − r) × ( − r) diagonal matrix
with diagonal entries greater than those in Λ̃k. Also, let

S̃i = T − S̃−1
i−1, i = k + 1, k + 2,…

Then for i ≥ k, the smallest r eigenvalues of S̃i are the same as those of Si.

Proof. Clearly, the columns of Q are also the eigenvectors of each S̃i for i ≥ k. From Equation (22), we have

S̃k+1 = T − S̃−1
k = QΛ1QT − Q

(
Λ̃−1

k

Λ
−1
k

)
QT ≡ Q

(
Λ̃k+1

Λk+1

)
QT ,

where

Λ̃k+1 = diag
(
𝜆j(T) − 𝜆j(S̃−1

k ), j = 1,… , r
)
,

Λk+1 = diag
(
𝜆j(T) − 𝜆j(S̃−1

k ), j = r + 1,… ,
)
.
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Since 𝜆j(Sk) = 𝜆j(S̃k) for j = 1,… , r, according to Equations (19) and (23), 𝜆j(Sk+1) = 𝜆j(S̃k+1) for j = 1,… , r.
Also, the diagonal entries of Λk+1 are greater than those of Λ̃k+1 since for j = r + 1,… , ,

𝜆j(S̃k+1) = 𝜆j(T) − 𝜆j(S̃−1
k ) > 𝜆r(T) − 𝜆r(S̃−1

k ) = 𝜆r(S̃k+1).

Therefore, the r smallest eigenvalues of S̃k+1 (the diagonal entries of Λ̃k+1) are the same as those of Sk+1.
Similarly, we can extend this proof to show the result for any i > k + 1. ▪

Now we are ready to study the singular values of the scaled off-diagonal blocks in the multilevel SIF scheme. The
essential idea can be illustrated in terms of the 2-level SIF scheme.

Theorem 4. Suppose the 2-level SIF scheme is applied to A from the 2D or 3D model problem, where the tree  for orga-
nizing the partitioning of A is a two-level tree with p the root node and i and j the two children of p. Suppose Li and Lj are
approximated by 1-level SIF factors L̃i and L̃j, respectively. Also suppose r is the truncation rank at every SVD truncation step.
Then

𝜎j(L̃−1
i AijL̃−T

j ) = 𝜎j(L−1
i AijL−T

j ) < 1, j = 1, 2,… , r. (45)

Proof. To facilitate the proof, suppose  has the form in Figure 2. The matrix A corresponds to the root p, and the
first-level partitioning of A looks like Equation (44). Similarly, Aii and Ajj are further partitioned following the child nodes
1, 2 and 3, 4, respectively:

Aii ≡

(
A11 A12
AT

12 A22

)
, Ajj ≡

(
A33 A34
AT

43 A44

)
.

The corresponding finest level partitioning of the index set Equation (42) for A looks like

{1 ∶ M } = {1 ∶ m1 } ∪ {m1 + 1 ∶ (m1 + m2) } ∪ {(m1 + m2) + 1 ∶ (m1 + m2 + m3) }
∪ {(m1 + m2 + m3) + 1 ∶ M },

The off-diagonal blocks Aij, A12, and A34 have forms like in Equation (18). In the following, we derive an analytical
form for L̃−1

i AijL̃−T
j when L̃i and L̃j are 1-level SIF factors.

According to Theorem 3,

Aii ≈ Ãii =
(

A11 Ã12

ÃT
12 A22

)
,

where Ã12 looks like Equation (38). The Cholesky factorization of Ãii has the form

Ãii = L̃iL̃T
i , with L̃i =

(
L1

L̃(21)
i L̃(22)

i

)
, (46)

where

L̃(21)
i =

⎛⎜⎜⎜⎝
0 −Q̃Q̃TK−T

m1
0 0
⋮ ⋮
0 0

⎞⎟⎟⎟⎠ , L̃(22)
i =

⎛⎜⎜⎜⎝
K̃m1+1
−K̃−T

m1+1 ⋱
⋱ ⋱

−K̃−T
m1+m2−1 K̃m1+m2

⎞⎟⎟⎟⎠ ,

i j

p

1 2 3 4 F I G U R E 2 A two-level tree  for organizing the partitioning of A
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and K̃m1+i is the Cholesky factor of S̃m1+i defined by

S̃m1+1 ≡ T − Q̃Q̃TK−T
m1

K−1
m1

Q̃Q̃T , S̃m1+i ≡ T − S̃−1
m1+i−1, i = 2, 3,… ,m2. (47)

Note that, in comparison, the computation of the exact Cholesky factor of Aii involves

Sm1+1 = T − K−T
m1

K−1
m1
, Sm1+i ≡ T − S−1

m1+i−1 = Km1+iKT
m1+i, i = 2, 3,… ,m2.

We can show that S̃m1+i preserves the r smallest eigenvalues of Sm1+i for i ≥ 1. We first verify this for S̃m1+1:

S̃m1+1 = QΛ1QT − Q̃Q̃TQΛ−1
m1

QTQ̃Q̃T

= QΛ1QT − ( Q̃ 0 )Λ−1
m1

(
Q̃T

0

)
= QΛ1QT − Q

(
Λ̃−1

m1
0

)
QT , (48)

where Λ̃−1
m1 contains the r largest diagonal entries of Λ−1

m1
. Since the exact matrix Sm1+1 satisfies Sm1+1 = QΛ1QT − QΛ−1

m1
QT ,

we can see that the r smallest eigenvalues of Sm1+1 are the same as those of S̃m1+1. Then by applying Lemma 2 (together
with Lemma 1) to Equation (47), we get that the r smallest eigenvalues of S̃m1+i are the same as those of Sm1+i.

Note that a form similar to Equation (46) can be derived for L̃j, which uses matrices S̃m3+i, i = 1, 2,… ,m4 similar to
those in Equation (47). With the same reasoning, we can get that S̃m3+i preserves the r smallest eigenvalues of Sm3+i. We
can further obtain the forms of L̃−1

i and L̃−1
j similar to Equation (27).

We are then ready to derive the singular values of L̃−1
i AijL̃−T

j . Similarly to Equation (28), we have

L̃−1
i AT

jiL̃
−T
j =

(
0

−K̃−1
m1+m2

Z̃

)
,

where K̃−1
m1+m2

is the lower right block of L̃−1
i and Z̃ is the first block row of L̃−T

j with a form similar to Equation (29):

Z̃ =
(

K−T
1 S−1

1 K−T
2 · · · S−1

1 · · · S−1
m3−1K−T

m3
|| S−1

1 · · · S−1
m3

Q̃Q̃TK̃−T
m3+1 S−1

1 · · · S−1
m3

Q̃Q̃TS̃−1
m3+1K̃−T

m3+2

… S−1
1 … S−1

m3
Q̃Q̃TS̃−1

m3+1 … S̃−1
m3+m4−1K̃−T

m3+m4

)
.

Then we have
𝜎j(L̃−1

i AijL̃−T
j ) =

√
𝜆j(K̃−1

m1+m2
Z̃Z̃TK̃−T

m1+m2
)

=
√

𝜆j(Z̃Z̃TS̃−1
m1+m2

), j = 1, 2,… , . (49)

Here,

Z̃Z̃T = S−1
1 + S−1

1 S−1
2 S−1

1 + · · · + S−1
1 · · · S−1

m3−1S−1
m3

S−1
m3−1 · · · S−1

1 + S−1
1 · · · S−1

m3
Q̃Q̃T(S̃−1

m3+1 + S̃−1
m3+1S̃−1

m3+2S̃−1
m3+1

+ · · · + S̃−1
m3+1 … S̃−1

m3+m4
· · · S̃−1

m3+1)Q̃Q̃TS−1
m3

· · · S−1
1

= Q(Λ−1
1 + Λ−1

1 Λ−1
2 Λ−1

1 + · · · + Λ−1
1 · · · Λ−1

m3−1Λ
−1
m3
Λ−1

m3−1 · · · Λ
−1
1 + Λ−1

1 · · · Λ−1
m3

diag(Ir, 0)(Λ̌
−1
m3+1 + Λ̌−1

m3+1Λ̌
−1
m3+2Λ̌

−1
m3+1

+ · · · + Λ̌−1
m3+1 …Λ̌−1

m3+m4 · · · Λ̌
−1
m3+1)diag(Ir, 0)Λ−1

m3
· · · Λ−1

1 )QT , (50)

where Λ̌m3+i is a diagonal matrix for the eigenvalues of S̃m3+i with the eigenvalues ordered from the smallest to the largest
on the diagonal. According to the discussions above, the smallest r eigenvalues of S̃m3+i and Sm3+i are the same for i =
1, 2,… ,m4. According to Lemma 1, we get

Z̃Z̃T = Q
(
Λ̃−1

m3+m4
diag(𝜆r+1(S−1

m3
),… , 𝜆 (S−1

m3
))

)
QT

= Qdiag(𝜆1(S−1
m3+m4

),… , 𝜆r(S−1
m3+m4

), 𝜆r+1(S−1
m3
),… , 𝜆 (S−1

m3
))QT . (51)
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(a) 2D model problem
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(b) 3D model problem

F I G U R E 3
|𝜎j(L̃−1

i AijL̃−T
j )−𝜎j(L−1

i AijL−T
j )||𝜎j(L−1

i AijL−T
j )| :

relative errors of the leading r singular
values of the top-level scaled off-diagonal
block in a multilevel structured
incomplete factorization scheme, where
A is from the model problem

Note

𝜆1(Sm3+m4) < · · · < 𝜆r(Sm3+m4) < 𝜆r+1(Sm3+m4), 𝜆r+1(Sm3) < · · · < 𝜆 (Sm3).

Also, Lemma 1 means 𝜆r+1(Sm3+m4) < 𝜆r+1(Sm3). Thus, the eigenvalues on the right-hand side of Equation (51) are ordered
from the largest to the smallest, and the r largest eigenvalues of Z̃Z̃T are the same as those of S−1

m3+m4
. As discussed above,

the r largest eigenvalues of S̃−1
m1+m2

are also the same as those of S−1
m1+m2

.
Since 𝜆j(Z̃Z̃TS̃−1

m1+m2
) = 𝜆j(Z̃Z̃T)𝜆j(S̃−1

m1+m2
), we see that the r largest eigenvalues of Z̃Z̃TS̃−1

m1+m2
are the same as those of

S−1
m3+m4

S−1
m1+m2

. Therefore, we get Equation (45) from Theorem 2 and Equation (49). ▪

Based on Corollary 4, a procedure similar to the proof of Theorem 4 can be used to show the following
result.

Corollary 5. The result of Theorem 4 still holds if a multilevel SIF scheme is used. That is, in the l-level SIF scheme (l > 1)
where L̃i and L̃j in Theorem 4 are (l − 1)-level SIF factors, Equation (45) is still true.

To illustrate the studies, we apply the l-level Cholesky SIF scheme to the model problems in two dimensions with a
64 × 64 mesh and three dimensions with a 32 × 32 × 32 mesh. l = 5 is used. In Figure 3, we plot

|𝜎j(L̃−1
i AijL̃−T

j )−𝜎j(L−1
i AijL−T

j )||𝜎j(L−1
i AijL−T

j )|
for the top level scaled off-diagonal block (where i and j are the children of the root node of  ). It can be seen that for a
given truncation rank r, these errors for j = 1, 2,… , r are near the machine precision.

4.2 Positive definiteness of multilevel SIF preconditioners

Based on the previous studies, we can claim the positive definiteness of the approximation matrix Ã produced by the
multilevel SIF scheme applied to A from the model problem. This can be verified from two perspectives. One is based on
the explicit form of Ã as in Corollary 4, and another is based on the singular values of the scaled off-diagonal blocks as in
Corollary 5.
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Theorem 5. Ã as in Corollary 4 produced by the multilevel SIF scheme is positive definite.

Proof. There are two ways to prove this. One way is to use the explicit form of Ã in Corollary 4. Let Ã(1) be obtained from
A with only Am1,m1+1 and Am1+1,m1 replaced by −Q̃Q̃T . Partition A and Ã(1) conformably as

A =
(

A(0;1,1) A(0;1,2)

A(0;2,1) A(0;2,2)

)
, Ã(1) =

(
A(0;1,1) Ã(1;1,2)

Ã(1;2,1) A(0;2,2)

)
,

where the diagonal blocks of A and Ã(1) are the same, A(0;1,1) has Am1,m1 at its lower right corner, and Ã(1;1,2) has −Q̃Q̃T at
its lower left corner like in Equation (38).

Then the Schur complement of A(0;1,1) in Ã(1) can be obtained from A(0;2,2) with the leading diagonal block of A(0;2,2)

modified to be S̃m1+1 as in Equation (47). According to Equation (48) and the discussions following it, the r smallest
eigenvalues of S̃mk+1 are the same as those of Smk+1. Furthermore, the remaining  − r eigenvalues of S̃mk+1 are the same
as those of T and are larger than the corresponding ones in Smk+1 because of Lemma 1. In other words, S̃mk+1 can be written
as Smk+1 plus a positive definite matrix. Accordingly, the Schur complement of A(0;1,1) in Ã(1) is SPD, and Ã(1) is SPD.

If we continue to replace the blocks Ã(1)
m2,m2+1

and Ã(1)
m2+1,m2

by −Q̃Q̃T to produce a new approximation matrix Ã(2), the
same procedure as above shows that this modifies the exact Schur complement Sm2+1 by adding a positive definite matrix
to it. Thus, Ã(2) is SPD. This process then continues for all k = 1, 2,… , s as in Equation (43), and the final approximation
matrix Ã is the SIF preconditioner and remains SPD.

Another way to prove the positive definiteness is to use Theorem 4 and Corollary 5. In the 2-level SIF scheme, following
the notation in Theorem 4, Ã has the form

Ã =
(

L̃i
L̃j

)(
I ŨiΣ̃iŨT

j
ŨiΣ̃iŨT

j I

)(
L̃T

i
L̃T

j

)
, (52)

where i and j are the children of the root of  and ŨiΣ̃iŨT
j is the rank-r truncated SVD of L̃−1

i AijL̃−T
j . According to

Theorem 4, ||L̃−1
i AijL̃−T

j ||2 < 1. Thus, the matrix in the middle on the right-hand side of (52) is SPD. Accordingly, Ã is SPD.
Similarly, if an l-level SIF scheme is used with L̃i, L̃j in (52) being (l − 1)-level SIF factors, we can show Ã is SPD by

induction using Corollary 5. ▪

Theorem 5 indicates that the multilevel SIF scheme for the model problem is unconditionally robust without
the restrictions in Reference 7. The proof of the theorem indicates that the multilevel SIF scheme has an implicit
robustness enhancement (or Schur complement compensation) effect.8,19 That is, whenever a scaled off-diagonal block
is compressed, a positive (semi)definite matrix is implicitly added to the Schur complement. In 1-level SIF pre-
conditioning, this guarantees the positive definiteness of Ã for any SPD matrix A, as already shown in Reference
7. In multilevel SIF preconditioning, it still holds for specific applications like the model problem. Even for gen-
eral A, this Schur complement compensation effect can help enhance the robustness of the resulting multilevel SIF
preconditioner.

5 CONCLUSIONS

This work provides new insights into SIF preconditioning that is built on the scaling and compression strategy. We have
shown how SIF preconditioning improves the spectral properties of SPD matrices and illustrated the specific effective-
ness and robustness in terms of a type of model problems. In particular, for the model problem, we derived the singular
values of scaled off-diagonal blocks as well as explicit forms of the preconditioners. The results are used to show that
multilevel SIF preconditioning has a robustness enhancement effect, and the resulting preconditioner for the model
problem remains positive definite regardless of the number of levels and the compression accuracy. The studies con-
firm that the scaling and compression strategy is a useful technique for designing effective structured preconditioners.
Our results can also work as useful tools for studying various relevant structured preconditioners. The work also gives
new hints for improving SIF preconditioning. For example, a plausible direction is to construct SIF preconditioners that
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could further accelerate the decay of the singular values of the scaled off-diagonal blocks, which will be explored in
future work.
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