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Abstract
We propose an interconnected hierarchical rank structure and use it to design a fast direct
elliptic solver that can significantly reduce the amount of low-rank compression operations
used in usual structured direct solvers. Interconnected structures within two hierarchical lay-
ers are exploited: the hierarchical partitioning of a large problem into subproblems that are
local Schur complements on smaller subdomains, and the interconnected hierarchical struc-
tured approximations of the subproblems. The interconnected structures make it feasible to
extensively reuse off-diagonal basis matrices produced in the rank-structured approximation
of smaller local Schur complements. Such basis matrices are produced only once and then
reused across multiple hierarchical levels of the sparse factorization. Unlike many existing
rank-structured direct solvers where explicit low-rank compression is often themajor compu-
tation, our new solver can then avoid most of the compression operations. This helps to both
conveniently preserve the rank structures and reduce the cost. Under moderate conditions,
the total factorization cost is O(rn), where r is an appropriate off-diagonal numerical rank
bound. The interconnected structures are further extended to accelerate a factorization update
problem where many local coefficient updates are involved. Numerical tests on some PDE
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problems are used to demonstrate the efficiency and speedup. In particular, some reuse factors
in our tests indicate dramatic reduction in the number of low-rank compression operations.

Keywords Interconnected hierarchical structure · Fast sparse direct solver · Elliptic
equation · Basis reuse · Neighbor tree · Schur complement update

1 Introduction

This paper studies the design of a novel matrix structure that is useful for the fast direct
solution of discretized problems such as elliptic PDEs of the form

Lu(x) = f (x), x ∈ Ω, (1)

where L is a second-order elliptic partial differential operator in the domain of interest Ω .
When the PDE is discretized with locally supported basis functions, a linear system with a
sparse coefficient matrix A is obtained. Here, we are interested in exploring features from
both the discretization and some intrinsic rank structures so as to show the feasibility of
designing an interconnected rank structure that can greatly accelerate direct solutions of the
relevant discretized linear systems.

Traditional direct solvers with nested dissection ordering [9] of the matrix A have com-
plexities O(n3/2) and O(n2) flops for two and three dimensions, respectively, where n is
the order of A. The multifrontal method [7] is one of the most useful sparse direct solvers
and it performs the sparse factorization in terms of multiple smaller local dense matrices
called frontal matrices. Another type of popular direct solvers is supernodal methods such
as SuperLU [6]. These direct solvers are generally expensive for large problems where the
local dense matrices become challenging to store and factorize.

A lot of recent developments on sparse direct solvers focus on approximating the interme-
diate dense matrices by rank-structured representations. For elliptic problems, the interme-
diate dense matrices have off-diagonal blocks with small numerical ranks (see, e.g., [2, 4]).
Low-rank approximations to these off-diagonal blocks yield rank-structured representations
that effectively reduce the amount of data. Some frequently used rank-structured represen-
tations are H -matrices [16], H 2-matrices [15], and hierarchically semiseparable (HSS)
matrices [5, 40]. Such representations often allow fast matrix–vector multiplication, factor-
ization, inversion, and so on. Examples of rank-structured sparse direct solvers are H -LU
methods [14] and structured multifrontal methods [10, 37, 38, 42]. Specialized PDE solvers
have also been proposed in [8, 17, 19, 20, 26, 30, 39] and can exploit additional properties
of Cartesian coordinates and elliptic boundary value problems. Examples are Dirichlet-to-
Neumann formulations in [12, 17, 26] and Robin-to-Robin formulations in [11, 24, 28].

When these structured solvers are applied to the discretized system for (1), they heavily
rely on the construction of intermediate rank-structured representations. The rank-structured
constructions are usually done through repeated use of low-rank compression techniques
such as truncated SVDs, rank-revealing factorizations, and randomized SVDs. See [10, 21,
25, 40] for some examples. These constructions typically contribute to a significant cost of
the sparse structured solvers [10, 33, 37, 38, 42]. They also make the implementation of
the solvers sophisticated. Thus, some methods sacrifice certain efficiency to simplify the
implementation by allowing some dense intermediate operations [1, 33, 38].

Here, we propose an interconnected hierarchical structure that makes it feasible to exten-
sively reuse information during rank structured construction so as to significantly reduce
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the cost of structured direct solution. Unlike many existing approaches, the new structure
preserves off-diagonal basis matrices among local dense matrices across different levels of
the sparse factorization. This avoids repetitive low-rank compression operations as well as
dense intermediate Schur complements. Specifically, the novelties of this work include the
following.

– Interconnected tree structures are designed to organize the sparse factorization. After
repeated bisection of the domain, an outer tree structure is generated to govern the sparse
factorization, and the tree nodes correspond to lists of interfaces for subdomains. Each
node of the outer tree is further associated with an inner tree used for local structured
operations. Inner trees at different outer levels share subtrees and are interconnected.
Subtrees of the inner trees are preserved as much as possible when we traverse the outer
tree, which is a major difference between our solver and existing solvers in [37, 38] that
also use two layers of trees. The sharing of subtrees is natural following our discretizations
and the levelwise elimination.

– Interconnected hierarchically semiseparable (IHSS) matrix structures are proposed to
enable an efficient rank-structured factorization by taking advantage of both the intrinsic
rank structures of the problem and the particular discretizations we follow (high-order
finite element method with Robin-to-Robin formulations). Each inner tree is associated
with an IHSS matrix corresponding to a local dense Schur complement. (The concept
of a local Schur complement will be made precise later.) Following interconnected inner
trees, IHSSmatrices are also interconnected via the reuse of basis matrices. That is, IHSS
matrices at different outer factorization levels share the same off-diagonal basis matrices.
This avoids the majority of the cost needed for low-rank compression. Thus, along the
outer tree, local dense factorizations can be performed in terms of IHSS structures.

– A fast direct elliptic solver via IHSS structures can then be designed. Unlike most other
structured sparse direct solvers that need extensive off-diagonal compression, here the
off-diagonal basis matrices are only computed once at a lower sparse factorization level
and then reused for later factorization levels. This avoids the majority of the cost needed
for low-rank compression. The basis reuse in IHSS structures helps to not only save
the cost but also conveniently preserve the rank structures. For some discretized elliptic
problems, with a suitable optimal choice of a so-called switching level in the outer tree
(see Sect. 3.4), we can obtain a factorization cost of O(rn) flops and an O((log r)n)

storage count for factors, where r is a small numerical rank bound for appropriate off-
diagonal blocks. In comparison, structured factorizations using explicit compression for
all structured outer levels like those in [32, 38] cost O(rn log n).

We illustrate why such IHSS structures are feasible and how the off-diagonal bases are
shared across different outer factorization levels. In fact, IHSS approximations at upper
factorization levels can be conveniently obtained via fast updates of lower-level IHSS forms.
Therefore, our solver does not need the expensive rank-structured construction used in other
structured sparse direct solvers. The performance of the solver is confirmed in numerical
tests on Poisson’s equation and the Helmholtz equation. Our tests further show by howmany
times the basis matrices can be reused, which indicates significant reduction in the number
of low-rank compression operations.

Our solver can also be extended to a challenging sparse factorization update problem,
where there are multiple local changes to the coefficient of the PDE. We show how to use
our IHSS algorithms to accelerate the factorization of some interior and exterior problems in
a recent factorization update algorithm in [24].
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Note that our purpose is not to design a general-purpose sparse direct solver or to pro-
vide a practical implementation of a sophisticated rank-structured solver that can apply to
large complicated PDEs. Instead, we aim to show a proof-of-concept idea that illustrates the
feasibility and the essential strategy of designing interconnected rank structures. We take
advantage of some discretizations for elliptic PDEs so as to exploit the additional intercon-
nected structures on top of known rank structures. Our discussions and tests are given in
terms of some 2D elliptic PDEs. However, the key ideas can be extended to 3D and more
practical problems, which is not our purpose.

The remaining sections are organized as follows. In Sect. 2, we give a basic framework
that we follow for the design of our sparse direct elliptic solver. Section 3 presents the detailed
interconnected hierarchical structured factorization, its advantages, and the complexity opti-
mization. The extension to sparse factorization update is discussed in Sect. 4. Numerical
examples are shown in Sect. 5 and some conclusions are drawn in Sect. 6.

2 Basic Framework of Our Sparse Direct Elliptic Solver

Sparse direct solvers often organize local factorizations following certain hierarchical tree
structures. A typical example is the supernodal multifrontal factorization [7, 22] using the
assembly tree structure.We first show a basic framework that we follow for the direct solution
of some elliptic PDEs. The hierarchical factorization is organized based on certain features
of the discretization and the bases that facilitate the design of the interconnected hierarchical
structures later in Sect. 3.

2.1 Domain Partitioning, Interface Organization, and Neighbor Tree

We start from a hierarchical domain partitioning based on repeated bisection. Figure 1a
illustrates a simple 2-level domain partitioning. Initially, a horizontal cut splits the domain
into two level-1 subdomains. The interfaces or boundaries along the horizontal cut (marked
as 5, 6, 7, 8 in red) are labeled as the level-1 interfaces. Here, the two sides of the same
cut have distinct labels. Next, for each level-1 subdomain, a vertical cut splits it into two
level-2 subdomains. The interfaces along the vertical cuts (marked as 1, 2 and 3, 4 in blue)
are labeled as level-2 interfaces. This process then repeats. A 4-level partitioning is shown
in Fig. 1b.

In the sparse factorization, all the finest level interior mesh points and the outermost
boundary points of the entire domain are eliminated first. Thus, all our later discussions
focus on processing the interfaces. Following the multilevel bisection, the interfaces can
be organized into a binary tree T similarly to a separator tree from nested dissection [9].
Each node of T corresponds to a separator (or cut) of the mesh. Figure 1c shows the tree
corresponding to Fig. 1b. T can essentially be used as an assembly tree [22] for sparse
eliminations. The difference is that a separator or tree node here consists of a set of interfaces
of subdomains. In addition, the leaf nodes of T are also interfaces instead of finest level
subdomains. Later, we use a set of interfaces grouped inside a pair of parentheses to denote
a separator as marked in Fig. 1c. Also, we do not distinguish between a node of T and a
separator in the mesh.

The interfaces at different levels of the tree T correspond to intermediate Schur comple-
ments at different levels of sparse factorization. In the PDE solution, unknowns associated
with lower-level interfaces are ordered before upper-level interfaces and are eliminated first.
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The interfaces are also labeled consecutively at each level so that a convenient levelwise
presentation can be used when we discuss the actual factorization later.

The elimination of lower-level separators mutually connects some upper-level separators
and creates fill-in in the Schur complements [27]. To clearly identify such connections, we
use the following terms and notation.

– For a separator S at level l ofT, its neighbors are those interfaces which are at upper levels
and are connected to S due to the lower-level eliminations. A similar concept is used in
[38, 39] for deriving some rank structured solvers. Accordingly, S is said to be a pivot
separator (with respect to its neighbors). For example, the pivot separator (3, 4) (formed
by interfaces 3, 4) in Fig. 1b–c has neighbors or neighbor interfaces 19, 20, 34, 41, 42.

– A pivot interface within a pivot separator at level l is the set of all interfaces belonging
to one same level-l subdomain in the bisection process. We mark pivot interfaces in bold
fonts. For example, during the elimination of the separator (17, 18, 19, 20) in Fig. 1b–c,
(17, 18) is a pivot interface and so is (19, 20). Thus, each pivot separator includes two
pivot interfaces associated with a pair of adjacent subdomains.

– For a pivot interface σ (within a pivot separator S at level l), the neighbor list associated
with σ is the list consisting of σ itself and those interfaces that are neighbors of S and are
also in the same level-l subdomain as σ .We use a pair of braces to identify a neighbor list.
Wealso use a pair of parentheses to group interfaces from the same separator. For example,
the pivot interface (19, 20) in Fig. 1b–c has neighbor list {(19, 20), 34, (41, 42)}.

– In a neighbor list, the interfaces that are from one same separator S in T are said
to be common-origin interfaces, and the separator S is the origin of the interfaces.
For example, in Fig. 1b, 19, 20 are common-origin interfaces in the neighbor list
{(19, 20), 34, (41, 42)} since they are from the same origin which is the separator
(17, 18, 19, 20) ofT in Fig. 1c. 41, 42 are also common-origin interfaces in this neighbor
list.

– Finally, we introduce another tree T called neighbor tree. Each node of T is a neighbor
list associated with a pivot interface, except the root which is empty. See Fig. 2. The
neighbor tree T plays a key role in the design of our IHSS structures. In our later
discussions, the sparse factorization will mainly be discussed in terms of the neighbor
tree T , with the aid of the assembly/separator tree T. For two neighbor lists that are
siblings at level l of T , their pivot interfaces form one separator at level l of T. Here, we
assume T has levels 1, 2, . . . , l but T has levels 0, 1, . . . , l. The reason is that T has an
empty root at level 0.

2.2 Initial Schur Complements from the Finest Subdomains

For elliptic PDEs like (1), the sparse direct factorization involves particular features in the
Schur complements.We show the strategieswe follow for processing the Schur complements.
We first describe how to form an initial Schur complement that results from the elimination
of the interior mesh points in all the finest subdomains as well as all exterior boundary points
of the entire domain. Thus, the initial Schur complement corresponds to all the leaves in the
neighbor tree T and is denoted S(l).

S(l) is computed from factorizing the discretized PDE restricted to the disjoint finest
subdomains. Various discretization methods have been used for the restricted problems in
subdomains, including finite difference methods in [19, 39], spectral collocation methods in
[26], and finite element methods in [9, 17]. Here, we use a high-order finite element method
with Lagrange bases set up according to [18]. (See [18, 24] and the references therein for
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(a) (b) (c)

Fig. 1 Partitioning of a domain, where the interfaces of the subdomains introduced by the partitioning are
indexed and the dashed lines are for the purpose of illustrating the partitioning and are not part of the domain.
The numbering scheme of the interfaces is as follows. Smaller labels correspond to lower-level interfaces so as
to reflect the order of elimination. Labels in the same color in the figure are associated with the same separator.
We also keep consecutive numbering within each interface so as to simplify the lists of labels in (c) (Color
figure online)

(a)

(b)

Fig. 2 Illustration of neighbor trees T for organizing neighbor lists

motivations of such a discretization.)Within each subdomain, the factorization usually yields
a dense Schur complement that corresponds to a pseudo-differential operator [3,Section 1.2].
We choose the recent Robin-to-Robin formulation in [11, 28]. Note that unknowns on the
corners of subdomains give rise to book-keeping issues [29] and can be removed by reducing
the polynomial order on the boundary [11]. We use Legendre polynomials on the boundary
and this reduction of order is an orthogonal projection. Thus, in our organization of the
interfaces as in Fig. 1, there are no unknowns associated with the corner mesh points of the
subdomains.

We follow the derivation of [28, Equation 2.9] to get the initial Schur complement S(l).
For simplicity, we illustrate the form of S(l) using the 2-level partitioning in Fig. 1a. Here,
l = 2 and the neighbor tree T is shown in Fig. 2a. S(2) has the following form:
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S(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(2)
11 I S(2)

15

I S(2)
22 S(2)

26

S(2)
33 I S(2)

37

I S(2)
44 S(2)

48

S(2)
51 S(2)

55 I

S(2)
62 S(2)

66 I

S(2)
73 I S(2)

77

S(2)
84 I S(2)

88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where the subscripts 1, 2, . . . , 8 correspond to the interfaces in Fig. 1a and the following
submatrices correspond to the four leaves of T :

(
S(2)
11 S(2)

15

S(2)
51 S(2)

55

)
,

(
S(2)
22 S(2)

26

S(2)
62 S(2)

66

)
,

(
S(2)
33 S(2)

37

S(2)
73 S(2)

77

)
,

(
S(2)
44 S(2)

48

S(2)
84 S(2)

88

)
, (3)

These submatrices are the results of the elimination of the interior mesh points of the four
subdomains and the boundary of the entire domain. The identity blocks in (2) introduce
coupling to shared interfaces. This is due to the transmission condition on shared boundaries.
See [11, 28] for the derivation.

2.3 Sparse Hierarchical Block LDU Factorization via Schur Complement Update

Once S(l) is obtained, we can perform sparse hierarchical block LDU factorization and
solution as in standard sparse direct solvers such as themultifrontal method. The factorization
at a level l = l, l − 1, . . . , 1 can be written collectively as

S(l) =
(

I
L(l) I

) (
D(l)

S(l−1)

) (
I U(l)

I

)
, (4)

where S(l) is the input corresponding to all the level-l nodes of T , L(l) and U(l) are obtained
from eliminating the pivot block D(l) of S(l), and S(l−1) is the Schur complement to be
factorized at level l − 1. Here, the pivot block D(l) is the submatrix of S(l) corresponding
to all pivot interfaces in the level-l neighbor lists of T . With each level of factorization, the
matrix size reduces and the tree T shrinks by one level. The process continues until level
1 of T is reached and the Schur complement S(1) is factorized. For convenience, we refer
to the computation of S(l−1) from S(l) via the sparse LDU factorization (4) as the Schur
complement update problem, which is the main task for the sparse factorization.

After the sparse block LDU factorization, the solution can be computed by solving a
sequence of intermediate linear systems. To solve an intermediate problem S(l)x (l) = b(l)

at level l, where S(l) has the block factorization (4), the following three solution steps are
needed:

(
I

L(l) I

) (
y

b(l−1)

)
= b(l), (5)
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(
D(l)

S(l−1)

) (
z

x (l−1)

)
=

(
y

b(l−1)

)
, (6)

(
I U(l)

I

)
x (l) =

(
z

x (l−1)

)
. (7)

This is a recursive process since the second step needs to solve S(l−1)x (l−1) = b(l−1) at level
l − 1.

As an example, consider the factorization of the matrix (2). After performing the elimina-
tion on S(2) as in (4) with the leaf level ofT (Fig. 2a) removed, the level-1 Schur complement
is

S(1) =

⎛
⎜⎜⎜⎜⎜⎝

(
S(1)
55 S(1)

56

S(1)
65 S(1)

66

)
I

I

(
S(1)
77 S(1)

78

S(1)
87 S(1)

88

)

⎞
⎟⎟⎟⎟⎟⎠

, with

(
S(1)
55 S(1)

56

S(1)
65 S(1)

66

)
=

(
S(2)
55

S(2)
66

)
−

⎛
⎝
S(2)
51

S(2)
62

⎞
⎠

(
S(2)
11 I

I S(2)
22

)−1 (
S(2)
15

S(2)
26

)
, (8)

(
S(1)
77 S(1)

78

S(1)
87 S(1)

88

)
=

(
S(2)
77

S(2)
88

)
−

(
S(2)
73

S(2)
84

) (
S(2)
33 I

I S(2)
44

)−1 (
S(2)
37

S(2)
48

)
. (9)

The representations (8)–(9) have a clear geometric interpretation. Take (8) as an example. S(2)
55

and S(2)
66 arise from two disjoint interfaces 5 and 6, but

(
S(1)
55 S(1)

56
S(1)
65 S(1)

66

)
joins the two interfaces

into one pivot interface (5, 6) of the separator (5, 6, 7, 8), and the additional information
is due to the update term contributed by the shared separator (1, 2) via the coupling term(
S(2)
11 I

I S(2)
22

)−1

. In another word, the elimination of the separator (1, 2) mutually connects

the points in (5, 6).
In general, in our direct elliptic solver, the Schur complement update problem is processed

along the levelwise bottom-up traversal of the neighbor treeT . EachS(l) is processed in terms
of the factorization of a sequence of local submatrices corresponding to the neighbor lists at
level l ofT . For convenience, we call each such a submatrix a level-l local Schur complement
(associated with a neighbor list). For example, for S(2) in (2) with the neighbor tree T in
Fig. 2a, the four submatrices in (3) are level-2 local Schur complements corresponding to
the four leaf nodes of T . The two submatrices of S(1) in (8) and (9) are level-1 local Schur
complements corresponding to the two level-1 nodes ofT . In the next section, we show how
to accelerate the Schur complement update by applying structured methods to local Schur
complements.

3 Interconnected Hierarchical Structured Factorization

We then consider the incorporation of rank structured methods into the basic factorization
framework in the previous section. Directly performing the Schur complement update (4) is
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expensive for large sizes. The cost can be reduced by converting local Schur complements
into data-sparse forms, and the feasibility follows from [2, 4]. In this section, we design IHSS
structures and construct IHSS approximations to the local Schur complements. The IHSS
approximations at different levels of the sparse factorization are closely related via shared
structures. We introduce IHSS approximations and factorizations based on interconnected
tree structures.

3.1 Interconnected Tree Structures

Our sparse hierarchical factorization (4) follows the levelwise traversal of the neighbor tree
T . For each node (neighbor list) of T , we construct an IHSS approximation to the corre-
sponding local Schur complement. (The details are in Sect. 3.2.) Each IHSS approximation
also corresponds to a tree called IHSS tree. Thus, we have two layers of trees: the neighbor
tree T (as the outer tree) for organizing the sparse factorization, and an inner IHSS tree for
the structured approximation of a local Schur complement. This two-layer tree structure is
similar to structured multifrontal methods in [1, 37–39].

However, there are some differences between our new solver and those structured multi-
frontal methods.

– The structured multifrontal methods use the assembly tree as the outer-layer tree, while
here our outer-layer tree is a neighbor tree.

– More importantly, the structured multifrontal methods study the two layers of trees sepa-
rately, which may result in repetitive constructions of inner structures. In our new solver,
the inner trees at different levels of the outer tree are interconnected such that subtrees of
the inner trees are preserved and reused as much as possible when we traverse the outer
tree. That is, our solver uses interconnected tree structures, which facilitate optimized
data assembly and factorization.

A key mechanism of the interconnected tree structures is the organization of the inner
IHSS trees with the aid of the neighbor lists in the neighbor tree T .

1. A parent node (neighbor list) of T includes interfaces resulting from child level elimina-
tions. At a child level, the pivot interfaces in two sibling neighbor lists form a complete
separator which is eliminated. The remaining interfaces are collected to form the par-
ent neighbor list. For example, in Figs. 1b and 2b, the elimination of the pivot interface
(21, 22) from {(21, 22), 35} and the elimination of (23, 24) from {(23, 24), 36, (43, 44)}
yield the parent node {(35, 36), (43, 44)}.

2. Each separator in the separator treeT consists of a list of interfaces. Each interface serves as
a leaf node in an inner IHSS tree. An IHSS tree is used to organize all the interfaces within
a neighbor list in the neighbor tree. Common-origin interfaces correspond to one subtree
of an IHSS tree. This makes sure that the IHSS structure fully respects the separators
which the interfaces belong to. For example, for the neighbor list {(23, 24), 36, (43, 44)}
in Fig. 2b, the interfaces come from three different separators in Fig. 1c. The corresponding
IHSS tree then has three subtrees (i.e., its root has three children). One subtree has the
sibling interfaces 23 and 24 as leaves. Another subtree has one node corresponding to 36,
and the third subtree has two leaves given by the sibling interfaces 43 and 44.

3. When common-origin interfaces are collected to form a parent neighbor list, leaf nodes
or subtrees are put together to form larger subtrees of the IHSS tree associated with the
parent. By keeping track of the domain partitioning around each separator, it is easy to
see how these subtrees are formed. A parent IHSS tree can then be formed based on child
IHSS trees.
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4. The interfaces within each node of T are used for the partitioning of the associated local
Schur complement. Such a partitioning is used in the construction of an IHSS approxi-
mation to the local Schur complement. For example, the four local Schur complements in
(3) are partitioned precisely based on the interfaces inside the four leaf nodes in Fig. 2a.
The corresponding IHSS tree is used to organize the block partitioning hierarchically.

These strategies ensure that structures passed from a lower level to the parent level are
fully preserved in the IHSS approximation. This is elaborated in the next two subsections,
where we show how IHSS forms are obtained along the traversal of the neighbor tree.

3.2 IHSS Representation

Suppose a node (neighbor list) at level l of T is α = {c1, c2, . . . , cs}, where we assume all
common-origin interfaces are already grouped into each c j . Thus, the interfaces come from

s different origins. Then the corresponding local Schur complement S(l)
α within S(l) can be

represented as

S(l)
α =

⎛
⎜⎜⎜⎜⎜⎜⎝

S(l)
c1,c1 S(l)

c1,c2 · · · S(l)
c1,cs

S(l)
c2,c1 S(l)

c2,c2 · · · S(l)
c2,cs

...
...

. . .
...

S(l)
cs ,c1 S(l)

cs ,c2 · · · S(l)
cs ,cs

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

We introduce an IHSS approximation to S(l)
α via the following three key features.

1. Low-rank off-diagonal forms

The off-diagonal blocks of S(l)
α can be approximated by low-rank forms. Following the

partitioning in (10), the IHSS approximation to S(l)
α looks like

S(l)
α ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

Dc1 Uc1Bc1,c2V
T
c2 . . . Uc1Bc1,cs V

T
cs

Uc2 Bc2,c1V
T
c1 Dc2 . . . Uc2 Bc2,cs V

T
cs

...
...

. . .
...

Ucs Bcs ,c1V
T
c1 Ucs Bcs ,c2V

T
c2 . . . Dcs

⎞
⎟⎟⎟⎟⎟⎟⎠

, (11)

where

– each Dcj is a diagonal block representing the self-interaction within the interface c j ;
– each Ucj (Vc j ) is the column (row) basis matrix representing the contribution of the

interface c j to the interaction between c j and the other s−1 interfaces in the neighbor
list;

– each Bc j ,ck describes the mutual interaction between a pair of interfaces c j , ck (ignor-
ing the Ucj , Vck basis matrices).

2. Hierarchical structures

The structured approximation further appears in a hierarchical or nested form. Each ci in α

maybe formed by grouping smaller common-origin interfaces pairwise and hierarchically.
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(a) (b)

Fig. 3 Illustration of an IHSSmatrix and the corresponding IHSS tree defined based on the interfaces c1, c2, c3.
The shaded boxes visualize the shapes of the D, B,U , V generators. The interfaces may consist of smaller
lower level interfaces

For example, ci may be formed by two common-origin interfaces z1 and z2, each of
which may in turn be formed by two smaller common-origin interfaces. Thus, each ci
corresponds to a binary subtree Tci and the children of ci are z1 and z2, which may also
have children. The corresponding structured representation for Dci has a hierarchical form
and is essentially a standard HSS form as in [5, 40]. The nested structures look like

Dci =
(

Dz1 Uz1Bz1,z2V
T
z2

Uz2 Bz2,z1V
T
z1 Dz2

)
, Uci =

(
Uz1 Rz1

Uz2 Rz2

)
, Vci =

(
Vz1Wz1
Vz2Wz2

)
,

(12)

where the R,W matrices are used to translate the basis matrices from child nodes to their
parent. Thus, off-diagonal blocks at different hierarchical levels of Tci are low rank. Tci
is also said to be an HSS subtree. All the HSS subtrees Tci , i = 1, 2, . . . , s are organized
together under a root node which is the neighbor list α. This leads to a hierarchical tree
T called IHSS tree. Figure 3 shows an example.

3. Interconnected structures via shared off-diagonal bases

The off-diagonal basis matrices U , V are preserved across different levels l of the outer
tree T . In the factorization (4), some of the off-diagonal basis matrices U , V of S(l)

α are
passed to level l − 1 and are directly used to construct the IHSS approximations to the
local Schur complements at level l − 1. This will be explained in detail in Sect. 3.3.

Thematrices D, B,U , V , R,W are called generatorswhich are associated with the nodes
of the IHSS tree T , as indicated by the subscripts of the generators. Due to the nested
relation (12), only D,U , V generators associated with leaf nodes need to be stored. The
U , V generators have small column sizes so that the representation is data sparse.

As compared with the HSS structure, the IHSS structure has the following features.

– Each nonleaf node in an HSS tree has two children, while the root of the IHSS tree may
have more than two children, depending on the number of interfaces involved. See, e.g.,
Fig. 3.
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– Corresponding to each interface ci , a diagonal block of the IHSS form is a regular HSS
block. Thus, the subtrees associated with the children of the root of the IHSS tree are
binary HSS trees.

– The off-diagonal blocks corresponding to the interactions between interfaces are low-
rank forms and the basis matrices also have nested forms like in the HSS case. Such
nested forms are due to the shared off-diagonal bases across different levels of the tree
T as mentioned above.

Remark 1 To simplify notation, we sometimes use Bci ,∗ to denote the B generator corre-
sponding to an interface ci and another unspecified interface. If an interface z1 has only one
sibling z2 in the tree T , then we may use sib(z1) to represent z2 and write Bz1,z2 as Bz1,sib(z1).

Remark 2 Wecan see that the discretization of the problemmakes it feasible to take advantage
of the interconnected structures across different outer layers. Accordingly, the IHSS solver
relies on the discretization of the problem and is not as general as the structured solvers in
[37, 38]. However, the IHSS idea provides a newway to explore additional structures (shared
bases matrices) on top of known rank structures.

3.3 Schur Complement Update via IHSS Factorizations

We then use IHSS factorizations to perform the Schur complement update in (4). IHSS
approximations like in (11)–(12) can be applied individually to each local Schur complement
within S(l) based on the associated neighbor list. IHSS approximations fully respect the
interconnected tree structures by exploiting the connections of the neighbor lists at different
levels of T . That is, the U , V basis matrices of the IHSS forms used in S(l) are preserved
and reused in the computation of S(l−1). The details are as follows.

Starting from a certain switching level ls ofT (the reason why the switching level is used
will be explained in Sect. 3.4), an IHSS approximation is computed directly for each local
Schur complement within S(l). This may be based on direct off-diagonal block compression
as in [40] or randomized construction like in [23, 25, 34, 41]. With the number of bisection
levels l large enough, these local Schur complements have small sizes and the costs for the
direct IHSS construction are low. Also, such direct IHSS construction is done only once at
level ls and the off-diagonal basis matrices will be reused at upper levels.

Then for l = ls, ls − 1, . . . , 1, we perform the factorization of S(l) in (4). We compute
a structured approximation to S(l−1) by constructing an IHSS approximation to each local
Schur complement within S(l−1). The interconnected tree structures are used to quickly get
the IHSS approximations and to avoid expensive direct construction. Specifically, suppose
two sibling nodes at level l of T are associated with the following two neighbor lists,
respectively:

α = {σ , c1, c2, . . . , cs}, β = {δ, d1, d2, . . . , dt }, (13)

where σ and δ are pivot interfaces to be eliminated, and we assume all common-origin
interfaces have already been grouped into each σ , ci , δ, or d j . (The groupingwill be discussed
at the end of Sect. 3.3.2 as part of the process for forming hierarchical representations.) Also,
let the parent node of α and β in (13) be γ , which corresponds to a neighbor list formed by
c1, . . . , cs, d1, . . . , dt . Examples of such interface lists in Figs. 1b and 2b are as follows:

α = {(21,22)
σ

, 35
c1

}, β = {(23,24)
δ

, 36
d1

, (43,44)
d2

}, γ = {(35,36)
c1, d1

, (43,44)
d2

}, (14)
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Fig. 4 Illustration of the neighbor lists in the example in (14) corresponding to the interfaces in Fig. 1(b).
Each shaded area is a subdomain. σ and δ are pivot interfaces. Neighbor lists do not contain outermost domain
boundaries

which are illustrated in Fig. 4.
Suppose the two neighbor lists α and β correspond to two local Schur complements S(l)

α

and S(l)
β , respectively. In the factorization (4), we eliminate the pivot blocks of S(l)

α and S(l)
β

and form the local Schur complement S(l−1)
γ corresponding to γ at level l − 1.

We first rewrite the local Schur complement updates like (8) or (9) in a general form (see
[28, equations (2.9)–(2.14)] for the detailed derivation). That is, for i, j = 1, 2, . . . ,min{s, t},
(
S(l−1)
ci ,c j S(l−1)

ci ,d j

S(l−1)
di ,c j

S(l−1)
di ,d j

)
=

⎛
⎝S(l)

ci ,c j

S(l)
di ,d j

⎞
⎠−

⎛
⎝S(l)

ci ,σ

S(l)
d j ,δ

⎞
⎠

⎛
⎝S(l)

σ ,σ I

I S(l)
δ,δ

⎞
⎠

−1 ⎛
⎝S(l)

σ ,ci

S(l)
δ,d j

⎞
⎠ .

(15)

Let

(
Gσ ,σ Gσ ,δ

Gδ,σ Gδ,δ

)
≡

(
S(l)

σ ,σ I

I S(l)
δ,δ

)−1

. Then (15) can be written into the following indi-

vidual equations:

S(l−1)
ci ,c j = S(l)

ci ,c j − S(l)
ci ,σGσ ,σS(l)

σ ,c j , i, j ≤ s, (16)

S(l−1)
di ,d j

= S(l)
di ,d j

− S(l)
di ,δ

Gδ,δS
(l)
δ,d j

, i, j ≤ t, (17)

S(l−1)
ci ,d j

= −S(l)
ci ,σGσ ,δS

(l)
δ,d j

, i ≤ s, j ≤ t, (18)

S(l−1)
d j ,ci

= −S(l)
d j ,δ

Gδ,σS(l)
σ ,ci , i ≤ s, j ≤ t . (19)

Note that (15) requires i, j ≤ min{s, t}, but (16)–(19) apply to all 1 ≤ i ≤ s, 1 ≤ j ≤ t .
For convenience, we will use (15) for some intuitive derivations and the results can be easily
adapted to (16)–(19).

The blocks in (16)–(19) for all the interfaces ci , d j in the neighbor list associated with γ

together form the local Schur complement S(l−1)
γ . Each block represents the computation of

the interaction between a pair of nodes at level l −1 of T based on the interactions at level l.

– (16) shows how S(l)
ci ,c j is updated to produce S

(l−1)
ci ,c j due to the elimination of σ . (17) can

be similarly understood.
– (18) shows how new fill-in S(l−1)

ci ,d j
is created due to the elimination of σ , δ. (19) can be

similarly understood.
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(a) (b)

Fig. 5 Illustration of a pivot matrix and its permuted form H

We then derive the structured version of (15) and (16)–(19). This involves two steps:
structured factorization of the pivot blocks and structured formation of S(l−1)

γ .

3.3.1 Structured Factorization of the Pivot Matrix

In this step, we compute a structured LDU factorization of the pivot matrix

(
S(l)

σ ,σ I

I S(l)
δ,δ

)
in

(15). In the IHSS approximations to S(l)
α and S(l)

β , the blocks S(l)
σ ,σ and S(l)

δ,δ are approximated

by standardHSS forms.We suppose theHSSapproximations toS(l)
σ ,σ andS(l)

δ,δ have generators

{Dσ j , Bσ j ,sib(σ j ),Uσ j , Vσ j , Rσ j ,Wσ j } and {Dδ j , Bδ j ,sib(δ j ),Uδ j , Vδ j , Rδ j ,Wδ j }, (20)

respectively, where σ j , j = 1, 2, . . . and δ j , j = 1, 2, . . . are the smaller interfaces that
form σ and δ, respectively, and are from the leaf level of T . (We omitted the superscript
l in the D, B generators in this subsection. Also see Remark 1 about the subscripts of the

B generators.) The pivot matrix

(
S(l)

σ ,σ I

I S(l)
δ,δ

)
can be permuted into an HSS form, and

the permutation is defined by rearranging {σ1, σ2, . . . , δ1, δ2, . . .} into {σ1, δ1, σ2, δ2, . . .}.
Suppose Π is the permutation matrix and the permuted matrix is

H = Π

(
S(l)

σ ,σ I

I S(l)
δ,δ

)
ΠT .

See Fig. 5 for an example.
By combining the generators of S(l)

σ ,σ and S(l)
δ,δ in (20), we get the generators of the HSS

approximation to H as follows:
(
Dσ j I

I Dδ j

)
,

(
Bσ j ,sib(σ j ) 0

0 Bδ j ,sib(δ j )

)
,

(
Uσ j 0

0 Uδ j

)
,

(
Vσ j 0

0 Vδ j

)
,

(
Rσ j 0
0 Rδ j

)
,

(
Wσ j 0
0 Wδ j

)
.

(21)
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(a) (b)

Fig. 6 Illustration of some major steps of the HSS LDU factorization

(Later, we will abuse notation and still use H to mean its HSS approximation.) Note that
only the D generators are coupled. We can design a (nonsymmetric) HSS LDU factorization
by modifying a (symmetric) HSS LDL factorization in [35]. However, since theU , V , R,W
generators in (21) have block diagonal or decoupled forms, we can design the HSS LDU
factorization to preserve these decoupled forms. We also use this factorization to produce
results useful for the fast computation of (16)–(19). We traverse the HSS tree of H in a
bottom-up order. (It is essentially to simultaneously traverse the HSS trees of S(l)

σ ,σ and S(l)
δ,δ .)

If σ j and δ j are leaf nodes, we introduce zeros into the corresponding basis matrices using
QL factorizations

Uσ j = Qσ j

(
0

Ũσ j

)
, Vσ j = Pσ j

(
0
Ṽσ j

)
, Uδ j = Qδ j

(
0
Ũδ j

)
, Vδ j = Pδ j

(
0
Ṽδ j

)
.

(22)

Then apply QT
σ j

on the left to the block row of H corresponding to σ j and apply Pσ j on the

right to the block column of H corresponding to σ j . Similarly, apply QT
δ j

and Pδ j . These
introduce zero blocks into the corresponding off-diagonal blocks as in standard HSS ULV
factorizations [5]. The corresponding diagonal blocks are transformed to

(
D̄σ j ,σ j D̄σ j ,δ j

D̄δ j ,σ j D̄δ j ,δ j

)
≡

(
QT

σ j
Dσ j Pσ j QT

σ j
Pδ j

QT
δ j
Pσ j QT

δ j
Dδ j Pδ j

)
. (23)

Accordingly, suppose H is transformed into H̄ . See Fig. 6a for an illustration.
Then partition the blocks of (23) conformably following (22) and compute the following

partial LDU factorization:

(
D̄σ j ,σ j D̄σ j ,δ j

D̄δ j ,σ j D̄δ j ,δ j

)
= L jD jU j , with D j =

⎛
⎜⎜⎜⎝

Λσ j

D̃σ j ,σ j D̃σ j ,δ j

Λδ j

D̃δ j ,σ j D̃δ j ,δ j

⎞
⎟⎟⎟⎠ ,
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L j =

⎛
⎜⎜⎝

Lσ j ,σ j

L̃σ j ,σ j I L̃σ j ,δ j

Lδ j ,σ j Lδ j ,δ j

L̃δ j ,σ j L̃δ j ,δ j I

⎞
⎟⎟⎠ , U j =

⎛
⎜⎜⎝
Uσ j ,σ j Ũσ j ,σ j Uσ j ,δ j Ũσ j ,δ j

I
Ũδ j ,σ j Uδ j ,δ j Ũδ j ,δ j

I

⎞
⎟⎟⎠ ,

where Λσ j and Λδ j are diagonal matrices and match the zero positions in (22). The purpose

for such a factorization is partial elimination. That is, we applyL −1
j on the left to the block

row of H̄ corresponding to (23) and apply U −1
j on the right to the block column of H̄

corresponding to (23), and suppose the resulting matrix is H̃ . Then Λσ j and Λδ j can be

eliminated from H̃ . In addition, this partial elimination does not impact the modified basis
matrices Ũσ j , Ṽσ j , Ũδ j , Ṽδ j previously computed in (22). See Fig. 6b.

If σi and δi are non-leaf nodes, suppose they have childrenμ1, μ2 and ν1, ν2, respectively.
Partial eliminations have been performed when these child nodes are visited. The remaining
blocks that are not eliminated at the child level can be merged to form some new HSS
generators. Let

D̂σ j =
(

D̃μ1,μ1 Ũμ1 Bμ1,μ2 Ṽ
T
μ2

Ũμ2 Bμ2,μ1 Ṽ
T
μ1

D̃μ2,μ2

)
, Ûσ j =

(
Ũμ1 Rμ1

Ũμ2 Rμ2

)
, V̂σ j =

(
Ṽμ1Wμ1

Ṽμ2Wμ2

)
,

D̂δ j =
(

D̃ν1,ν1 Ũν1 Bν1,ν2 Ṽ
T
ν2

Ũν2 Bν2,ν1 Ṽ
T
ν1

D̃ν2,ν2

)
, Ûδ j =

(
Ũν1 Rν1

Ũν2 Rν2

)
, V̂δ j =

(
Ṽν1Wν1

Ṽν2Wν2

)
,

Associate σ j with HSS generators D̂σ j , Bσ j ,sib(σ j ), Ûσ j , V̂σ j , Rσ j ,Wσ j and associate δ j with

HSS generators D̂δ j , Bδ j ,sib(δ j ), Ûδ j , V̂δ j , Rδ j ,Wδ j . Then we can remove the children of σ j

and δ j from their associated HSS trees respectively. Accordingly, their associated HSS forms
can be merged and permuted into a larger HSS form with generators similar to (21) but with
small differences:(

D̂σ j diag(D̃μ1,ν1 , D̃μ2,ν2)

diag(D̃ν1,μ1 , D̃ν2,μ2) D̂δ j

)
,

(
Bσ j ,sib(σ j ) 0

0 Bδ j ,sib(δ j )

)
,

(
Ûσ j 0
0 Ûδ j

)
,

(
V̂σ j 0
0 V̂δ j

)
,

(
Rσ j 0
0 Rδ j

)
,

(
Wσ j 0
0 Wδ j

)
.

where diag() is used to denote a block diagonal matrix. Then the elimination process above
can be similarly applied to σ j and δ j .

This process is repeated in a bottom-up sweep. If σ j and δ j are root nodes, after the
factorizations, we also store the following matrix:

G̃ =
(
Ṽ T

σ j

Ṽ T
δ j

) (
D̃σ j ,σ j D̃σ j ,δ j

D̃δ j ,σ j D̃δ j ,δ j

)−1 (
Ũσ j

Ũδ j

)
. (24)

G̃ is a small matrix and will be used a little later in (28) to facilitate the fast computation of
(16)–(19).

3.3.2 Structured Formation of S(l−1)
�

With the pivot separators eliminated from S(l)
α and S(l)

β , we then show how to find an IHSS

approximation to the local Schur complement S(l−1)
γ based on (15) or (16)–(19). Suppose
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Fig. 7 Illustration of using (29) to update D generators of local Schur complements

the generators of the IHSS approximations to S(l)
α and S(l)

β associated with c j and d j in (13)
are

{D(l)
c j , B

(l)
c j ,∗,Ucj , Vc j , Rc j ,Wcj } and {D(l)

d j
, B(l)

d j ,∗,Udj , Vdj , Rdj ,Wdj }, (25)

respectively, where the superscript l in the D, B generators is used to indicate the level
dependence. The U , V , R,W generators are related to the off-diagonal bases and will be
reused across different levels l in our interconnected structured method.

With the generators in (25), the second term on the right-hand side of (15) can be approx-
imated by a structured form

⎛
⎝Uci B

(l)
ci ,σV

T
σ

Udj B
(l)
d j ,δ

V T
δ

⎞
⎠

⎛
⎝S(l)

σ ,σ I

I S(l)
δ,δ

⎞
⎠

−1 ⎛
⎝Uσ B

(l)
σ ,ci V

T
ci

UδB
(l)
δ,d j

V T
d j

⎞
⎠

=
(
Uci

Ud j

) (
B(l)
ci ,σ

B(l)
d j ,δ

) (
G̃σ ,σ G̃σ ,δ

G̃δ,σ G̃δ,δ

) (
B(l)

σ ,ci

B(l)
δ,d j

) (
V T
ci

V T
d j

)
, (26)

where

(
G̃σ ,σ G̃σ ,δ

G̃δ,σ G̃δ,δ

)
=

(
V T

σ

V T
δ

) ⎛
⎝S(l)

σ ,σ I

I S(l)
δ,δ

⎞
⎠

−1 (
Uσ

Uδ

)
. (27)

Note that there is no need to use extra computations to directly form (27). Instead, following
the HSS LDU factorization in Sect. 3.3.1, an idea of reduced matrices in [38,Theorem 3.1]
and [37,Theorem 3.2] can be used to show that (27) is actually given by G̃ in (24):

(
G̃σ ,σ G̃σ ,δ

G̃δ,σ G̃δ,δ

)
= G̃. (28)

This avoids the use of HSS solutions and multiplications to form (27).
We then discuss how to quickly obtain the structured form of the local Schur complement

S(l−1)
γ in S(l−1). There are three cases to consider.

I. For the diagonal blocks S(l−1)
ci ,ci and S(l−1)

d j ,d j
corresponding to interactions within the inter-

faces ci and d j , respectively, by substituting the IHSS approximations given by (25) into
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(16) and (17), we get

S(l−1)
ci ,ci ≈ D(l)

ci −Uci B
(l)
ci ,σ G̃σ ,σ B

(l)
σ ,ci V

T
ci ≡ D(l−1)

ci , i ≤ s,

S(l−1)
d j ,d j

≈ D(l)
d j

−Udj B
(l)
d j ,δ

G̃δ,δB
(l)
δ,d j

V T
d j

≡ D(l−1)
d j

, j ≤ t .
(29)

The two equations describe how to compute a generator D(l−1) from D(l) in the form of
a low-rank update. Note that ci is allowed to include lower level interfaces so that D(l)

ci

in (29) itself is in an HSS form. (It is similar for di and D(l)
di
.) Figure 7 illustrates this. In

this case, the off-diagonal blocks of D(l)
ci haveU and V basis matrices related toUci and

Vci , respectively. This is due to the nested bases in the HSS structure [40]. A result in
[37,Proposition 3.3] can then be used to quickly update the lower level D, B generators
within D(l)

ci to get those of D(l−1)
ci . The basis generators U , V (and R,W ) remain the

same.
II. For the off-diagonal block S(l−1)

ci ,c j corresponding to interactions between ci and c j (and

also S(l−1)
di ,d j

corresponding to interactions between di and d j ), where i �= j , we get also
from (16) and (17) that

S(l−1)
ci ,c j ≈ Uci

(
B(l)
ci ,c j − B(l)

ci ,σ G̃σ ,σ B
(l)
σ ,c j

)
V T
c j ≡ Uci B

(l−1)
ci ,c j V

T
c j , i, j ≤ s, i �= j,

S(l−1)
di ,d j

≈ Udi

(
B(l)
di ,d j

− B(l)
di ,δ

G̃δ,δB
(l)
δ,d j

)
V T
d j

≡ Udi B
(l−1)
di ,d j

V T
d j

, i, j ≤ t, i �= j .

Thus, we obtain low-rank approximations to S(l−1)
ci ,c j and S(l−1)

di ,d j
by simply reusing existing

U , V basis matrices. We just need to update the B generators as follows:

B(l−1)
ci ,c j = B(l)

ci ,c j − B(l)
ci ,σ G̃σ ,σ B

(l)
σ ,c j , i, j ≤ s, i �= j,

B(l−1)
di ,d j

= B(l)
di ,d j

− B(l)
di ,δ

G̃δ,δB
(l)
δ,d j

, i, j ≤ t, i �= j .
(30)

Again, the U , V (and R,W ) generators remain the same. See Fig. 8 for an illustration.
III. For the off-diagonal blocks S(l−1)

ci ,d j
and S(l−1)

d j ,ci
corresponding to new fill-in, we get from

(18) and (19) that

S(l−1)
ci ,d j

≈ −Uci B
(l)
ci ,σ G̃σ ,δB

(l)
δ,d j

V T
d j

≡ Uci B
(l−1)
ci ,d j

V T
d j

, i ≤ s, j ≤ t,

S(l−1)
d j ,ci

≈ −Udj B
(l)
d j ,δ

G̃δ,σ B
(l)
σ ,ci V

T
ci ≡ Udj B

(l−1)
d j ,ci

V T
ci , i ≤ s, j ≤ t .

Thus, we also obtain low-rank approximations to S(l−1)
ci ,d j

and S(l−1)
d j ,ci

by simply reusing
existing U , V basis matrices. We just need to create new B generators as follows:

B(l−1)
ci ,d j

= −B(l)
ci ,σ G̃σ ,δB

(l)
δ,d j

, i ≤ s, j ≤ t,

B(l−1)
d j ,ci

= −B(l)
d j ,δ

G̃δ,σ B
(l)
σ ,ci , i ≤ s, j ≤ t .

(31)

See Fig. 9.

From the three cases (29)–(31) we can observe that existing U , V basis matrices for
relevant off-diagonal blocks of S(l)

α and S(l)
β are used directly for the off-diagonal blocks

of S(l−1)
γ and only the D, B generators need to be updated. That is, the off-diagonal basis

information is reused for local Schur complements across different levels l without extra
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Fig. 8 Illustration of using (30) to update B generators of local Schur complements

Fig. 9 Illustration of using (31) to
create B generators of new fill-in
in local Schur complements

compression. This confirms the third feature in Sect. 3.2 when IHSS representations are
introduced.

We then finalize the IHSS representation for S(l−1)
γ . The neighbor list associated with γ

can be obtained by collecting the interfaces c1, . . . , cs and d1, . . . , dt in (13). Accordingly, the
corresponding HSS subtrees together with the associatedU , V basis matrices are preserved.
The collection of the HSS subtrees is used to form the IHSS tree for S(l−1)

γ . There is only one
thing left. That is, we need to merge common-origin interfaces c j and dk that are in α and β

separately. The corresponding HSS subtrees also need to be merged into a larger HSS subtree
by introducing one additional hierarchical level. Without loss of generality, suppose c1 and
d1 are common-origin interfaces (belonging to a single separator at level l−1 of the separator
tree T) and is to be combined into an interface e ≡ (c1, d1). According to [40,Algorithm 1],

this just needs to introduce the generators

(
Rc1
Rd1

)
and

(
Wc1
Wd1

)
into the nested basis structure.

For example,

(
Rc1
Rd1

)
is an approximate column basis matrix of

⎛
⎝B(l−1)

c1,c2 . . . B(l−1)
c1,cs B(l−1)

c1,d2
. . . B(l−1)

c1,dt

B(l−1)
d1,c2

. . . B(l−1)
d1,cs

B(l−1)
d1,d2

. . . B(l−1)
d1,dt

⎞
⎠ . (32)

Since s and t are usually very small, the size of the matrix in (32) is small. A rank-revealing
QR factorization can be applied to (32):
(
B(l−1)
c1,c2 . . . B(l−1)

c1,cs B(l−1)
c1,d2

. . . B(l−1)
c1,dt

B(l−1)
d1,c2

. . . B(l−1)
d1,cs

B(l−1)
d1,d2

. . . B(l−1)
d1,dt

)
≈

(
Rc1
Rd1

) (
B(l−1)
e,c2 . . . B(l−1)

e,cs B(l−1)
e,d2

. . . B(l−1)
e,dt

)
.

(33)

123



   15 Page 20 of 31 Journal of Scientific Computing            (2022) 91:15 

The new B generators on the right-hand side are introduced due to the creation of e. After
all such merging steps, we obtain an IHSS approximation to S(l−1)

γ .
Applying the above local Schur complement updates to all the interface lists at level l of

T produces the IHSS approximations to local Schur complements at level l − 1. That is,
we get a structured approximation to S(l−1). This completes the Schur complement update
problem (4) at level l. The process can then be repeated, until level 1 ofT is reached. At this
point, we only need to compute an HSS LDU factorization as in Sect. 3.3.1.

This factorization process produces structured factors associated with each node of T .
The factors can be used to quickly solve linear systems in (5)–(7). The structured solution
algorithms can be designed conveniently and the details are omitted.

3.4 Advantages and Complexity

Our solver performs the Schur complement update via the fast structured updates (29)–(31).
Relevant off-diagonal basismatricesU , V are computed only once (for small blocks) and then
reused across different outer factorization levels without the need for repeated direct low-rank
compression. This feature helps to both save the cost and guarantee that the rank structure is
fully preserved in the sparse factorization. In comparison, rank-structuredmultifrontal solvers
like those in [10, 37, 39] cannot conveniently keep consistent block partitioning or reuse
HSS generators due to a nontrivial process (called extend-add) for assembling intermediate
structured Schur complements. This process needs to reorder, extend, and match different
separators. The assembled frontal matrices are then approximated by rank-structured matri-
ces based on algebraic or randomized compression. Therefore, it is not convenient to explore
IHSS structures in rank-structured multifrontal solvers. On the other hand, rank-structured
multifrontal methods can solve more general problems and do not rely on specific boundary
conditions. The Dirichlet-to-Neumann formulation [12, 26] is closely related to the Robin-
to-Robin formulation. It is more commonly used since it is easier to derive. However, it
is more complicated for structured factorizations using HSS matrices because the addition
and recompression of HSS forms are required in order to factorize pivot blocks [12,Section
7.2]. HSS recompression is a tricky process and comes with additional costs and approxima-
tion errors. With more efforts, we believe that IHSS structures may be explored within the
Dirichlet-to-Neumann formulation as well. The factorization of pivot matrices in Sect. 3.3.1
will be more technical in order to have structured addition and recompression. After that, the
formation of the local Schur compliments in Sect. 3.3.2 might be similar.

The complexity of our algorithm can be studied as follows. Let n be the size of the
discretized elliptic problem in two dimensions and l be the total number of levels in T .
Assume all the finest-level subdomains have constant problem sizes independent of n, so that
factorizing all the corresponding subproblems at level l has total linear complexity. That is,
we let

2l = O(n). (34)

Like the methods in [38, 39], to achieve the optimal complexity, the structured construction
typically does not immediately start from the finest level. Instead, a switching level ls(≤ l)
is chosen. That is, structured factorizations are applied just to the upper ls levels and dense
operations are applied to the bottom l − ls levels. This also avoids applying rank-structured
operations to very small dense matrices. To estimate the total complexity, suppose Nl is the
largest size of the local Schur complement at level l, and r is the maximum size of all the B
generators in the IHSS approximations in the sparse factorization.
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At a level l below the switching level, the factorization cost associated with each local
Schur complement is O(N 3

l ). At the switching level l = ls , a (one-time) compression cost
is used to approximate each local Schur complement as an IHSS form. The cost is O(r N 2

l )

like in the HSS construction in [40]. Then for l ≤ ls , structured factorizations are performed
as in Sects. 3.3.1 and 3.3.2. Note that the U , V generators are reused for upper levels so the
only extra compression is for a small matrix as in (33). The cost associated with each local
Schur complement is O(r2Nl). Without loss of generality, we assume Nl = O(

√
n/2l), and

the total factorization complexity is

O
(
2l

)
︸ ︷︷ ︸

factorizations for finest-level subdomains

+
l∑

l=ls+1

2l O
(
N 3
l

)

︸ ︷︷ ︸
dense Schur complement factorizations

+ 2ls O
(
r N 2

ls

)
︸ ︷︷ ︸

IHSS constructions
at level ls

+
ls∑
l=1

2l O(r2Nl)

︸ ︷︷ ︸
IHSS factorizations

= O(n) + O(2−ls/2n3/2) + O(rn) + O(r22ls/2n1/2).

To minimize this count, we choose

2ls = O(r−2n). (35)

(34) and (35) indicate l − ls = O(log r). This leads to the optimal factorization complexity
O(rn). Accordingly, the storage count (number of nonzeros in structured factors) looks like

O(2l)︸ ︷︷ ︸
factors for finest-level subdomains

+
l∑

l=ls+1

2l O
(
N 2
l

)

︸ ︷︷ ︸
factors of dense Schur complements

+
ls∑
l=1

2l O(r Nl)

︸ ︷︷ ︸
IHSS factors

= O(n) + O((l − ls)n) + O(n) = O((log r)n).

In comparison, if a structured multifrontal method like in [32, 38] is applied, the optimal
factorization cost is O(rn log n), where r is the maximum size of the B generators in the
HSS approximations to the local Schur complements. Thus, assuming the same r is used,
our factorization cost is lower by a factor of O(log n).

If r is bounded, then the method has a linear factorization complexity. In practice, r is
allowed to slightly increase with n as r = O(logp nl). Then the total complexity remains
O(n) based on a rank relaxation study in [36, 38]. For 2D elliptic equations and Helmholtz
equations with small or complex-valued wavenumbers, we expect r to be small [2, 4, 8].

4 Extension to Structured Factorization Update Under Multiple
Coefficient Changes

Our algorithm can be extended to a more challenging situation where the factorization needs
to be updated frequently due to various local changes to the coefficient of the PDE. The
magnitudes of the local changes may also be large. For such a situation, conventional sparse
hierarchical factorization becomes too expensive since any local update will be propagated
upward along the assembly tree. Recently in [24], a fast factorization update method was
proposed that uses a set of interior and exterior factorizations. Whenever a subdomain is
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updated, only a small interior factorization in that subdomain needs to be done. The updated
interior factor is combinedwith a set of existing exterior factors to produce the updated sparse
factorization.

The factorization update method in [24] uses a formulation consistent with Sect. 2. Thus,
we can use our interconnected hierarchical structured methods to accelerate the factorization
update. We sketch the main ideas here without going into the tedious technical details and
show some numerical tests later.

– The method in [24] starts with the hierarchical direct factorization described in Sect. 2
here. To distinguish from additional steps needed for the factorization update, the sub-
domains generated by the hierarchical domain partitioning as in Sect. 2.1 are called
interior subdomains, and the factorization or elimination of unknowns associated with
each interior subdomain is called an interior factorization. As discussed in Sect. 3, the
IHSS factorization can be used to replace the standard interior factorization.

– The complement of an interior subdomain is called an exterior subdomain. In [24], an
exterior factorizationmethod is developed to take advantage of shared factors during the
elimination of unknowns in exterior subdomains. It is shown in [24] that every exterior
subdomain is a union of certain interior subdomains. Therefore, an exterior factorization
can always reuse the results of certain interior factorizations to save the cost. A neighbor
tree can also be constructed for the exterior factorization.

– For the factorization update due to coefficient updates in an interior subdomain, we can
compute the new factorization by combining the new factors in that interior subdomain
and existing factors in the corresponding exterior subdomain. This avoid the propagation
of local updates to the entire sparse factorization. See [24,Section 3] for more details.

– IHSS approximations can be used to accelerate the exterior factorizations as well. When
an existing factor is involved, the existing tree structures and IHSS approximations are
reused. The existing formulas (29)–(31) still hold. On the boundary of a subdomain, the
intermediate Schur complements from the interior and exterior factorization have the
same size and the same block partitioning.

As an example, consider the matrix in (2) with the domain partitioning shown in Fig. 1a.
Suppose there are coefficient updates in the upper-left subdomain which is the interior sub-
domain (Fig. 10a). The exterior subdomain is the union of the three remaining subdomains.
We can transform the neighbor tree in Fig. 2a to get a new neighbor tree T̃ to organize
the factorizations (Fig. 10b). The exterior factorization can be computed by eliminating the
separators (3, 4) and (6, 8) following T̃ . The elimination of (3, 4) has been performed in (9)
during the interior factorization and is reused. Thus, the corresponding subtree ofT is reused
in T̃ . See the dash-dotted subtree in Fig. 10b. The elimination of (6, 8) can be performed
similarly afterwards by

(
S(1)
22 S(1)

27

S(1)
72 S(1)

77

)
=

(
S(2)
22

S(1)
77

)
−

(
S(2)
26

S(1)
78

) (
S(2)
66 I

I S(1)
88

)−1 (
S(2)
62

S(1)
87

)
.

After changing the coefficients in the interior subdomain, we only need to update the
interior factorization in that subdomain, which corresponds to the left child of the root in
Fig. 10b. No update is needed for the exterior factorization (corresponding to the entire
right subtree of the root in Fig. 10b). The updated interior factor is then combined with the
existing exterior factors to get the new overall factor. This avoids the global propagation of
local updates. The reader is referred to [24] for more details. We would just like to point
out that our IHSS strategies can be used to accelerate all these elimination steps just like in
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(a) (b)

Fig. 10 A pair of interior and exterior subdomains and the corresponding neighbor tree T̃ for organizing the
factorizations. The exterior subdomain is formed by the shaded areas. The neighbor tree is transformed from
the tree T in Fig. 2a. The dash-dotted subtree is reused from T

Sect. 3. The complexity improvement is similar to that in Sect. 3. In the next section, a test
example will be included to show the performance improvement.

5 Numerical Examples

We apply our interconnected hierarchical structured method to solve some elliptic PDEs. The
PDEs are discretized with a continuous Galerkin method and the coefficients may contain
large jump discontinuities between elements. We also test a challenging local factorization
update problem. As mentioned before, our main purpose is to verify the feasibility of IHSS
structures in a proof-of-concept study. Thus, the tests are done for some 2D problems, which
is sufficient to demonstrate the benefits. The ideas can be extended to 3D problems but the
implementation would be much more technical. We compare the following three methods:

– NEW: our new sparse factorization based on IHSS methods;
– STD: the standard supernodal multifrontal factorization using nested dissection (without

intermediate structured approximations);
– SMF: a structuredmultifrontal factorizationwith HSS approximations of the intermediate

frontal matrices like in [38];

In the actual implementations of NEW, we do not need to assemble the entire matrix
explicitly. Instead, we follow the geometric multifrontal patterns as illustrated in Sects. 2
and 3, where only local PDE problems and Schur complements are formed and factorized.
Due to the use of Robin-to-Robin formations, the local problems serve as approximations
to part of the global problem. In order to be able to apply STD and SMF so as to perform
comparison, the global matrix is assembled explicitly from the subproblems (using finite
element methods). Solutions from STD applied to the global matrix are treated as the exact
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solutions. The approximation natures contribute to some accuracy differences between NEW
and SMF with respect to STD. This overall should not affect our illustration of the reduction
in compression operations with the IHSS strategy. Note that the global matrix has a smaller
number of nonzeros than all the local subproblems together due to overlapping interfaces in
the subproblems, which brings a slight advantage to SMF.

In our IHSS approximations, we set a 2-norm relative tolerance τ = 10−6 in the com-
pression at the switching level ls and the compression step (33). This tolerance is also used
for the HSS construction in SMF. All the compression is based on an adaptive randomized
rank-revealing QR routine like those in [13, 35] and with τ as a relative tolerance. The imple-
mentation involves economy-sized SVDs of some small skinny matrices and their flop count
follows [31].

We test the algorithms in Matlab R2021a and report the following results.

– Factorization costs in terms of flops.
– Storage of factors in terms of the number of nonzeros.
– Solution accuracy as the relative 2-norm error of the solutions from NEW and SMF

compared against the solution from STD.
– IHSS rank which is the size r mentioned in Sect. 3.4.
– IHSS reuse factor defined as the ratio between the number of low-rank compression

operations (rank-revealing QR factorizations) in a direct structured construction and that
in the IHSS construction for the largest three separators (in the top two levels of the
separator tree). More specifically, let k1 be the number of row and column basis matrices
in the IHSS form, which would be the number of off-diagonal compression steps if it
needs to directly produce these basis matrices in the structured approximation of a dense
local Schur complement. With basis reuse, the basis matrices produced at the switching
level are reused at upper levels, as mentioned in Sect. 3.4. Above the switching level,
only few extra compression steps (like in (33)) are needed to produce the additional basis
matrices. Let k2 be the number of these extra compression steps. k1 and k2 are counted
for the top two levels. The reuse factor is then the ratio of the sum of the k1 counts over
the sum of the k2 counts. This factor measures by how many times the IHSS method
reduces the number of low-rank compression operations during the elimination of those
separators.

Example 1 The first example is Poisson’s equation −Δu(x) = f (x), x ∈ Ω , where each
local Schur complement like in (3) is a discretized Robin-to-Robin map that describes the
linear relation from ∂nu + au to ∂nu − au on the boundary. Here, ∂nu denotes the Neumann
boundary value and a is a positive constant to ensure well-posedness. The computational
domain is Ω = [0, 1]2 with a uniform triangulation. For the tests, we choose a = 1/h,
where h is the mesh spacing. The number of unknowns is n = (p/h + 1)2, where p is the
polynomial order of the nodal Lagrange basis functions and is chosen to be 4. The right-hand
side function is chosen as f (x) = exp

(−‖x − (0.5, 0.5)‖2/h2).
For this problem, it is known that the intermediate Schur complements are rank structured

and SMF is efficient. We use this problem to show how IHSS structures help to further reuse
computations in the structured factorization. Table 1 provides the IHSS rank and the IHSS
reuse factors. Table 2 gives the performance of the solvers as the matrix size increases. The
corresponding scaling plot is shown in Fig. 11a. We have the following observations.

– Significant basis reuse can be observed in all the tests. For the largest problem size
n = 40972, the reuse factor is already 8.0 times, which indicates a dramatic reduction
in the number of low-rank compression operations. (Note that this reuse factor is not the
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Table 1 Examples 1 and 2: IHSS ranks and reuse factors

Problem size 5132 10252 20492 40972

IHSS rank

Example 1 23 28 32 36

Example 2 25 33 53 92

IHSS reuse factor 148
52 ≈ 2.8 516

116 ≈ 4.4 1508
244 ≈ 6.2 4004

500 ≈ 8.0

(a) (b)

Fig. 11 Examples 1 and 2: Factorization costs of STD, SMF, and NEW

difference of total factorization costs for NEW and SMF, since the factor is only for the
3 largest local Schur complements and also both methods still need the local structured
factorizations other than the structured constructions.)

– NEW costs less than both STD and SMF. For the largest problem size n = 40972, the
factorization cost of STD is 7.4 times of that of NEW. The SMF cost is also about 2.4
times of that of NEW. The factorization costs of NEW scale like nearly O(n). This is
consistent with the theoretical estimates. As indicated in Fig. 11a, the advantage of NEW
gets bigger for larger n.

– NEW also requires lower storage. For n = 40972,NEW needs less than 60% of the storage
of STD. The difference in the storage is less significant since all the three methods have
roughly linear storage.

– With lower costs and storage, NEW achieves satisfactory accuracy as controlled by the
compression tolerance. For the two largest problem sizes, SMF has worse accuracy than
NEW, possibly due to the large number of rank-revealing approximations at many levels.
If a slightly smaller tolerance is used for SMF, then comparable accuracy can be achieved,
at the cost of slightly increased costs. For example, with τ = 10−7, SMF yields solution
accuracies 8.5e−7 and 7.7e−7 with factorization costs 3.77e11 and 1.80e12 for n =
20492 and n = 40972, respectively. The impact of this smaller tolerance on the SMF
storage is very small.

Since the implementation is in Matlab, the timing is not reported and the advantage of
NEW in timing is not as significant. We expect to see larger differences in timing with more
efficient implementations for bigger problem sizes. Again, we would like to emphasize that
the benefit of IHSS structures can already be clearly observed from the reuse factors, and the
potential can be fully utilized in practical implementations.
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Table 2 Example 1: Test results with STD, SMF, and NEW, where the number of nonzeros is the total number
of nonzeros of all leaf-level local problems

Problem size 5132 10252 20492 40972

Number of nonzeros 6, 234, 240 24, 936, 960 99, 747, 840 398, 991, 360

(l, ls ) (8, 5) (10, 7) (12, 9) (14, 11)

Factorization flops

STD 1.44e10 9.37e10 6.72e11 5.01e12

SMF 1.35e10 7.05e10 3.45e11 1.62e12

NEW 9.52e9 4.05e10 1.67e11 6.79e11

Factor storage

STD 2.86e7 1.34e8 6.18e8 2.77e9

SMF 2.58e7 1.08e8 4.41e8 1.78e9

NEW 2.27e7 9.76e7 4.05e8 1.65e9

Solution accuracy ‖x−x0‖2‖x0‖2
SMF 4.7e−7 2.7e−6 5.9e−6 1.2e−5

NEW 2.3e−6 1.2e−6 5.9e−7 3.0e−7

Example 2 The following Helmholtz equation with jump discontinuities in the coefficient is
a more challenging Hermitian indefinite problem:

− Δu(x) − k2(x)u(x) = f (x), x ∈ Ω, (36)

where k(x) is thewavenumberwith a 300% jump, similar to an example in [24].We follow the
impedance-to-impedance formulation [11, 28] and each local Schur complement (3) maps
from ∂nu − iηu to ∂nu + iηu, where η is chosen as the average value of k(x). Neumann
boundary condition is imposed on the physical boundary ∂Ω . As the problem size increases,
we fix the sampling rate: there are 4 points for the smallest side length among those rectangles;
comparing with the shortest wavelength, there are 24 points per wavelength. The choices of
Ω , h, n, and f (x) are the same as in Example 1.

The test results are reported in Table 3. The advantages of NEW in the cost can be further
observed from Fig. 11b. Note that the cost of STD is the same for both Examples 1 and 2
since the discretization and nonzero patterns are the same. The factorization costs of NEW
are similar to those in the previous example. On the other hand, the factorization costs of
SMF are higher than in the previous example and the SMF cost for n = 40972 is now about
3.1 times of that of NEW. The IHSS ranks and reuse factors are given in Table 1, where the
reuse factors are the same as in the previous example.

Figure 12 illustrates a solution, where a jump corresponding to the jump location in the
wavenumber k(x) can be observed.

Example 3 For the Helmholtz problem in Example 2, we also demonstrate the performance
of IHSS methods for accelerating the coefficient update problems as mentioned in Sect. 4.
We follow the setting in [24] and introduce a local update to the coefficient by reducing the
wavenumber by 1/2 in an interior subdomain containing 1602 unknowns.

In order to perform quick factorization update after local coefficient updates, we precom-
pute the interior and exterior factorizations as mentioned in Sect. 4. IHSS operations are
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Table 3 Example 2: Test results
with STD, SMF, and NEW Problem size 5132 10252 20492 40972

(l, ls ) (8, 5) (10, 7) (12, 9) (14, 11)

Factorization flops

STD 1.44e10 9.37e10 6.72e11 5.01e12

SMF 1.40e10 7.75e10 4.09e11 2.13e12

NEW 9.54e9 4.06e10 1.68e11 6.85e11

Factor storage

STD 2.86e7 1.34e8 6.18e8 2.77e9

SMF 2.59e7 1.08e8 4.42e8 1.78e9

NEW 2.27e7 9.79e7 4.07e8 1.66e9

Solution accuracy ‖x−x0‖2‖x0‖2
SMF 8.7e−7 2.0e−6 9.4e−6 4.1e−5

NEW 9.3e−6 8.1e−6 8.9e−6 1.4e−5

Fig. 12 Example 2: Visualization of a solution corresponding to the problem size 10252

used to accelerate both types of factorizations. The results are shown in Table 4, where we
compare the factorization update based on NEW (denoted NEW_UPD) and that based on the
previous factorization in [24] (denoted UPD).

SMF is not tested since it is significantly more expensive to be used for local updates due to
the need to perform nearly refactorizations instead of local factorization updates. (The local
factorization update with SMF or a regular multifrontal factorization has cost essentially in
the same order of magnitude as the original factorization cost. See [24] for more details.)

We have the following observations.

– As compared with the update method in [24] , the IHSS method greatly reduces the
factorization costs. For the largest problem size n = 25612, NEW_UPD reduces the cost
for the interior factorization by about 2.7 times and reduces the cost for the exterior
factorization by about 10.4 times. Figure 13 further shows the scaling plots and indicates
the significant speedup of NEW_UPD over UPD.
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Table 4 Example 3: Results for interior and exterior factorizations

Problem size 3212 6412 12812 25612

Number of nonzeros 2,437,184 9,748,736 38,994,994 155,979,776

(l, ls ) (7, 5) (9, 7) (11, 9) (13, 11)

Factorization flops

Interior

UPD 3.11e9 1.58e10 8.93e10 5.62e11

NEW_UPD 2.94e9 1.26e10 5.22e10 2.13e11

Exterior

UPD 1.66e9 1.75e10 1.59e11 1.35e12

NEW_UPD 1.05e9 6.10e9 2.97e10 1.33e11

Factor storage

Interior

UPD 9.03e6 4.65e7 2.31e8 1.11e9

NEW_UPD 7.58e6 3.27e7 1.36e8 5.56e8

Exterior

UPD 3.87e6 2.56e7 1.46e8 7.66e8

NEW_UPD 3.43e6 1.89e7 8.98e7 3.96e8

IHSS reuse factor of NEW_UPD 296
52 ≈ 5.7 1032

116 ≈ 8.9 3016
244 ≈ 12.4 8008

500 ≈ 16.0

– The sizes of interior and exterior factors are reduced simultaneously by NEW_UPD. For
example, for n = 25612, the storage of the exterior factor from NEW_UPD is about half
of that from UPD.

– The basis reuse with NEW_UPD is even more significant than just in the interior fac-
torization. The exterior factorization can also reuse basis matrices from the interior
factorization. For the largest problem size, the reuse factor is already about 16.

– Since the factorization update just needs the refactorization in the local subdomain where
the coefficient changes, the factorization update cost is nearly independent of the matrix
size n, as shown in Table 5. The total solution update cost is roughly proportional to n.

– The updated solutions of NEW_UPD are compared against UPD. The solution accuracy
after the factorization update is also well controlled by the compression accuracy.

6 Conclusions

Wehave designed a type of interconnected hierarchical rank structures called IHSS structures
and developed fast IHSS methods for solving some elliptic PDEs. Our structured sparse
factorization is organized in terms of an outer neighbor tree with inner IHSS trees. Unlike
many existing rank-structured direct solvers, our IHSS strategies can reuse off-diagonal basis
matrices across the outer sparse factorization levels. It thus not only eliminates large dense
intermediate matrix operations, but also avoids excessive low-rank compression operations
during the structured factorization. The extensive basis reuse in IHSS structures helps to both
save the cost and conveniently preserve the rank structures. The factorization complexity of
the solver is O(rn) (Sect. 3.4), which is lower than some other solvers by a factor of O(log n).
We have also extended the solver to a challenging sparse factorization update problems. The
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(a) (b)

Fig. 13 Examples 3: Costs of interior and exterior factorizations with UPD and NEW_UPD

Table 5 Example 3: Results for factorization and solution updates with NEW_UPD

Problem size 3212 6412 12812 25612

Factorization update flops 7.41e8 8.57e8 8.57e8 8.57e8

Solution update flops

Interior 6.17e6 6.70e6 6.70e6 6.70e6

Exterior 9.15e6 4.86e7 2.13e8 8.85e8

Solution accuracy 7.9e−8 1.4e−7 2.4e−7 2.0e−7

large reuse factors in the numerical tests indicate significant reductions in the need of low-rank
compression operations.

We expect similar ideas can be generalized to three dimensional problems, although the
implementation and themanagement of the discretizations and tree structures would bemuch
more involved and need to handle substantially more technical details. This will be studied
and tested in futurework. The current proof-of-conceptwork already clearly demonstrates the
potential of the key ideas. In addition, since the IHSS structure relies on certain discretizations,
it remains open to explore the feasibility of extending the IHSS framework to more general
discretizations and even more general sparse matrices. Also, more practical implementations
are expected to be done based on this work.
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