
Chapter 10
Robust and Efficient Multifrontal Solver
for Large Discretized PDEs

Jianlin Xia

Abstract This paper presents a robust structured multifrontal factorization method
for large symmetric positive definite sparse matrices arising from the discretization
of partial differential equations (PDEs). For PDEs such as 2D and 3D elliptic equa-
tions, the method costs roughly O(n) and O(n4/3) flops, respectively. The algorithm
takes advantage of a low-rank property in the direct factorization of some discretized
matrices. We organize the factorization with a supernodal multifrontal method af-
ter the nested dissection ordering of the matrix. Dense intermediate matrices in the
factorization are approximately factorized into hierarchically semiseparable (HSS)
forms, so that a data-sparse Cholesky factor is computed and is guaranteed to exist,
regardless of the accuracy of the approximation. We also use an idea of rank relax-
ation for HSS methods so as to achieve similar performance with flexible structures
in broader types of PDE. Due to the structures and the rank relaxation, the per-
formance of the method is relatively insensitive to parameters such as frequencies
and sizes of discontinuities. Our method is also much simpler than similar struc-
tured multifrontal methods, and is more generally applicable (to PDEs on irregular
meshes and to general sparse matrices as a black-box direct solver). The method
also has the potential to work as a robust and effective preconditioner even if the
low-rank property is insignificant. We demonstrate the efficiency and effectiveness
of the method with several important PDEs. Various comparisons with other similar
methods are given.

10.1 Introduction

Large sparse linear systems arise frequently from numerical and engineering prob-
lems, in particular, the discretization of partial differential equations (PDEs). Typi-
cally, there are two types of linear system solver, direct methods and iterative meth-
ods. Direct methods are reliable and are efficient for multiple right-hand sides, but
are often expensive due to the generation of fill-in or loss of sparsity. Iterative meth-
ods take good advantage of sparsity and require less storage, but may diverge or

J. Xia (�)
Department of Mathematics, Purdue University, West Lafayette, IN, USA
e-mail: xiaj@math.purdue.edu

M.W. Berry et al. (eds.), High-Performance Scientific Computing,
DOI 10.1007/978-1-4471-2437-5_10, © Springer-Verlag London Limited 2012

199

mailto:xiaj@math.purdue.edu
http://dx.doi.org/10.1007/978-1-4471-2437-5_10

200 J. Xia

converge slowly if no effective preconditioners are available. Also, classical ILU
preconditioners may suffer from breakdown.

Assume we have a system

Ax = b, (10.1)

where A is an n × n symmetric positive definite (SPD) matrix. If A arises from
the discretization of some PDEs. It may be associated with a mesh. In the direct
solution of the system, A or the mesh points can be reordered so as to reduce fill-in.
For example, the nested dissection ordering [12] and its generalizations can be used
to get nearly optimal exact factorization complexity, which is generally O(n3/2) in
2D or O(n2) in 3D [17]. In nested dissection, a mesh is recursively divided with
separators (small sets of mesh points). However, notice that some iterative methods
such as multigrid converge with O(n) complexity for some PDEs.

In the recent years, nearly linear complexity structured approximate factorization
methods have been developed based on a low-rank property. It has been noticed
that, during the direct solution of some PDEs such as elliptic equations, certain off-
diagonal blocks of the intermediate dense matrices or fill-in have small numerical
ranks [1, 2, 4, 19, 33, etc.]. This property is closely related to the idea of the fast mul-
tipole method [14] and the property of certain Green’s functions which are smooth
away from the diagonal singularity under certain conditions. This property can be
used to improve the computational efficiency, with dense intermediate matrices ap-
proximated by rank structured matrices such as quasiseparable, semiseparable, or
hierarchical matrices [2, 10, 15, 16, 28, etc.]. This idea is widely used in the de-
velopment of new fast algorithms. Related techniques have also been shown very
useful in high performance scientific computing [23, 24, 29].

Rank structured methods can be fully integrated into sparse matrix techniques
to provide new fast solvers. In [33] and [25, 26], structured sparse factorization
algorithms are proposed based on the multifrontal method [9, 20] and hierarchi-
cally semiseparable (HSS) matrices [3, 5, 34] or hierarchical matrices. The algo-
rithms have nearly linear complexity and linear storage requirement for some prob-
lems. The method in [33] involves complicated HSS operations, and are mainly
applicable to regular meshes. Later, more general structured multifrontal meth-
ods have been discussed in [30, 31] and [25]. The method in [25] also requires
the mesh to be nearly regular (or the location and layout of the separators in
nested dissection follow the patterns of those in a regular mesh). Both meth-
ods in [25, 33] only work for 2D problems. The 3D method in [26] only works
for regular meshes. All these methods may suffer from the problem of break-
down, especially when a low accuracy is used, say, in preconditioning. In addition,
these methods generally require bounded off-diagonal ranks in the low-rank prop-
erty.

In this paper, we propose a more robust and more general structured multi-
frontal algorithm, following the preliminary discussions in the report [30]. We
use a flexible nested dissection algorithm that works for irregular meshes in
both 2D and 3D. In the meantime, a robust HSS Cholesky factorization algo-
rithm in [35] is generalized to the context of the multifrontal method, so that

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 201

an approximate multifrontal factorization can always be computed without break-
down, in general. We also simplify the process by preserving certain dense op-
erations, which keeps the performance to be similar to the fully structured ver-
sion.

An optimization step is used in the multifrontal scheme (Theorem 10.1 below),
so that the complexity can be lower than similar methods in [11, 25] by up to a
factor of O(logn). Moreover, we relax the classical rank requirement in [25, 33], so
that the structured sparse solution is fast even if the related numerical ranks are not
bounded. Traditionally, HSS operations require the off-diagonal (numerical) ranks
of a dense matrix to be bounded in order to achieve linear complexity. Here, the rank
relaxation idea in [32] indicates that similar complexity can be achieved without
this requirement. That is, the ranks are actually allowed to increase along the block
sizes. This is then generalized to the rank relaxation in our robust sparse solution.
It enhances the flexibility and applicability of structured multifrontal solvers, and
is especially useful for difficult problems such as Helmholtz equations with high
frequencies and 3D equations.

With the relaxed rank requirement, this new method has complexity similar to
the one in [33], but applies to more general sparse matrices including 3D dis-
cretized ones. The factorization costs for some 2D and 3D discretized equations
(elliptic, Helmholtz, etc.) are roughly O(n) and O(n4/3) flops, respectively (see
Theorem 10.1 and Remark 10.1). In contrast, the exact factorization generally costs
at least O(n3/2) in 2D and O(n2) in 3D. We point out that, after the factorization,
the solution cost and the storage requirement are both nearly O(n), including for
3D. Furthermore, the rank structures and the rank relaxation idea indicate that the
performance of the method is relatively insensitive to parameters such as frequen-
cies in some problems.

Our method is especially useful for direct solutions of sparse linear systems with
multiple right-hand sides, involving some parameters, and/or with only modest ac-
curacy desired. It also has the potential to be used as a robust and effective pre-
conditioner when the rank property is insignificant. The method uses two layers of
tree structures, an outer one for the multifrontal method, and an inner one for each
intermediate HSS matrix. It is thus suitable for parallel implementations. Several
numerical examples are shown, including a Poisson equation, an interface problem,
and a linear elasticity equation. The later two are ill conditioned, but our method (as
a solver or a preconditioner) has similar performance for a large range of param-
eters. Both analytical and numerical comparisons with other similar methods are
given.

The remaining sections are organized as follows. Section 10.2 reviews a dense
HSS Cholesky factorization method. New structured multifrontal factorization
and solution algorithms are developed in Sect. 10.4. Section 10.5 shows the al-
gorithm and its complexity analysis. The numerical experiments are given in
Sect. 10.6.

202 J. Xia

10.2 Review of HSS Cholesky Factorization of a Dense Matrix

10.2.1 Hierarchically Semiseparable Structures

HSS structures are very useful in handling dense matrices with the low-rank prop-
erty. The definition of a postordering HSS form is as follows [34].

Definition 10.1 Assume F is an N ×N (real) matrix, and I = {1,2, . . . ,N}. Let T

be a binary tree with k nodes, and ti ⊂ I be an index set associated with each node
i of T . Let F |ti×tj denote the submatrix of F with a row index set ti and a column
index set tj in I . We say F is in an HSS form with the corresponding HSS tree T if:

1. T is a postordered full binary tree: each node i is either a leaf or is a non-leaf
node with two children c1 and c2 which are ordered as c1 < c2 < i.

2. For each non-leaf node i, tc1 ∪ tc2 = ti , tc1 ∩ tc2 = φ, and t2k−1 = I .
3. There exists matrices Di,Ui,Vi,Ri,Wi,Bi (called HSS generators) associated

with each node i satisfying

Di =
(

Dc1 Uc1Bc1V
T
c2

Uc2Bc2V
T
c1

Dc2

)
, Ui =

(
Uc1 Rc1

Uc2 Rc2

)
,

Vi =
(

Vc1 Wc1

Vc2 Wc2

)
,

(10.2)

so that Di ≡ F |ti×ti . Here, the generators associated with the root k are empty
matrices except Dk ≡ F .

The HSS form of F is given by the generators. For a non-leaf node i, the genera-
tors Di,Ui,Vi are recursively defined and are not explicitly stored. Clearly, Ui is a
basis for the column space of F−

i = F |ti×(I\ti), and V T
i is a basis for the row space

of F
|
i = F |(I\ti)×ti . These off-diagonal blocks F−

i and F
|
i are called HSS blocks.

The maximum (numerical) rank of all the HSS blocks is called the HSS rank of F .
If F is symmetric, we can set [34]

Di = DT
i , Vi = Ui, Bj = BT

i (j : sibling of i).

10.2.2 Robust HSS Cholesky Factorization

Given a dense real SPD matrix F , we can use the method in [35] to compute an
approximate Cholesky factorization F ≈ LLT , where L is a lower triangular HSS
matrix. LLT generally exists for any given approximation accuracy. The fundamen-
tal idea can be illustrated in terms of a block 2 × 2 SPD matrix. Factorize the (1,1)

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 203

block of the following matrix:

F ≡
(

F1,1 FT
2,1

F2,1 F2,2

)
=

(
D1

F2,1D
−T
1 I

)(
DT

1 D−1
1 FT

2,1
S

)
,

where F1,1 = D1D
T
1 is the Cholesky factorization of F1,1, and S = F22 −

(F2,1D
−T
1) · (D−1

1 FT
2,1)

T is the Schur complement. Compute an SVD F2,1D
−T
1 =

U2B
T
1 UT

1 + Û2B̂
T
1 ÛT

1 , where all the singular values greater than a tolerance τ are
in B1. (The number of singular values in B1 is the off-diagonal numerical rank r .)
Then

F ≈
(

D1

U2B
T
1 UT

1 I

)(
DT

1 U1B1U
T
2

S̃

)
,

where S̃ is an approximate Schur complement given by

S̃ = F2,2 − U2B
2
1UT

2 = S + O
(
τ 2).

That is, a positive semidefinite term is implicitly added to the Schur complement.
Then a Cholesky factorization S̃ = D2D

T
2 yields

F ≈ LLT , L =
(

D1

U2B
T
1 UT

1 D2

)
.

Therefore, we obtain an approximate Cholesky factor L which is a block 2 × 2
HSS form. It is also shown in [35] that, with certain modifications, L can work as
an effective preconditioner when the low-rank property is insignificant. That is, if
the HSS rank of A for a small tolerance is large, L can be obtained by manually
choosing a small rank r (and a large tolerance). The idea can be generalized to
multiple blocks so that L is a general lower-triangular HSS matrix.

10.3 Nested Dissection for General Graphs

Before the numerical factorization of a sparse SPD matrix A, it is often reordered
so as to reduce fill-in. Nested dissection generally leads to the optimal complexity
for 2D and 3D discretized matrices [17].

In the following discussions, we focus on discretized matrices. For general sparse
matrices, we can similarly consider the adjacency graph. Treat the mesh in the
discretization as an undirected graph (V,E). Each mesh point i ∈ V corresponds
to a row and a column of A, and each edge (i, j) ∈ E corresponds to the entries
Aij = Aji �= 0. A separator in V is found to divide the entire mesh into to two sub-
regions, which are further divided recursively. Unlike the method in [33] which uses
coordinates of mesh points, graph partition tools can be employed to handle more
general meshes. Here, we use METIS [18], and follow the basic ideas in Meshpart
[13]. See Figs. 10.1, 10.2 for some examples.

204 J. Xia

Fig. 10.1 Multiple levels of separators in nested dissection for an irregular mesh from Meshpart
[13]

Fig. 10.2 Multiple levels of separators in nested dissection for an irregular mesh with a missing
piece, where the matrix is from the University of Florida sparse matrix collection [7]

Lower level separators are ordered before upper level ones. For example,
Fig. 10.3 shows the nonzero pattern of a discretized matrix A after the reordering of
a 3D mesh. During the factorization of A, the elimination of a mesh point mutually
connects points which are previously connected to it [22, 27]. This creates fill-in.

As compared with the methods in [25, 33], our work has more flexibility:

1. The domains can be in any shape, such as with missing pieces (Fig. 10.2).
2. Both 2D and 3D domains can be handled (Fig. 10.3).

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 205

Fig. 10.3 Three levels of
partition of a 3D mesh and
the corresponding nonzero
pattern of A after the nested
dissection ordering

3. The mesh points and separators can be arbitrarily located, and the separators can
be arbitrarily connected to each other.

4. Our method can also work as a black box for general sparse matrices.

10.4 Robust Structured Multifrontal Factorization

In this section, we consider the direct factorization of sparse SPD matrices with the
multifrontal method [9, 20], which is one of the most important sparse factorization
algorithms. During the factorization, if the dense intermediate matrices have the
low-rank property, we use fast robust HSS methods to replace the dense operations.

10.4.1 Multifrontal Method

The multifrontal method [9, 20] reorganizes the sparse Cholesky factorization
A = LLT into local factorizations of intermediate dense matrices, where L is lower
triangular. The factorization is conducted following a tree called elimination tree, or
more generally, an assembly tree. In general, an elimination tree T has n nodes and
a node p is the parent of i if and only if

p = min{j > i|L|j×i �= 0},
where L|j×i represents the (j, i) entry of L. Use T [i] to denote the subtree of T
with root i. Let Ni ≡ {j1, j2, . . . , jd} be the set of row indices of nonzeros in L:,i
(the ith column of L) with i excluded. The ith frontal matrix is defined to be

Fi =
(

A|i×i (A|Ni×i)
T

A|Ni×i 0

)
−

∑
j∈T [i]\i

L|(i∪Ni)×j (L|(i∪Ni)×j)
T .

One step of elimination applied to Fi provides the column L(i∪Ni)×i :

Fi =
(

L|i×i 0
L|Ni×i I

)(
(L|i×i)

T (L|Ni×i)
T

0 Ui

)
,

206 J. Xia

Fig. 10.4 Supernodal version elimination tree for the problem in Fig. 10.3, and also a general
pattern of triangular structured multifrontal factorization, where a switching level ls is marked

where Ui is the contribution from T [i] to p and is called the ith update matrix:

Ui = −
∑

j∈T [i]
L|Ni×j (L|Ni×j)

T .

Update matrices are used to form upper level frontal matrices. This process is
called an extend–add operation, which matches indices and add entries, denoted

Fi =
(

A|j×j (A|Ni×i)
T

A|Ni×i 0

)
↔
 Uc1↔
 Uc2↔
 · · ·↔
 Ucq ,

where nodes c1, c2, . . . , cq are the children of i in the elimination tree. The elimina-
tion process then repeats along the elimination tree.

10.4.2 Structured Supernodal Multifrontal Factorization

Here, we use nested dissection to reorder A and to produce a binary tree T as the
assembly tree in a supernodal version of the multifrontal method, where each sepa-
rator is treated as a node in the tree. Figure 10.4(i) shows the assembly tree for the
mesh in Fig. 10.3.

Assume the root of T is at level 0, and the leaves are at the largest level. For
a separator i, let Ni ≡ {j1, j2, . . . , jd} be the set of neighbor separators of i at the
same or upper levels of i in T . Also let tj denote the index set of the neighbor j in
A, and let t̂j denote the subset of tj that is connected to i due to lower level elimi-
nations. The frontal matrix Fi is formed by the block form extend–add operation

Fi = F0
i ↔
 Uc1↔
 Uc2, F0

i ≡
⎛
⎝ A|ti×ti

(
A|(∪d

j=1 t̂j)×ti

)T

A|(∪d
j=1 t̂j)×ti

0

⎞
⎠ , (10.3)

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 207

Fig. 10.5 Partial
factorization of a frontal
matrix Fi and the HSS tree
used. Fi is shown with its
leading block Fi,i represented
by structured factors. The
subtree T [k] is the HSS tree
for Fi,i

where c1 and c2 are the children of i. For notational convenience, rewrite Fi as

Fi ≡
(

Fi,i F T
Ni ,i

FNi ,i FNi ,Ni

)
. (10.4)

In our structured multifrontal method, we set a switching level ls so that if a
separator i is at level l of T and l > ls , we use exact Cholesky factorizations, and
otherwise, we use HSS Cholesky factorizations. Similar to [33], we can show that
this can help minimize the cost, which is smaller than using structured factorizations
at all levels as in [25] by a factor up to O(logn). This is justified by Theorem 10.1
below. See Fig. 10.4(ii).

Here, we only need to describe the structured factorization part, which includes:

1. Factorizing Fi with the robust HSS method in Sect. 10.2.2, except that the last
diagonal block FNi ,Ni

is not factorized. Then Fi,i ≈ Li,iL
T
i,i .

2. In the meantime, L−1
i,i FNi ,i is compressed into a low-rank form.

3. Computing the update matrix or Schur complement Ui with a low-rank update.

Then Ui participates in the extend–add operation to form the parent frontal ma-
trix. The details are elaborated as follows.

In order to perform the partial factorization of Fi , we use a full HSS tree T with
k+2 nodes, where the left and right children of the root are k and k+1 respectively.
See Fig. 10.5. The subtree T [k] is used as the HSS tree for completely factorizing
Fi,i , and the single node k + 1 is for the unfactorized part FNi ,Ni

. The algorithm
in [35] is applied to Fi following the postordering traversal of the nodes of T . The
factorization stops after the entire T [k] is visited (or after the Schur complement Ui

is computed). At the point, we have an approximate HSS Cholesky factorization

Fi,i ≈ Li,iL
T
i,i , Li,i =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝ . . . 0

Uck,1,2Bck,1,2U
T
ck,1,1

. . .

⎞
⎠ 0

Uck,2Bck,2U
T
ck,1

⎛
⎝ . . . 0

Uck,2,2Bck,2,2U
T
ck,2,1

. . .

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(10.5)
where Li,i is a lower-triangular HSS matrix and ck,1, ck,2, . . . are the children of
appropriate nodes as shown in Fig. 10.5.

208 J. Xia

Fig. 10.6 The nonzero pattern of a structured multifrontal factor of the matrix A in Fig. 10.3, as
compared with the factor from the exact factorization

Then the frontal matrix Fj in Eq. (10.3) is (approximately) factorized as

Fi ≈
(

Li,i

LNi ,i I

)(
I

Ui

)(
LT

i,i LT
Ni ,i

I

)
, (10.6)

where

LNi ,i = Uk+1B
T
k UT

k , (10.7)

Note that Uk+1 and Bk are explicitly available, and Uk is implicitly represented by
lower level U and R generators and has orthonormal columns (see Eq. (10.2)). Thus,
Ui can be formed explicitly with a low-rank update

Ui = FNi ,Ni
− (

Uk+1B
T
k UT

k

)(
Uk+1B

T
k UT

k

)T

= FNi ,Ni
− (

Uk+1B
T
k

)(
Uk+1B

T
k

)T
. (10.8)

Here, for simplicity, we keep Ui as a dense matrix so that the extend–add opera-
tion is the same as in the standard supernodal multifrontal method (see Remark 10.2
below for more explanations). According to the idea of Schur compensation in [35],
Ui is roughly equal to the exact Schur complement of Fi,i plus a positive semi-
definite term, and is always positive definite, in general. Ui then participates in
the construction of the parent frontal matrix just like in the standard multifrontal
method. Similarly, the parent frontal matrix is also guaranteed to be positive defi-
nite.

This process then proceeds along the assembly tree T . After the elimination, we
have an approximate factorization

A ≈ LLT ,

where L always exists and is called a triangular structured multifrontal factor. See
Fig. 10.6 for an example. L is associated with two layers of postordering trees, the

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 209

outer layer assembly tree T , and an inner layer HSS tree T for each node of T . For
a node i of T , we store a triangular HSS form Li,i and also the U and B generators
in Eq. (10.8). These are used in the structured multifrontal solution.

10.4.3 Structured Multifrontal Solution

Next, we consider the solution of Eq. (10.1) with the structured multifrontal factor.
We solve two structured triangular systems

Ly = b, (10.9)

LT x = y. (10.10)

For convenience, assume b, x, y are partitioned conformably according to the sizes
of the separators. For example, b = (bT

1 , bT
2 , . . . , bT

K)T with the length of bi equal to
the number of mesh points in separator i. Since the situation for a node i at a level
l greater than the switching level ls is trivial (with regular dense solutions), we only
focus on structured solutions when describing the algorithm.

The solution of Eq. (10.9) with forward substitution involves forward (or post-
ordering) traversal of the assembly tree T . For a node i of T , according to
Eq. (10.6), we need to solve a system of the following form for yi :

(
Li,i

LNi ,i I

)(
yi

b̃Ni

)
=

(
bi

bNi

)
, (10.11)

where bNi
is related to bj1, bj2, . . . , bjd

(the separators j1, j2, . . . , jd ∈ Ni are con-
nected to i and partially contribute to bNi

). Here, bi is either from b (when i is a
leaf), or is an updated vector due to the solution steps associated with lower level
nodes. (We still use bi for notational convenience. See Eq. (10.12).)

We first solve Li,iyi = bi with a lower triangular HSS solver in [21]. Then
LNi ,iyi is the contribution of separator i to its neighbors. That is, we update bNi

by

bNi
← bNi

− LNi ,iyi = bNi
− Uk+1

(
BT

k

(
UT

k yi

))
, (10.12)

where Eq. (10.7) is used. Again, Uk+1 and Bk are explicitly available, and UT
k yi

can be quickly computed since it is partially formed in the HSS solution of
Li,iyi = bi [21]. Thus, bNi

can be convenient computed, and is then used to up-
date bj1, bj2, . . . , bjd

.
In the backward substitution stage for solving Eq. (10.10), we traverse the elimi-

nation tree top-down. Similarly for each node i, according to Eqs. (10.6)–(10.7), we
need to solve a system of the following form for xi :

(
LT

i,i UkBkU
T
k+1

I

)(
xi

xNi

)
=

(
yi

xNi

)
,

210 J. Xia

Algorithm 10.1: Robust structured multifrontal factorization (RSMF)

1 for nodes (separators) i = 1,2, . . . of T do
2 if i is a leaf then
3 form Fi ≡ F0

i , where F0
i is given in Eq. (10.3)

4 if i is at level l > ls then
5 Compute traditional Cholesky factorization Fi,i = L̂iL̂

T
i of Fi,i in

Eq. (10.4);
6 Compute the Schur complement Ui

7 else
8 Apply the robust HSS Cholesky factorization to Fi so that Eqs. (10.5)

and (10.7) in Eq. (10.6) are computed;
9 Compute Ui with a low-rank update as in Eq. (10.8)

10 if i is a left node then
11 push Ui onto the update matrix stack
12 else
13 Pop Uj from the update matrix stack;
14 Fp = F0

p↔
 Ui↔
 Uj , where p is the parent of i

where xNi
is already available from the solution steps associated with the upper

level separators. This just needs the solution of an upper triangular HSS system
LT

i,ixi = yi − Uk(Bk(U
T
k+1xNi

)).
Note that the space of b can be used to store y and then x. After all the updates

and solutions are performed, b is transformed into x.

10.5 Algorithm, Complexity, and Rank Relaxation

The structured multifrontal factorization algorithm is summarized as follows.
In a parallel implementation, we can traverse the assembly tree levelwise. The

algorithm can be applied to general sparse SPD matrices. But we only consider its
complexity in terms of sparse matrices arising from 2D and 3D discretized PDEs.
The detailed flop count uses an idea of rank relaxation. The following lemma is a
simple extension of the results in [32].

Lemma 10.1 (Dense rank relaxation) Suppose an order N matrix F is hierarchi-
cally partitioned into O(logN) levels of HSS blocks following a perfect binary tree.
Let Nl = O(N/2l) be the row dimension of the HSS block rows at level l, and rl be
their maximum numerical rank. Then for a given rl , a triangular HSS factorization
of A can be computed in ξfact flops, the HSS system can be solved in ξsol flops, and
the HSS form needs memory size σmem, where the values are given in Table 10.1.

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 211

Table 10.1 Costs and storage of dense-to-triangular-HSS factorization and solution with rank
relaxation, where p ∈ N, and r = max rl is the HSS rank

rl r = max rl ξfact ξsol σmem

O(1) O(1)

O(N2) O(N) O(N)O((log2 Nl)
p), p ≥ 0 O((log2 N)p)

O(N
1/p
l) p > 3 O(N1/p)

p = 3 O(N1/3) O(N2) O(N logN) O(N)

p = 2 O(N1/2) O(N2 logN) O(N3/2) O(N logN)

Table 10.2 Factorization cost ξfact, solution cost ξsol, and storage σmem of the structured mul-
tifrontal method applied to a discretized matrix A of order n on a 2D n1/2 × n1/2 mesh, where
p ∈ N

rl r = maxi max rl ξfact ξsol σmem

O(1) O(1)
O(n logn)

O(n log logn) O(n log logn)
O((logNl)

p), p ≥ 0 O((logN)p)

O(N
1/p
l) p ≥ 3 O(N1/p)

p = 2 O(N1/2) O(n log2 n)

Lemma 10.1 and an extension of the derivations in [31] yield the following re-
sults.

Theorem 10.1 (Sparse rank relaxation) Suppose the robust structured multifrontal
factorization method (Algorithm 10.1) and the solution method (Sect. 10.4.3) are
applied to a discretized matrix A of order n on a regular mesh. Assume each frontal
matrix Fi has order O(N) and is treated as F in Lemma 10.1 so that the HSS blocks
at level l of the HSS tree of Fi has row dimension Nl and rank rl . Let the factoriza-
tion cost, solution cost, and memory size of the structured multifrontal method be
ξfact, ξsol, and σmem, respectively. Then if rl satisfies the patterns as in Lemma 10.1,

• If A is obtained from a 2D n1/2 × n1/2 mesh, the results are given in Table 10.2.
The switching level ls = O(logn1/2) is chosen so that the factorization costs be-
fore and after the switching level are the same.

• If A is obtained from a 3D n1/3 × n1/3 × n1/3 mesh, the results are given in
Table 10.3. The switching level ls = O(logn1/3) is chosen so that the solution
costs before and after the switching level are the same.

As an example, for problems such as 2D discrete Poisson’s equations, it is shown
that the maximum rank bound for all nodes i of T is r = maxi maxl = O(1) [4].
Thus, Table 10.2 applies and our solver has nearly linear complexity and nearly
linear storage. In contrast, the factorization method in [11] costs O(n log2 n). More-
over, Theorem 10.1 indicates that we can relax the rank requirement to get similar
complexity. For 3D discrete Poisson’s equations, it is shown that r = O(n1/3) [4].

212 J. Xia

Table 10.3 Factorization cost ξfact, solution cost ξsol, and storage σmem of the structured multi-
frontal method applied to a discretized matrix A of order n on a 3D n1/3 ×n1/3 ×n1/3 mesh, where
p ∈ N

rl r = maxi max rl ξfact ξsol σmem

O(1) O(1)

O(n4/3) O(n) O(n)O((log2 Nl)
p), p ≥ 0 O((log2 N)p)

O(N
1/p
l), p > 3 O(N1/p)

O(N
1/p
l) p = 3 O(N1/3) O(n4/3) O(n log1/2 n) O(n log1/2 n)

p = 2 O(N1/2) O(n4/3 logn) O(n logn) O(n logn)

In some numerical tests, the pattern of rl is observed to follow the last row of Ta-
ble 10.3.

Remark 10.1 For 2D Helmholtz equations, the rank bound is r = O(logn) with
certain assumptions [11], which only depends on the logarithm of the frequency.
Thus, not only our method has nearly O(n) complexity, but also its performance
is relatively insensitive to the frequency, because of the rank bound and the rank
relaxation. Similar results are also observed for other problems with parameters such
as sizes of discontinuities and Poisson’s ratios. See Sect. 10.6 for some examples.

Remark 10.2 In our discussions, we keep Ui as a dense matrix. It turns out that
this is at most O(logn) times slower than a fully structured version where an HSS
form of Ui is used, but it significantly simplifies the descriptions and implementa-
tions. Moreover, our solution cost is very close to O(n) (such as O(n log logn) ∼
O(n log1/2 n) in Theorem 10.1). The storage for a stack needed for the update matri-
ces is about the same as the factor size. A fully structured robust multifrontal solver
with HSS form extend–add operations will appear in our future work.

Remark 10.3 Moreover, our method has various other advantages:

• Our method applies to PDEs on irregular grids and general sparse problems. The
method in [26, 33] is mainly designed for regular grids, and the one in [25] re-
quires that the mesh is nearly regular, or the separators in the partition roughly
follow the layout in a regular grid.

• Our method applies to both 2D and 3D PDEs, while it is not clear how the ones
in [11, 25, 33] perform in 3D.

• We use a switching level to optimize the cost, and the factorization cost in 2D is
faster than the one in [11] by a factor of O(logn).

• We incorporate robustness enhancement so that, for an SPD matrix A, the struc-
tured factor L always exists and LLT is positive definite, in general. This does
not hold for the methods in [11, 25, 26, 33].

• The algorithm is parallelizable, while the one in [11] is sequential.

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 213

Fig. 10.7 Performance of the new robust structured multifrontal method (NEW) for Eq. (10.13),
as compared with SuperLU [8] and the classical multifrontal method, where NEW uses a relative
tolerance τ = 10−6, the total number of levels in T increases from 14 to 21 when n increases, and
there are about nine levels below the switching level ls

10.6 Numerical Experiments

The method is implemented in Fortran 90, and can work as a fast direct solver. If the
low-rank property is insignificant, the method can serve as an efficient and effective
preconditioner. We test it on various important discretized PDE examples.

Example 10.1 We first demonstrate the efficiency of the solver for the standard five-
point discretized Laplacian from the 2D Poisson equation with a Dirichlet boundary
condition:

−�u = f, u ∈R
2. (10.13)

Here, we let the matrix size n range from 2552 to 40952. Every time n nearly
quadruples. See Fig. 10.7 for the timing and flops of the factorizations. We see that
the robust structured method is much faster than both SuperLU [8] and the exact
multifrontal method when n is large.

The results of the structured solution are shown in Table 10.4. We observe that
both the storage and the solution cost scale nearly linearly in terms of n. The accu-
racy is also well controlled. In addition, with few steps of iterative refinement, the
full computer precision is reached.

Example 10.2 Next, we solve a 3D interface problem with jumps in the coefficient:

−∇ · (c(δ)∇u) = f, u ∈R
3,

c(δ) = 1 or δ.
(10.14)

We follow the choice of c(δ) and the boundary condition in i FEM [6]. The
smaller δ is, the more ill conditioned the problem is. As compared with the exact

214 J. Xia

Table 10.4 Storage (number of nonzero entries in L), solution cost, and relative residual of the
new robust structured multifrontal solution for Eq. (10.13)

n 2502 5002 10003 20003 40002

Solution time (s) 7.37e–2 2.52e–1 1.06e0 4.38e0 1.80e1

Solution flops 9.63e6 4.62e7 2.00e8 8.38e8 3.54e8

Storage 2.55e6 1.25e7 5.30e7 2.19e8 9.36e8
‖Ax−b‖2‖b‖2

7.95e–9 1.74e–8 2.31e–8 2.29e–8 1.85e–8

Table 10.5 Solution of Eq. (10.14) in 3D (with discontinuities in the coefficient) using the classi-
cal multifrontal factorization (MF) and our new robust structured factorization (NEW) with a relative
tolerance τ = 10−3, where δ = 10−8

n Flops Storage (Number of nonzeros in L)

1.70e5 2.75e5 5.37e5 12.7e5 1.70e5 2.75e5 5.37e5 12.7e5

MF 0.91e11 4.21e11 12.5e11 41.0e11 1.11e8 2.01e8 4.20e8 9.21e8

NEW 0.80e11 2.44e11 6.44e11 17.2e11 1.05e8 1.39e8 2.34e8 4.60e8

Table 10.6 Solution of Eq. (10.14) in 3D (with discontinuities in the coefficient) using our new
robust structured factorization with a relative tolerance τ = 10−3 for different δ, where the storage
is measured by the number of nonzero entries in L

δ 10−2 10−4 10−6 10−8

Flops 9.84e11 8.90e11 8.15e11 6.44e11

Storage 2.71e8 2.60e8 2.50e8 2.34e8

multifrontal method, our robust structured factorization attains satisfactory speedup
with modest accuracy τ . See Table 10.5. We also test the structured method for
different δ. Table 10.6 indicates that the performance is relatively insensitive to δ.

Example 10.3 Finally, we consider the preconditioning of a linear elasticity equa-
tion

−(μ�u + (λ + μ)∇∇ · u) = f in 	 = (0,1) × (0,1). (10.15)

This equation is frequently solved in structural mechanics. Standard solvers in-
cluding multigrid often suffer from the deterioration of the convergence rate for
large Poisson’s ratios λ/μ or near the incompressible limit. When λ/μ grows, the
condition number of the discretized matrix A grows quickly. Here, we demonstrate
the effectiveness of our structured solver as a preconditioner (although direct factor-
izations may cost less). For A with size n ≈ 1.28 × 106, we manually specify a nu-
merical rank r = 40 in the structured multifrontal preconditioner. The convergence
results for λ/μ varying from 1 to 106 is shown in Table 10.7. The convergence be-
havior is illustrated in Fig. 10.8. We observe that the preconditioned conjugate gra-

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 215

Table 10.7 Convergence of direct CG and preconditioned CG with our robust structured multi-
frontal solver (CG-RSMF) as a preconditioner for solving Eq. (10.15), where direct CG is set to
stop when certain number of iterations is reached, and Niter is the number of iterations.

λ/μ 1 102 104 106

Direct CG Niter 3917 7997 14950 31004

Flops 1.28e16 2.61e16 4.87e16 1.01e17
‖Ax−b‖2‖b‖2

1.00e–12 1.33e–9 3.92e–9 4.89e–10

CG-RSMF Niter 40 47 72 141

Flops 1.31e14 1.54e14 2.36e14 4.61e14
‖Ax−b‖2‖b‖2

8.17e–16 6.54e–16 7.73e–16 4.66e–16

Fig. 10.8 Convergence of
direct CG and preconditioned
CG with our robust structured
multifrontal solver
(CG-RSMF) as a
preconditioner for solving
Eq. (10.15)

dient (CG) method converges quickly for all λ/μ. In comparison, direct CG costs
more and has difficulty converging for large λ/μ.

Acknowledgements The author thanks Ming Gu, Xiaoye S. Li, and Jie Shen for some useful dis-
cussions, and thanks Zhiqiang Cai and Long Chen for providing two test examples. This research
was supported in part by NSF grant CHE-0957024.

References

1. Bebendorf, M.: Efficient inversion of the Galerkin matrix of general second-order elliptic op-
erators with nonsmooth coefficients. Math. Comput. 74(251), 1179–1199 (2005)

2. Bebendorf, M., Hackbusch, W.: Existence of H-matrix approximants to the inverse FE-matrix
of elliptic operators with l∞-coefficients. Numer. Math. 95, 1–28 (2003)

3. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A fast solver for HSS represen-
tations via sparse matrices. SIAM J. Matrix Anal. Appl. 29, 67–81 (2006)

4. Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the
off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal.
Appl. 31, 2261–2290 (2010)

5. Chandrasekaran, S., Gu, M., Pals, T.: A fast ULV decomposition solver for hierarchically
semiseparable representations. SIAM J. Matrix Anal. Appl. 28, 603–622 (2006)

216 J. Xia

6. Chen, L.: iFEM: An innovative finite element methods package in MATLAB. Technical Re-
port (2008). http://math.uci.edu/~chenlong/Papers/iFEMpaper.pdf

7. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math.
Softw.

8. Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU Users’ Guide (2003). http://crd.lbl.gov/~
xiaoye/SuperLU/

9. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM
Trans. Math. Softw. 9, 302–325 (1983)

10. Eidelman, Y., Gohberg, I.C.: On a new class of structured matrices. Integral Equ. Oper. Theory
34, 293–324 (1999)

11. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: Hierarchical
matrix representation. Commun. Pure Appl. Math. 64, 697–735 (2011)

12. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10,
345–363 (1973)

13. Gilbert, J.R., Teng, S.H.: MESHPART, a Matlab mesh partitioning and graph separator toolbox
(2002). http://aton.cerfacs.fr/algor/Softs/MESHPART/

14. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Physiol. 73,
325–348 (1987)

15. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices. Computer 62, 89–108 (1999)

16. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive H2-matrices. Computer 69,
1–35 (2002)

17. Hoffman, A.J., Martin, M.S., Rose, D.J.: Complexity bounds for regular finite difference and
finite element grids. SIAM J. Numer. Anal. 10, 364–369 (1973)

18. Karypis, G.: METIS: family of multilevel partitioning algorithms (1998). http://glaros.dtc.
umn.edu/gkhome/metis/metis/overview

19. Le Borne, S., Grasedyck, L., Kriemann, R.: Domain-decomposition based H-LU precondi-
tioners. Domain Decomposition Methods in Science and Engineering XVI. in O.B. Widlund,
D.E. Keyes (Eds) 55, 661–668 (2006)

20. Liu, J.W.H.: The multifrontal method for sparse matrix solution: Theory and practice. SIAM
Rev. 34, 82–109 (1992)

21. Lyons, W.: Fast algorithms with applications to PDEs. Ph.D. Thesis, UCSB (2005)
22. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Rev. 3, 119–130 (1961)
23. Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the SPIKE algorithm. Par-

allel Comput. 32, 177–194 (2006)
24. Sambavaram, S.R., Sarin, V., Sameh, A.H., Grama, A.: Multipole-based preconditioners for

large sparse linear systems. Parallel Comput. 29, 1261–1273 (2003)
25. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D.

J. Comput. Phys. (2011). doi:10.1016/j.jcp.2011.10.013
26. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on Cartesian meshes in 3D

(2011, submitted). http://www.math.utexas.edu/users/lexing/publications/direct3d.pdf
27. Tewarson, R.P.: On the product form of inverses of sparse matrices. SIAM Rev. 8 (1966)
28. Vandebril, R., Barel, M.V., Golub, G., Mastronardi, N.: A bibliography on semiseparable ma-

trices. Calcolo 42, 249–270 (2005)
29. Wang, S., Li, X.S., Xia, J., Situ, Y., de Hoop, V.M.: Efficient scalable algorithms for

hierarchically semiseparable matrices. Preprint (2011). http://www.math.purdue.edu/~xiaj/
work/parhss.pdf

30. Xia, J.: Robust structured multifrontal factorization and preconditioning for discretized PDEs.
Preprint (2008). http://www.math.purdue.edu/~xiaj/work/mfprec.pdf

31. Xia, J.: Efficient structured multifrontal factorization for large sparse matrices. Preprint
(2010). http://www.math.purdue.edu/~xiaj/work/mfhss.pdf

32. Xia, J.: On the complexity of some hierarchical structured matrices. SIAM J. Matrix Anal.
Appl. (2011, submitted). http://www.math.purdue.edu/~xiaj/work/hsscost.pdf

http://math.uci.edu/~chenlong/Papers/iFEMpaper.pdf
http://crd.lbl.gov/~xiaoye/SuperLU/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://aton.cerfacs.fr/algor/Softs/MESHPART/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://dx.doi.org/10.1016/j.jcp.2011.10.013
http://www.math.utexas.edu/users/lexing/publications/direct3d.pdf
http://www.math.purdue.edu/~xiaj/work/parhss.pdf
http://www.math.purdue.edu/~xiaj/work/parhss.pdf
http://www.math.purdue.edu/~xiaj/work/mfprec.pdf
http://www.math.purdue.edu/~xiaj/work/mfhss.pdf
http://www.math.purdue.edu/~xiaj/work/hsscost.pdf

10 Robust and Efficient Multifrontal Solver for Large Discretized PDEs 217

33. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large struc-
tured linear systems of equations. SIAM J. Matrix Anal. Appl. 31, 1382–1411 (2009)

34. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable
matrices. Numer. Linear Algebra Appl. 17, 953–976 (2010)

35. Xia, J., Gu, M.: Robust approximate Cholesky factorization of rank-structured symmetric pos-
itive definite matrices. SIAM J. Matrix Anal. Appl. 31, 2899–2920 (2010)

	Chapter 10: Robust and Efﬁcient Multifrontal Solver for Large Discretized PDEs
	10.1 Introduction
	10.2 Review of HSS Cholesky Factorization of a Dense Matrix
	10.2.1 Hierarchically Semiseparable Structures
	10.2.2 Robust HSS Cholesky Factorization

	10.3 Nested Dissection for General Graphs
	10.4 Robust Structured Multifrontal Factorization
	10.4.1 Multifrontal Method
	10.4.2 Structured Supernodal Multifrontal Factorization
	10.4.3 Structured Multifrontal Solution

	10.5 Algorithm, Complexity, and Rank Relaxation
	10.6 Numerical Experiments
	 References

