
SIAM J. SCI. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 39, No. 4, pp. C292–C318

A DISTRIBUTED-MEMORY RANDOMIZED STRUCTURED
MULTIFRONTAL METHOD FOR SPARSE DIRECT SOLUTIONS∗

ZIXING XIN† , JIANLIN XIA‡ , MAARTEN V. DE HOOP§ , STEPHEN CAULEY¶, AND

VENKATARAMANAN BALAKRISHNAN‖

Abstract. We design a distributed-memory randomized structured multifrontal solver for large
sparse matrices. Two layers of hierarchical tree parallelism are used. A sequence of innovative parallel
methods are developed for randomized structured frontal matrix operations, structured update ma-
trix computation, skinny extend-add operation, selected entry extraction from structured matrices,
etc. Several strategies are proposed to reuse computations and reduce communications. Unlike an
earlier parallel structured multifrontal method that still involves large dense intermediate matrices,
our parallel solver performs the major operations in terms of skinny matrices and fully structured
forms. It thus significantly enhances the efficiency and scalability. Systematic communication cost
analysis shows that the numbers of words are reduced by factors of about O(

√
n/r) in two dimen-

sions and about O(n2/3/r) in three dimensions, where n is the matrix size and r is an off-diagonal
numerical rank bound of the intermediate frontal matrices. The efficiency and parallel performance
are demonstrated with the solution of some large discretized PDEs in two and three dimensions.
Nice scalability and significant savings in the cost and memory can be observed from the weak and
strong scaling tests, especially for some 3D problems discretized on unstructured meshes.

Key words. distributed memory, tree parallelism, fast direct solver, randomized multifrontal
method, rank structure, skinny matrices

AMS subject classifications. 15A23, 65F05, 65F30, 65Y05, 65Y20

DOI. 10.1137/16M1079221

1. Introduction. The solution of large sparse linear systems plays a critically
important role in modern numerical computations and simulations. Generally, there
are two types of sparse solvers, iterative ones and direct ones. Direct solvers are robust
and suitable for solving linear systems with multiple right-hand sides but usually take
more memory to store the factors that are often much denser. The focus of this work
is on a parallel sparse direct solution that uses low-rank approximations to reduce
floating-point operations and decrease memory usage.

An important type of direct solvers is the multifrontal method proposed in [9].
Multifrontal methods perform the factorization of a sparse matrix via a sequence
of smaller dense factorizations organized following a tree called an elimination or
assembly tree. This results in nice data locality and great potential for parallelization.
Matrix reordering techniques such as nested dissection [10] are commonly used before
the factorization to reduce fill-in.

∗Submitted to the journal’s Software and High-Performance Computing section June 9, 2016;
accepted for publication (in revised form) March 13, 2017; published electronically August 17, 2017.

http://www.siam.org/journals/sisc/39-4/M107922.html
Funding: The work of the second author was supported in part by NSF CAREER Award

DMS-1255416.
†Department of Mathematics, Purdue University, West Lafayette, IN 47907 (zxin@purdue.edu).
‡Department of Mathematics and Department of Computer Science, Purdue University, West

Lafayette, IN 47907 (xiaj@purdue.edu).
§Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005

(mdehoop@rice.edu).
¶Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts

General Hospital, Harvard University, Charlestown, MA 02129 (stcauley@nmr.mgh.harvard.edu).
‖School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

(ragu@ecn.purdue.edu).

C292

http://www.siam.org/journals/sisc/39-4/M107922.html
mailto:zxin@purdue.edu
mailto:xiaj@purdue.edu
mailto:mdehoop@rice.edu
mailto:stcauley@nmr.mgh.harvard.edu
mailto:ragu@ecn.purdue.edu

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C293

In recent years, structured multifrontal methods [33, 30, 27, 2] have been devel-
oped to utilize a certain low-rank property of the intermediate dense matrices that
arise in the factorization of some discretized PDEs. This low-rank property has been
found in many problems, such as the ones arising from the discretization of elliptic
PDEs. Hierarchical structured matrices like H/H2-matrices [5, 15, 17] and hierar-
chically semiseparable (HSS) matrices [6, 34] are often used to take advantage of the
low-rank property. Other rank structured representations are also used in multifrontal
and similar solvers [2, 14].

To enhance the performance and flexibility of the structured matrix operations,
some recent work integrates randomization into structured multifrontal methods [31].
Randomized sampling enables the conversion of a large rank-revealing problem into
a much smaller one after matrix-vector multiplications [18, 21]. This often greatly
accelerates the construction of structured forms and also makes the processing of the
data much simpler [24, 35].

In this work, we are interested in the parallelization of the randomized struc-
tured multifrontal (RSMF) method in [31] for the factorization of large-scale sparse
matrices. The work is a systematic presentation of our developments in the technical
reports [36, 37, 38]. The parallelism is essential to speed up the algorithms and make
the algorithms available to large problems by the exploitation of more processes and
memory. Earlier work in [28] gives a parallel multifrontal solver based on a simpli-
fied structured multifrontal method in [30] that involves dense intermediate matrices.
Some dense matrices called frontal matrices are approximated by HSS forms and then
factorized. The resulting Schur complements called update matrices are still dense
and are used to assemble later frontal matrices. The use of dense update matrices
is due to the lack of an effective structured data assembly strategy. All these dense
matrices tend to be a memory bottleneck if their sizes are large. Moreover, the dense
forms make some major operations more costly than necessary, including the struc-
tured approximations of the frontal matrices, the computation of the update matrices,
and the assembly of the frontal matrices. In addition, the parallel solver in [28] relies
on the geometry of the mesh, which is required to be a regular mesh. This limits the
applicability of that solver.

Here, we seek to build a systematic framework for parallelizing the RSMF method
in [31] using distributed memory. The randomized approach avoids the use of dense
frontal and update matrices and also makes the parallelization significantly more
convenient and efficient. We also allow more general matrix types. Our main results
include the following:

• We design all the mechanisms for a distributed-memory parallel implemen-
tation of the RSMF method. A static mapping parallel model is designed
to handle two layers of parallelism (one for the assembly tree and another
for the structured frontal/update matrices) as well as new parallel structured
operations. Novel parallel algorithms for all the major steps are developed,
such as the intermediate structured matrix operations, structured submatrix
extraction, skinny matrix assembly, and information propagation.

• A sequence of strategies is given to reduce the communication costs, such
as the combination of process grids for different tree parallelism, a compact
storage of HSS forms, the assembly and passing of data between processes
in compact forms, heavy data reuse, the collection of data for BLAS3 op-
erations, and the storage of a small amount of the same data in multiple
processes.

C294 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

• The parallel structured multifrontal method is not restricted to a specific mesh
geometry. Graph partitioning techniques and packages are used to efficiently
produce nested dissection ordering of a general mesh. The method can be
applied to much more general sparse matrices where the low-rank property
exists. For problems without the low-rank property, we can also use the
method as an effective preconditioner.

• Our nested dissection ordering and symbolic factorization well respect the
local geometric connectivity and thus naturally preserve the inherent low-
rank property in the intermediate dense matrices.

• As compared with the parallel structured multifrontal method in [28],
– our parallel method can be applied to sparse matrices corresponding to

more general graphs instead of only regular meshes;
– we do not need to store large dense frontal/update matrices or convert

between dense and HSS matrices, and instead, the HSS constructions
and factorizations are fully structured;

– the parallel data assembly is performed through skinny matrix-vector
products instead of large dense matrices.

We give a detailed analysis of the communication cost (which is also missing
for the method in [28]). The communication cost of our solver includes O(

√
P) +

O(r log3 P) messages and O(r
√
n

P̂
)+O(r

2 log3 P√
P̂

) words for two-dimensional (2D) prob-

lems or O(rn
2
3

P̂
) + O(r

2 log3 P√
P̂

) words for 3D problems, where n is the matrix size, P

is the total number of processes, r is the maximum off-diagonal numerical rank of
the frontal matrices, and P̂ is the minimum size of all the process grids. There is a
significant reduction in the communication cost as compared with the solver in [28].
The numbers of words of the new solver are smaller by factors about O(

√
n
r) and

O(n
2
3

r) for two and three dimensions, respectively.
Extensive numerical tests in terms of some discretized PDEs in two and three

dimensions are used to show the parallel performance. Both weak and strong scaling
tests are done. The nice scalability and significant savings in the cost and memory
can be clearly observed, especially for some 3D PDEs discretized on unstructured
meshes. For example, for a discretized 3D Helmholtz equation with n ≈ 9.7×106, the
new solver takes about 1/4 of the flops of the standard multifrontal solver and about
1/2 of the storage for the factors. With up to 256 processes, when the number of
processes doubles, the parallel factorization time reduces by a factor about 1.7 ∼ 1.8.
The new solver works well for larger n even if the standard parallel multifrontal solver
runs out of memory.

The remaining sections are organized as follows. We discuss nested dissection,
parallel symbolic factorization, and graph connectivity preservation in section 2. Sec-
tion 3 reviews the basic framework of the RSMF method. Section 4 details our parallel
randomized structured multifrontal (PRSMF) method. Section 5 shows the analysis
of the communication cost. The numerical results are shown in section 6. Finally, we
draw our conclusions in section 7.

For convenience, we first explain the basic notation to be used throughout the
paper.

• For a matrix A and an index set I, A|I denotes the submatrix of A formed
by the rows with the row index set I.

• For a matrix A and index sets I,J, A|I×J denotes the submatrix of A with
row index set I and column index set J.

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C295

• If T is a postordered binary tree with nodes i = 1, 2, . . ., we use sib(i) and
par(i) to denote the sibling and parent of a node i, respectively, and use
root(T) to denote the root node of T .

• Bold and calligraphic letters are usually used for symbols related to the mul-
tifrontal process.

2. Nested dissection for general graphs, parallel symbolic factorization,
and connectivity preservation. For an n × n sparse matrix A, let G(A) be its
corresponding adjacency graph, which has n vertices and has an edge connecting
vertices i and j if Aij 6= 0. G is a directed graph if A is nonsymmetric. In this case,
we consider the adjacency graph G(A+AT) instead of G(A) (see, e.g., [3, 20]). In the
factorization of A, vertices in the adjacency graph are eliminated, and their neighbors
are connected, which yields fill-in in the factors.

To reduce fill-in, reordering techniques are usually applied to G before the factor-
ization. Nested dissection [10] is one of the most commonly used reordering techniques.
The basic idea is to divide a graph recursively into disjoint parts using separators
which are small subsets of vertices. Then upper level separators are ordered after
lower level ones. Treating each separator as a supernode, we can construct a tree
called assembly tree T to organize the later factorization. This provides a natural
mechanism of parallelism. See Figure 1. For convenience, the nodes and the corre-
sponding separators are labeled as i = 1, 2, . . . in postorder. Denote the set of vertices
within separator/node i by si. Suppose the root node is at level l = 0.

We apply nested dissection to G and, in the mean time, collect relevant con-
nectivity information for the sake of later structured matrix operations. During the
later elimination stage (via the multifrontal method which will be reviewed in the
next section), it will require the reordering of the vertices within a separator together
with those within some neighbor separators. Here, roughly speaking, a separator j
is a neighbor of a separator i if j is an ancestor of i and the L factor in the LU fac-
torization of A has nonzero entries in L|sj×si . We try to keep nearby vertices close
to each other after reordering, so as to preserve the inherent low-rank structures of
the intermediate Schur complements [30]. The details are as follows.

• Nested dissection is performed with the package Scotch [25]. A multilevel
scheme [19] is applied to determine the vertex separators. The assembly
tree T is built with each nonleaf node corresponding to a separator. The

8

9

12

1
4

5

11

2

3

10

13

6

14

7

15

15

4

3 6 1

7 1

0 13

1 2 4 5 8 9 11 12

(i) Nested dissection and separator ordering (ii) Corresponding assembly tree

Fig. 1. Nested dissection of a mesh and the corresponding assembly tree, where the mesh
illustration is based on Meshpart [13].

C296 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

Gibbs–Poole–Stockmeyer method [12] is used to order the vertices within each
separator so that the bandwidth of the corresponding adjacency submatrix of
A is small. Geometrically, this keeps nearby vertices within a separator close
to each other under the new ordering and may benefit the low-rank structure
of the corresponding frontal matrix. The reason is as follows. For some
discretized elliptic PDEs, the frontal matrices are related to (the inverses of)
the discretized Green’s functions, and the low-rank property of the frontal
matrices is related to the geometric separability of the mesh points where
the Green’s function is evaluated [7, 33]. Well-separated points correspond
to blocks with small numerical ranks. Thus intuitively, it is often beneficial
to use an appropriate ordering that respects the geometric connectivity.

• In a symbolic factorization, following a bottom-up traversal of the assembly
tree T , we collect the neighbor information of each node of T . The neighbor
information reflects how earlier eliminations create fill-in. The connectivity
of the vertices within a separator i and its neighbors is also collected. Such
connectivity information is accumulated from child nodes to parent nodes and
is used to preserve the graph connectivity after reordering.

• The symbolic factorization is performed in parallel. Under a certain paral-
lel level lp, each process performs a local symbolic factorization of a private
subtree and stores the corresponding neighboring information. At level lp, an
all-to-all communication between all processes is triggered to exchange neigh-
boring information of nodes at lp. For all the nodes above lp, the symbolic
factorization is performed within each processor, so that each process can
conveniently access relevant nodes without extra communications.

• Following the nice data locality of the assembly tree, we adopt a subtree-
to-subcube static mapping model [11] to preallocate computational tasks to
each process. Each process is assigned a portion of the computational tasks
associated with a subtree of T or a subgraph of G. Starting from a certain
level, processes form disjoint process groups form process grids to work to-
gether. We try to evenly divide the adjacency graph so as to maintain the
load balance of processes. See also section 4.1. Static unbalances may still
exist as a result of unbalanced partitioning of the graph. Dynamic unbal-
ances may also arise in the factorization stage since the HSS ranks and HSS
generator sizes are generally unknown in advance. It will be interesting to in-
vestigate the use of dynamic scheduling in our solver. Other static mapping
models such as the strict proportional mapping [26] are also used in some
sparse direct solvers and may help improve the static balance of our solver.
These are not the primary focus of the current work and will be studied in the
future.

3. Review of the randomized structured multifrontal method. After
nested dissection, the matrix factorization can be performed via the multifrontal
method [9, 22], where partial factors are produced along the traversal of the assembly
tree T . For simplicity, we use Ai,j to denote A|si×sj for nodes i, j of T and use Ni to
denote the set of neighbors of i.

For each leaf i, Ni includes all the separators that are connected to i in G. Form
an initial frontal matrix

(3.1) Fi ≡ F0
i =

(
Ai,i Ai,Ni

ANi,i 0

)
.

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C297

Compute an LU factorization of Fi:

(3.2) Fi =
(

Li,i

LNi,i I

)(
Ki,i Ki,Ni

Ui

)
,

where Ui is the Schur complement and is called an update matrix. In the adjacency
graph, this corresponds to the elimination of i.

For each nonleaf node i, Ni includes all the ancestor separators that are originally
connected to i in G or get connected due to lower level eliminations. Suppose the
child nodes of i are c1 and c2. Form a frontal matrix

(3.3) Fi = F0
i↔l Uc1↔l Uc2 ,

where the symbol↔l denotes the extend-add operation [9, 22]. This operation performs
matrix permutation and addition by matching the index sets following the ordering
of the vertices in G. Then partition Fi as

(3.4) Fi =
(
Fi;1,1 Fi;1,2
Fi;2,1 Fi;2,2

)
,

where Fi;1,1 corresponds to si, and perform an LU factorization as in (3.2).
The above procedure continues along the assembly tree until the root is reached.

This is known as the standard multifrontal method. A bottleneck of the method is
the storage and cost associated with the local dense frontal and update matrices.

The class of structured multifrontal methods [30, 31, 33] is based on the idea
that, for certain matrices A, the local dense frontal and update matrices are rank
structured. For some cases, Fi and Ui may be approximated by rank structured
forms such as HSS forms. An HSS matrix F is a hierarchical structured form that
can be defined via a postordered binary tree T called an HSS tree. Each node i of T
is associated with some local matrices called generators that are used to define F . A
diagonal generator Di is recursively defined, so that Dk ≡ F for the root k of T , and
for a node i with children c1 and c2,

Di =
(

Dc1 Uc1Bc1V
T
c2

Uc2Bc2V
T
c1 Dc2

)
,

where the off-diagonal basis generators U, V are also recursively defined as

Ui =
(
Uc1Rc1
Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
.

Suppose Di corresponds to an index set si ⊂ {1 : N}, where N is the size of F ; then
F−i ≡ F |si×({1:N}\si) and F |i ≡ F |({1:N}\si)×si

are called HSS blocks, whose maximum
(numerical) rank is called the HSS rank of F . Also for convenience, suppose the root
node of T is at level l = 0.

In the structured multifrontal method in [33], HSS approximations to the frontal
matrices are constructed. The factorization of an HSS frontal matrix Fi yields an HSS
update matrix Ui. This process may be costly and complex. A simplified version in
[28] uses dense Ui instead. To enhance the efficiency and flexibility, randomized HSS
construction [24, 35] is used in [31]. The basic idea is to compress the off-diagonal
blocks of Fi via randomized sampling [21]. Suppose Fi has size N × N and HSS

C298 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

rank r. Generate an N × (r + µ) Gaussian random matrix X, where µ is a small
integer. Compute

(3.5) Y = FiX.

The compression of an HSS block F−i ≡ Fi|si×({1:N}\si) is done via the compression
of

(3.6) Si = Y −DiX|si
(= F−i X|{1:N}\si

).

Applying a strong rank-revealing factorization [16] to the above quantity yields

Si ≈ UiSi|ŝi
with Ui = Πi

(
I
Ei

)
,

where ŝi is a subset of si and the entries of Ei have magnitudes around 1. This gives
the U generator in the HSS construction, so that F−i ≈ UiF

−
i |ŝi

with high probability
[21]. Due to the feature that the row basis matrix F−i |ŝi

is a submatrix of F−i , this
compression is also referred to as a structure-preserving rank-revealing factorization
[35]. More details for generating the other HSS generators can be found in [24, 35].
The overall HSS construction follows a bottom-up sweep of the HSS tree.

In the RSMF method [31], the product (3.5) and selected entries of Fi are used to
construct an HSS approximation to Fi. A partial ULV factorization [6, 34] of the HSS
form is then computed. Unlike other multifrontal methods, here the update matrix Ui
does not directly participate in the extend-add operation. Instead, its products with
random vectors are used in a skinny extend-add [31] that only involves vectors and
their row permutation and addition. This significantly enhances the flexibility and
efficiency of extend-add. We sketch the main framework of the method, which slightly
generalizes the method in [31] to nonsymmetric matrices. A pictorial illustration is
given in Figure 2. In the following, we assume Xi to be a skinny random matrix that
plays the role of X in (3.5) and is used for the HSS construction for Fi.

=

Yc1

Yc1 c1 c1

Xii
0

Skinny extend-add

=

Yc2

Yc2 c2 c2

=

Yi

Selected
entries Yi i i

HSS construction, factorization

HSS construction, factorization HSS construction, factorization

Selected
entries

Selected
entries

~ ~

~

Fig. 2. Illustration of the RSMF method in [31]. For simplicity, only a symmetric version is
used for illustration.

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C299

1. For nodes i below a certain switching level ls of T , perform the traditional
multifrontal factorization.

2. For nodes i above level ls, construct an HSS approximation to Fi using se-
lected entries of Fi and matrix-vector products Yi = FiXi and Zi = FTi Xi.
Here, Yi and Zi are obtained from (3.8) below.

3. Partially ULV factorize Fi and compute Ui with the fast Schur complement
update in HSS form. Compute

(3.7) Ỹi = UiX̃i, Z̃i = UTi X̃i,

where X̃i is a submatrix of Xi corresponding to the indices Ui as in (3.2).
4. For an upper level node i with children c1 and c2, compute skinny extend-add

operations

(3.8) Yi = (F0
i Xi) −l Ỹc1 −l Ỹc2 , Zi = ((F0

i)TXi) −l Z̃c1 −l Z̃c2 .

5. Form selected entries of Fi based on F0
i , Uc1 , and Uc2 , and go to step 2.

4. Distributed-memory parallel randomized multifrontal method. Here,
we present our distributed-memory parallel sparse direct solver based on the RSMF
method, denoted PRSMF. The primary significance includes the following:

• We design a static mapping parallel model that (1) has two hierarchical layers
of parallelism with good load balance and (2) can conveniently handle both
HSS matrices and intermediate skinny matrices. The PRSMF method signif-
icantly extends the one in [28] by allowing more flexible parallel structured
operations and also avoiding large dense intermediate frontal and update ma-
trices.

• We develop some innovative parallel algorithms for a sequence of HSS opera-
tions, such as a parallel HSS Schur complement computation in partial ULV
factorization, a parallel extraction of selected entries from an HSS form, and
a parallel skinny extend-add algorithm for assembling local data.

• The main ideas to reduce the communication costs in the new parallel al-
gorithms are (1) taking advantage of the tree parallelism and store HSS
generators in an appropriate way; (2) assembling and passing data between
processes in compact forms so that the number of messages is reduced; (3)
reusing data whenever possible; (4) collecting data into messages to facilitate
BLAS3 dense operations; and (5) storing a small amount of the same data in
multiple processes.

• The graph reordering strategies and the convenient data assembly make the
method much more general than the parallel structured multifrontal method
in [28] which is restricted to a specific mesh geometry.

In this section, an overview of the parallel model is given, followed by details of
the parallel algorithms.

4.1. Overview of the parallel model and data distribution. In the RSMF
method, both the assembly tree and the HSS tree have nice data locality. For a
distributed memory architecture, a static mapping model usually requires less com-
munication than a dynamic scheduling model. To avoid idling as much as possible, it
is vital to keep work load balance among all processes. When generating the assembly
tree and local HSS trees, we try to make the trees as balanced as possible. A roughly
balanced assembly tree can be obtained with Scotch [25] with appropriate strategies.
More specifically, a multilevel graph partition method in [19] is used to generate the

C300 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

3

1 2

7
0

6

4 5

0 1

150 1

10

8 9

14
1

13

11 12

Switching

30

31

Processes

Process grid

Parallel
level lp

level ls

0 1

2 3

32

2 3

32

0 1

32

18

16 17

22
2

21

19 20

25

23 24

29
3

28

26 27

0 1 2 3

0 1 320 1

0 1 2 3

32

0 1
32

0 1

0 1 0 1 32 32

Fig. 3. Static mapping model for our PRSMF method, where the outer-layer tree is the assembly
tree, and the inner-layer trees are HSS trees.

separators of the adjacency graph of A. In this method, each time we use the vertex
greedy-graph-growing method to obtain a rough separator, and refine this separator
with some strategies so that the resulting lower level subgraphs are roughly balanced.
For the HSS trees, we try to keep them balanced via the recursive bipartition of the
index set of a frontal matrix.

Our parallel model (Figure 3) is described as follows. The basic idea is inher-
ited from [28], and we further incorporate more structured forms to avoid dense
frontal/update matrices and also allow more flexible choices of processes for the struc-
tured operations. Below a parallel level lp, one process is used to handle the operations
corresponding to one subtree, called a local tree. (The method also involves a switch-
ing level ls, at which the local operations switch from dense to HSS ones so as to
optimize the complexity and also to avoid structured operations for very small ma-
trices at lower levels [31].) Starting from level lp, processes are grouped into process
grids or contexts to work on larger matrices. The standard 2D block cyclic storage
scheme in ScaLAPACK [4] is adopted to store dense blocks (such as HSS generators
and skinny matrices). Process grids associated with the nodes of the assembly tree
T are generated as follows. Let Gi denote the set of processes assigned to a node i.
Then,

• Gi ∩Gj = ∅ if i and j are distinct nodes at the same level;
• Gi = Gc1 ∪ Gc2 for a parent node i with child nodes c1 and c2. Usually,

the process grids associated with Gc1 and Gc2 are concatenated vertically or
horizontally to form the process grid associated with Gi. With this approach,
only pairwise exchanges between the processes are needed when redistributing
matrices from the children process grids to the parent process grids. This can
help reduce the number of messages exchanged and save the communication
cost. See [28, 29] for more discussions. Here, since the algorithm frequently
involves skinny matrices, the process grids are not necessarily square. This is
different from those in [28, 29], where large local matrices are involved.

In this setting, each process can only access a subset of nodes in the assembly
tree. We call these nodes accessible nodes of a process. The accessible nodes of a
process are those in the associated local tree and in the path connecting the root
of the local tree and the root of the assembly tree. For example, in Figure 3, the

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C301

accessible nodes of process 0 are nodes 1, 2, . . . , 7, 15, 31. A process only gets involved
in the computations associated with its accessible nodes.

Along the assembly tree, child nodes pass information to parent nodes, and com-
munication between two process groups is involved. Unlike the traditional multifrontal
method and the structured one in [28] that pass dense update matrices, here, only
skinny matrix-vector products and a small number of matrix entries are passed. On
the process grid of a parent node, we redistribute these skinny matrices to the corre-
sponding processes. We design a distribution scheme and a message passing method
to perform the skinny extend-add operation in parallel. The result will be used in the
parallel randomized HSS construction.

For a node i above lp, if HSS operations are involved, smaller process subgroups
are formed by the processes in Gi to accommodate the parallel HSS operations for
Fi, Ui, etc. For each node i of the HSS tree T of Fi, a process group Gi ⊂ Gi is
formed. Initially, for the root k of T , Gk ≡ Gi, which is used for both Fi and Ui.
Unlike the scheme in [23], Gk is also used for both children of k, so as to facilitate
the computation of Ui. (See the inner-layer trees in Figure 3.) For nodes at lower
levels, the same strategies to group processes as above are used along the HSS tree
to form the process subgroups. That is, for any nonleaf node i of T below level 1,
Gi = Gc1 ∪Gc2 , where children c1 and c2 are the children of i. Each process subgroup
forms a process grid which stores the dense blocks (such as HSS generators and skinny
matrices) in a 2D block cyclic scheme. The operations (such as multiplication and
redistribution) on the dense blocks are performed with ScaLAPACK. As in [23], the
HSS generators Ri,Wi (and also Di, Ui for a leaf i) are stored in Gi, and Bi is stored
in Gpar(i). The details of these grouping and distribution schemes will become clear
in the subsequent subsections.

We would also like to mention that the nonzero entries of the original sparse
matrix A are needed in the formation of frontal matrices or in frontal matrix-vector
multiplications if a frontal matrix is not formed explicitly. They are also needed in
the formation of the D, B HSS generators. It is usually not memory efficient to store
a copy of the data in each process. On the other hand, distributing the entries of A
without overlapping among processes may increase communication cost dramatically.
Although we know what entries of A are needed in the current front, we do not know
in advance the specific destination processes of selected entries of A that are needed in
the formation of the B generators in the randomized HSS construction algorithm. As
a result, communications of the entries of A cannot be avoided with a nonoverlapping
mapping strategy, in general. Thus, we choose a trade-off between the memory and
communication costs. That is, each process within a process group Gi stores, besides
its private data, some overlapping data. The overlapping data corresponds to the
entries of A associated with the accessible nodes of the process. If the processes are in
the same process group Gi, then they store the same overlapping data. An illustration
of this storage scheme is given in Figure 4. This idea can also be applied to store the
neighbor information of a separator in the symbolic factorization as well as solutions
in forward and backward substitutions.

To summarize, two layers of tree parallelism are naturally combined in this
parallel model: the parallelism of the assembly tree and the HSS trees. Within
the distributed assembly tree and HSS trees, distributed dense operations for HSS
generators and skinny matrices are facilitated by ScaLAPACK. The parallel struc-
tured matrix operations and skinny matrix operations will be discussed in detail
next.

C302 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

Private data Overlapping data

Process 1

Process 2

l=
l p ...

l=
0

l=
1

......

Process ...

l=
l p ...

l=
0

l=
1

l=
l p ...

l=
0

l=
1

Fig. 4. Storage scheme for the sparse matrix A. Below the parallel level lp, each process stores
a private portion of A. Above lp, each process stores overlapping data associated with its accessible
nodes at each level l = 0, 1, . . . , lp.

4.2. Parallel randomized HSS construction, factorization, and Schur
complement computation. Above the switching level ls, all frontal and update
matrices are in HSS forms. The method in [28] is only partially structured in the sense
that dense frontal matrices are formed first and then converted into HSS forms, and
the updated matrices are also dense. Here, the HSS construction for a frontal matrix
Fi is done via randomization, and a partial ULV factorization of Fi also produces an
HSS form Schur complement/update matrix Ui in (3.2).

To involve as many processes as possible, we assign all the processes in the pro-
cess group Gi to perform the HSS construction, partial ULV factorization, and Schur
complement computation. The HSS tree T for Fi has two subtrees. The left subtree
T1 corresponds to the pivot block Fi;1,1 in (3.4), and the right subtree T2 corresponds
to Fi;2,2 and thus the Schur complement Ui. Note that Gi is used for the HSS con-
structions of both Fi;1,1 and Fi;2,2. This is different from the storage scheme in [23].
See the inner-layer tree associated with node i = 31 in Figure 3 for an illustration.
The individual parallel randomized HSS constructions for Fi;1,1 and Fi;2,2 follow [23].
Initially, each process stores a piece of the matrix-vector products (3.5), which are
used to compress the leaf-level HSS blocks. These products are updated when the
compression moves up along the HSS tree T . Intergrid redistributions are involved for
pairs of siblings in the HSS tree. After the HSS constructions for Fi;1,1 and Fi;2,2, we
continue to use Gi to construct the remaining generators Bk, (

Rk1
Rk2

) for k = root(T1)

with children k1, k2 and Bq, (
Wq1
Wq2

) for q = root(T2) with children q1, q2. Figure 5
shows how the HSS generators are stored among the processes.

The parallel partial ULV factorization follows a scheme in [23], except that it
stops after all the nodes in T1 are traversed. The ULV factors associated with each
tree node are stored in the corresponding processes. The partial ULV factorization
reduces Fi;1,1 to a final reduced matrix D̃k [30].

At this point, we need to form the Schur complement Ui in an HSS form. The

blocks D̃k,
(
Rk1
Rk2

)
,
(
Wq1
Wq2

)
are stored in the process group Gi, which is also the process

group Gq for node q. To obtain the HSS form of Ui, we only need to update the
D,B generators of Fi;2,2, which are stored within the subgroups of Gq. This is done
via a fast update method in [31]. (The method in [31] is symmetric and here a

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C303

()Rk1
0 1
2 3

0 1

Rk2

Bk (Wq1,Wq2)
T T

V1
T

U2

00
1

0 1

2 3

0 1
2 3

0 1
2 3

0 1
2 3

1

2

3

0

1

2

3

2
3

2 3

Pivot block Fi;1,1

D1

B2

0 1
2 3

0 1

2 3

0 10
1

D2

Fi;2,2

Fig. 5. Distributed memory storage for an HSS form frontal matrix Fi given four processes,
where k1, k2 are the children of k (root of the HSS tree T1 for Fi;1,1) and q1, q2 are the children of q
(root of the HSS tree T2 for Fi;2,2). See the inner-layer tree associated with node i=31 in Figure 3.

nonsymmetric variation is used.) The computations are performed in disjoint process
groups at each level in a top-down traversal of T2. A sequence of products Si are
computed for the update. Each Si is computed in Gi and then redistributed for reuse
at lower levels. Its submatrices are used to update the generators Di, Bi. The details
are given in Algorithm 1. An important observation from this update process is that
the HSS rank of Ui is bounded by that of Fi [30].

After this, we then compute Ỹi and Z̃i in (3.7) in parallel. This may be based on
direct HSS matrix-vector multiplications, or an indirect procedure [31] that updates
Yi. The detailed parallelization is omitted here. Ỹi and Z̃i are passed to the parent
node to participate in the skinny extend-add operation.

Remark 4.1. In our solver, the nested HSS structure has a very useful feature that
significantly simplifies one major step: the formation of the Schur complement/update
matrix (the mathematical scheme behind Algorithm 1). That is, the nested HSS
structure enables the Schur complement computation to be conveniently done via
some reduced matrices, so that only certain generators of the frontal matrix need to
be quickly updated. Such a mathematical scheme was designed and proved in [30,
31]. For 3D problems, the HSS structure is indeed less efficient than more advanced
structures such asH2 and multilayer hierarchical structures [32]. The HSS form serves
as a compromise between the efficiency and the implementation simplicity.

4.3. Parallel skinny extend-add operation. The dense updated matrices
used in the parallel partially structured multifrontal method in [28] need not only
more computations but also more communications. In fact, the extend-add oper-
ation is a major communication bottleneck of the method in [28], just like in the
standard parallel multifrontal method. In the 2D block cyclic setting, the standard
dense extend-add in (3.3) requires extensive intragrid communications. Both row and
column permutations are performed. Entries in the same row/column of an update

C304 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

Algorithm 1. Parallel computation of the HSS Schur complement/update matrix Ui.
1: procedure PSchur

2: Sq ← Bq
(
WT
q1 WT

q2

)
D̃−1
k

(
Rk1
Rk2

)
Bk

. Performed in the process group Gq; q: root of the HSS tree T2 for Fi;2,2
3: for each level l = 0, 1, . . . of T2 do . Top-down traversal of T2
4: for each node i at level l do . Performing operations in the process

group Gi and redistributing information
5: if i is a nonleaf node then

6: Si =
(
Si;1,1 Si;1,2
Si;2,1 Si;2,2

)
. Conformable partition following

(
Rc1
Rc2

)
7: Redistribute Si;1,1 and Si;2,2 to Gc1 and Gc2 , respectively

. Gc1 , Gc2 : children process groups
8: Sc1 ←WT

c1Si;1,1Rc1 , Sc2 ←WT
c2Si;2,2Rc2 . Performed in Gc1 , Gc2

9: Bc1 ← Bc1 − Si;1,2, Bc2 ← Bc2 − Si;2,1 . Bc1 , Bc2 : stored in Gi
10: else
11: Di ← Di − Si . Leaf level D generator update
12: end if
13: end for
14: end for
15: end procedure

matrix are added to one same row/column of a frontal matrix after permutations. For
parallel permutations on a square process grid with P processes, each process com-
municates with O(

√
P) processes in the same column, as well as O(

√
P) processes in

the same row.
Our parallel randomized multifrontal solver uses, instead, the skinny extend-add

operations (3.8) and significantly saves the communication cost. The matrices to be
permuted are tall and skinny ones instead of large square ones, and moreover, only
row permutation is needed. Figure 6 illustrates the storage of the skinny matrices on
a process grid.

To further reduce the communication overhead, we use a message passing method
[3, 20] to reduce the number of messages. Instead of passing information row by row,
we group rows according to their destination processes. The rows needed to be sent

0 1 2 3

4 5 6 7

8 9 10 11

1213 14 15

0 1 2 3

4 5 6 7

8 9 10 11

1213 14 15

0 1 2 3

4 5 6 7

8 9 10 11

1213 14 15

0 1 2 3

4 5 6 7

8 9 10 11

1213 14 15

0 1 2 3

4 5 6 7

8 9 10 11

1213 14 15

0 1

4 5

8 9

1213

0 1 2 3

4 5 6 7

0 1

4 5

c1

c2

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

Y
c1

~

0 1

2 3

0 1

2 3

0 1

2 3

Y
c2

~

(i) Standard parallel extend-add (ii) Skinny parallel extend-add

Fig. 6. Parallel skinny extend-add operation as compared with the standard dense one, where
the matrices are stored on a process grid. The skinny one deals with much less data and also needs
only row permutations.

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C305

Algorithm 2. Parallel skinny extend-add operation.

1: procedure PSExtAdd . Yi = (F0
i Xi) −l Ỹc1 −l Ỹc2

2: Y i ← F0
i Xi (stored in the process grid G)

3: for Ỹ = Ỹc1 , Ỹc2 do . Processing Ỹc1 and Ỹc2 individually
4: for column j = 1, . . . , ncol do . ncol: number of process columns in G
5: for each process p in column j of G do . Packing message
6: p̂← row coordinate of p in G
7: for row i = 1, . . . , locr do

. locr: number of local rows of Ỹ stored in p
8: q̂ ← row coordinate of the destination process for Ỹ |i in G
9: Insert Ỹ |i and its destination row index in Yi into message Mp̂→q̂

10: end for
11: end for
12: for each process p in column j of G do . Sending & receiving messages
13: p̂← row coordinate of p in G
14: for q̂ = 1, . . . , nrow do . nrow: number of process rows in G
15: if p̂ 6= q̂ then . Locally blocking send operation
16: Send message Mp̂→q̂ if Mp̂→q̂ 6= ∅
17: end if
18: end for
19: for q̂ = 1, . . . , nrow do
20: if p̂ 6= q̂ then . Globally blocking receive operation
21: Receive message Mq̂→p̂ if Mq̂→p̂ 6= ∅
22: end if
23: Add rows in Mq̂→p̂ to Yi according to their

destination row indices if Mq̂→p̂ 6= ∅
24: end for
25: end for
26: end for
27: end for
28: end procedure

from one process to another are first wrapped into a message, which is sent later. Since
the update and frontal matrices are both distributed in a block-cyclic layout, it is not
hard to figure out the target process of each local row by using functions indxl2g and
indxg2p in ScaLAPACK. The messages are sent and received with BLACS [8] routines
for point to point communications. The send operations are locally blocking. The
receive operations are globally blocking. The parallel skinny extend-add algorithm is
outlined in Algorithm 2.

4.4. Extracting selected entries from HSS update matrices. The matrix-
vector products Y i (and also Zi) obtained in the previous subsection are then used
to construct an HSS approximation to Fi. This still needs selected entries of Fi that
will be used to form the B generators and leaf level D generators [24, 35]. Given the
row and column index sets, we can extract the entries of Fi from F0

i , Uc1 , and Uc2 in
(3.3). F0

i is immediately available, and we focus on Uc1 and Uc2 .
The indices of the desired entries of Fi are mapped to those of Uc1 and Uc2

(Figure 7). Thus, we consider how to extract in parallel selected entries U|I×J of an
HSS matrix U , as specified by a row index set I and a column index set J . Suppose

C306 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

c1 c2

i

Fig. 7. Mapping the row and column index sets of selected entries of Fi to those of Uc1 and Uc2 .

U has HSS generators Di, Ui, Ri, Bi, etc. The basic idea of the entry extraction in [31]
is to reuse intermediate computations while performing matrix-vector multiplications.
Here, instead of using matrix-vector multiplications like in [31], we group indices as
much as possible so as to enable BLAS3 operations.

Among the leaf nodes of the HSS tree of U , identify all the leaves i and j that
correspond to I and J , respectively. Suppose i and j are associated with subsets
Ii ⊂ I and Jj⊂ J and local index sets Ĩi and J̃j of Ui and Vj , respectively. Let the
path connecting nodes i and j in the HSS tree be

(4.1) i− i1 − i2 − · · · − id − jd − · · · − j2 − j1 − j,

where d ≡ distance(i, j) is the number of ancestors of i or j in the path and is called
the distance between i and j [31]. Then obviously,

(4.2) U|Ii×Ij = Ui|Ĩi
Ri1Ri2 · · ·Rid−1BidW

T
jd−1
· · ·WT

j2W
T
j1V

T
j |Ĩj

.

By grouping the indices as Ii and Ij , we reduce the number of paths to be traversed
from O(N) in [31] to O(Nr), where N is the size of U and r is its HSS rank.

To save computational costs, some intermediate matrix-matrix products can be
precomputed for all the entries in U|I×J in the same rows/columns. That is, in (4.2),
a portion of the following product is stored if the corresponding subpath i− i1− i2−
· · · − id−1 is shared by multiple paths like (4.1):

(4.3) Ωdi ≡ Ui|Ĩi
Ri1Ri2 · · ·Rid−1 .

This is similar for Θd
j ≡ VjWj1Wj2 · · ·Wjd−1 . Ωdi and Θd

j are computed in process
grids Gid−1 and Gjd−1 , respectively. Then the stored results Ωdi and Θd

j are used to
compute the entries as

U|Ii×Jj
= ΩdiBid(Θd

j)
T .

If it is necessary to extend the subpath i − i1 − i2 − · · · − id−1 for larger d, then Ωdi
and Θd

j will be redistributed to the parent process grids for additional computations.
Thus, Ωdi and Θd

j are computed progressively. See Algorithm 3.
Since the HSS generators are distributed on different process grids, this technique

also helps to reduce the number and volume of messages in the parallel implementa-
tion. This is especially attractive if many entries to be extracted are from the same
rows or columns.

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C307

Algorithm 3. Parallel extraction of U|I×J from an HSS matrix U .
1: procedure PHSSIJ
2: for each leaf i of T do . T : HSS tree of U
3: Find the corresponding subsets Ii ⊂ I and Ji⊂ J
4: Find the corresponding local index sets Ĩi of Ui and J̃i of Vi
5: end for
6: for each leaf i (with Ii 6= ∅) of T do . Precomputation
7: d← sorted vector of nonzero distance(i, j) for all leaves j 6= i with Jj 6= ∅
8: Ω0

i ← Ui|Ĩi
, c← 0, k ← i . Performed in the process group Gi

9: for ι = 1, 2, . . . , length(d) do
10: d← dι, Ωdi ← Ωci . Ωdi is for the partial product as in (4.3)
11: for d̃ = dι−1, . . . ,dι do . Assuming d0 = 1
12: Ωdi ← ΩdiRk . Computing (4.3) step by step in the process group Gk
13: Redistribute Ωdi from the process group Gk to Gpar(k)
14: k ← par(k)
15: end for
16: c← d
17: end for
18: end for
19: Repeat steps 6–18 with Ii,Jj , Ĩi, Rk,Ωdi replaced by Ji, Ij , J̃i,Wk,Θd

i ,
respectively

20: for each leaf i (with Ii 6= ∅) of T do . Extracting the entries
21: for each leaf j (with Jj 6= ∅) of T do
22: if i == j then . Diagonal block extraction
23: U|Ii×Jj ← Di|Ĩi×J̃j

. Performed in the process group Gi
24: else . Off-diagonal block extraction
25: d← distance(i, j)
26: k ← the largest ancestor of i in the path connecting i to j
27: U|Ii×Jj ← ΩdiBk(Θd

j)
T . Performed in the process group Gk

28: end if
29: end for
30: end for
31: end procedure

5. Analysis of the communication cost. The parallel framework together
with the individual parallel structured operations in the previous section give our
PRSMF method. The parallel solution method is similar to that in [28]. We can
conveniently study the performance of the PRSMF method. The factorization cost
and storage are given in [31]. For discretized sparse matrices, when certain rank
conditions are satisfied (such as in elliptic problems), the factorization costs roughly
O(n) flops in two dimensions and roughly O(n) to O(n4/3) in three dimensions. The
storage for both two dimensions and three dimensions is near O(n). Here, some
polylogarithmic terms of n may be omitted.

In the following, we estimate the communication cost. For convenience, suppose
the maximum HSS rank of all the frontal matrices is r. In practice, the HSS ranks often
depend on the applications and the matrix size. Our analysis here then gives a reason-
able upper bound. For simplicity, assume the switching level ls is below the parallel
level lp in the assembly tree T . Thus, HSS operations are used at every parallel level.

C308 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

Let P be the total number of processes, P̂ be the minimum number of process
within the process grids. The number of processes of each process grid at level l of T
is

Pl =
P

2l−1 .

Suppose a process grid with Pl processes has O(
√
Pl) rows and columns. Also suppose

all the HSS generators of the structured frontal matrices are of sizes O(r)×O(r).
We first review the communication costs of some basic operations. Use #messages

and #words to denote the numbers of messages and words, respectively.
• For a k×k matrix, redistribution between a process grid and its parent process

requires #messages = O(1) and #words at most O(k
2

P̂
).

• On the same process grid with P processes, the multiplication of two O(r)×
O(r) matrices costs #messages = O(rb) and #words = O(r2√

P̂
), where b is

the block size used in ScaLAPACK.
Suppose a frontal matrix F is at level l of T and has size nl. F corresponds to a

process grid with Pl process. Then at level l of the HSS tree T for F , the number of
processes is Pl

2l−1 . The number of parallel levels of the HSS tree is O(logPl).
To analyze the communication costs at the factorization stage, we investigate the

communication at each level l of the assembly tree.
1. Randomized HSS construction and ULV factorization.

In [23], it is shown that both operations cost

#messages = O
(
r log2 Pl

)
, #words = O

(
r2 log2 Pl√

P̂

)
.

2. Structured Schur complement computation and multiplication of the Schur
complement and random vectors.
For each process, the information is passed in a top-down order along the
HSS tree. The major operations are matrix redistributions and multiplica-
tions, since the additions on the same process grid involve no communication.
The redistribution costs O(logPl) messages and O(r

2 logPl

P̂
) words. The mul-

tiplications between HSS generators at each level cost O(rb) messages and
O(r2√

P̂
) words. Thus

#messages = O(logPl) +
O(logPl)∑
l=1

O
(r
b

)
= O

(r
b

logPl

)
,

#words = O

(
r2 logPl

P̂

)
+
O(logPl)∑
l=1

O

(
r2√
P̂

)
= O

(
r2 logPl√

P̂

)
.

The sampling of the structured Schur complement is performed via HSS
matrix-vector multiplications. The communication costs are similar to the
estimates above.

3. Skinny extend-add operation and redistribution of the skinny sampling ma-
trices.
The skinny matrices are of size O(nl) × O(r). Each process communicates
with processes in the same column on the process grid. Thus

#messages = O
(√

Pl

)
, #words = O

(
rnl

Pl

)
.

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C309

The redistribution of the skinny sampling matrices costs

#messages = O(1), #words = O

(
rnl

P̂

)
.

4. Extracting selected entries from HSS matrices.
For each process, the information is passed in a bottom-up order along an
HSS tree. The major operations are matrix redistribution and multiplications.
Similar to the communication costs of the structured Schur complement com-
putation,

#messages = O (logPl) +
O(logPl)∑
l=1

O(
r

b
) = O(r logPl),

#words = O

(
r2 logPl

P̂

)
+
O(logPl)∑
l=1

O

(
r2√
P̂

)
= O

(
r2 logPl√

P̂

)
.

The total communication costs can be estimated by summing up the above costs.
The total number of messages is

#messages =
O(logP)∑

l=1

(
O
(√

Pl

)
+O

(
r log2 Pl

))
= O

(√
P
)

+O
(
r log3 P

)
.

The total number of words is

#words =
O(logP)∑

l=1

(
O

(
rnl

P̂

)
+O

(
r2 log2 Pl√

P̂

))
,

which depends on specific forms of nl. For 2D and 3D problems, nl = O(
√
n/2bl/2c)

and O(n2/3/2bl/2c), respectively. Thus, the total number of words for 2D problems is

#words = O

(
r
√
n

P̂

)
+O

(
r2 log3 P√

P̂

)
and for 3D problems is

#words = O

(
rn

2
3

P̂

)
+O

(
r2 log3 P√

P̂

)
.

In comparison, the parallel solver in [28] has communication costs of #messages =
O(
√
P) +O(r log3 P) and

#words = O

(
n

P̂

)
+O

(
r
√
n log2 P√
P̂

)
for 2D problems,

#words = O

(
n

4
3

P̂

)
+O

(
rn

2
3 log2 P√
P̂

)
for 3D problems. In particular, the numbers of words of our new parallel solver are

smaller by factors of about O(
√
n
r) and O(n

2
3

r), respectively.

6. Numerical experiments. In this section, we show some performance results
of our PRSMF solver. For convenience, we simply refer to it as PRSMF in this section.
A sequences of tests are performed for Poisson’s equation, a linear elasticity equation,

C310 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

Helmholtz equation, and a elastic wave equation in two or three dimensions. We
carried out our experiments on a Cray XC30 cluster at TOTAL E&P Research &
Technology USA. Each node has 20 cores and 64 GB memory. The number of nodes
available for our tests is 52. The peak performance of each core is 23.30 Gflops. We
show both the weak scalability and the strong scalability of the solver, as compared
with the standard parallel multifrontal solver (by setting ls = 0 in PRSMF), denoted
PMF. We report the following performance measurements:

• Time: the runtime for the factorization of A and the solution of Ax = b.
• Flops and flop rate: the number of floating point operations in the factoriza-

tion and the corresponding flop rate.
• Factor size: the number of nonzero entries for storing the factors.
• Peak memory per process: the maximum memory occupied by one process

for any process.
• Accuracy: the relative residual ||Ax−b||2||b||2 , where b is generated via a random

exact solution.
In PRSMF, the maximum HSS rank of all the frontal matrices is also reported.

We also discuss how the variation of some parameters (the switching level and the
sampling size) impacts the performance. In our current implementation, the number
of processes used is equal to 2lp−1, where lp is the parallel switching level. Thus, the
strong scaling tests below indicate the dependency of the code on lp. The following
notation will be used for convenience:

• r̃: the sampling size in randomized compression (the column size of X in 3.5).
• τ : the relative tolerance of rank-revealing factorizations of the matrix-vector

products as in (3.6).
• lmax: the total number of levels in the assembly tree.

6.1. Poisson’s equation and linear elasticity equation in two dimen-
sions. We first look at two PDEs in two dimensions, Poisson’s equation and a linear
elasticity equation, which are known to be suitable for structured multifrontal methods
[7, 33]. That is, in the multifrontal factorization, the frontal matrices have relatively
small off-diagonal numerical ranks.

For 2D Poisson’s equation discretized with the five-point stencil, we show the
weak scalability by letting both the matrix size n and the number of processes P
increase by a factor of 2. Accordingly, lmax is increased by 1 every time so that the
sizes of the smallest submeshes after nested dissection remain almost the same. The
number of levels (lmax − ls) below the switching level ls remains the same, so that
the factorization costs below and above ls are nearly the same and the total cost is
minimized [31]. (See section 6.4.) This also implies that all frontal matrices larger
than a certain size are approximated by HSS forms. Here, we set lmax− ls = 9, which
roughly gives the optimal factorization complexity in the tests, as shown in section
6.4. More details on the selection of lmax− ls for structured multifrontal methods can
be found in [30, 33].

In randomized compression, the sampling size is set to be r̃ = 200, and the
compression tolerance is set to τ = 10−5. Since our solver aims for relatively general
sparse linear systems, in all these tests, it does not specifically exploit the positive
definiteness of the matrices. The numerical results are shown in Table 1 and Figure 8.
The CPU time for factorization and solution is shown. A weak scaling pattern can be
observed. PRSMF also has a clear advantage in terms of the memory. For the matrix
with n = 256 × 106, PRSMF needs less than 1/2 of the parallel factorization time of
PMF and about 1/3 of the flops. Let the upper bound of the total memory at peak

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C311

Table 1
Parallel weak scaling test for discretized matrices from 2D Poisson’s equation.

Mesh size n 16×106 32×106 64×106 128×106 256×106

lmax 21 22 23 24 25
Number of processes P 32 64 128 256 512

PMF

Factorization time (s) 39.80 59.85 108.20 108.41 113.58
Factorization flops 1.99E12 6.11E12 1.81E13 4.05E13 1.17E14
Flop rate (Gflops) 50.03 102.09 167.28 373.58 1030.13
Factor size (GB) 28.65 60.70 125.45 253.89 526.51
Peak memory

3.05 3.24 3.38 3.65 4.12per process (GB)
Solution time (s) 1.53 2.21 2.25 2.78 3.15

PRSMF

Factorization time (s) 32.44 37.91 50.82 49.03 55.83
Factorization flops 1.67E12 3.64E12 7.14E12 1.46E13 2.93E13
Flop rate (Gflops) 51.48 96.02 140.50 297.78 524.81
Factor size (GB) 17.51 34.59 67.46 163.97 351.60
Peak memory

2.23 2.27 2.36 2.59 3.38per process (GB)
Maximum HSS rank 97 101 113 163 190
Solution time (s) 1.58 2.05 2.89 2.75 3.39
Relative residual 8.34E − 6 9.21E − 6 5.48E − 6 8.44E − 5 1.20E − 5

10
7

10
8

10
12

10
13

10
14

n

F
lo

p
s

PMF

PRSMF

O(n) reference line

10
7

10
8

10
1

10
2

10
3

n

F
a
c
to

r
s
iz

e
 (

G
B

)

PMF

PRSMF

O(n) reference line

(i) Factorization flops (ii) Factor sizes

Fig. 8. Factorization flops and factor sizes in Table 1 for discretized matrices from the 2D
Poisson’s equation.

be the product of peak memory per process and the number of processes P . Then
PMF needs nearly 380 GB more memory than PRSMF when both are at peak.

Similarly, we apply the solver to a linear elasticity equation near the incompress-
ible limit:

−(µ∆u+ (λ+ µ)∇∇ · u) = f in Ω,
u = 0 on ∂Ω,

where u is the displacement vector field on a rectangular domain Ω, and λ, µ are Lamé
constants. Here, λ/µ = 105, which leads to ill-conditioned discretized matrices. We
perform a weak scaling test similarly to the Poisson case. In PRSMF, the parameters
r̃ = 200 and τ = 10−5 are used, and the number of levels below the switching level
is lmax − ls = 12. The test results are shown in Table 2. For the largest matrix, the

C312 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

Table 2
Parallel weak scaling test for discretized matrices from the 2D linear elasticity equation.

Matrix size n 7,992,002 17,988,002 31,984,002 71,976,002 127,968,002
lmax 20 21 22 23 24

Number of processes P 16 32 64 128 256

PMF

Factorization time (s) 19.47 39.20 56.93 69.79 68.42
Factorization flops 0.58E12 3.11E12 5.35E12 1.23E13 3.27E13
Flop rate (Gflops) 29.79 79.34 93.98 176.24 477.93
Factor size (GB) 11.88 31.65 56.15 137.89 250.38
Peak memory

2.34 3.01 3.37 3.85 4.15per process (GB)
Solution time (s) 0.92 1.51 2.59 2.94 3.58

PRSMF

Factorization time (s) 17.20 27.00 31.75 44.04 42.98
Factorization flops 0.53E12 1.61E12 2.68E12 6.27E12 1.13E13
Flop rate (Gflops) 30.81 59.63 84.40 142.36 262.93
Factor size (GB) 9.46 22.81 43.40 95.69 180.25
Peak memory

2.02 2.45 2.50 2.73 2.96per process (GB)
Maximum HSS rank 126 113 122 149 158
Solution time (s) 0.83 1.56 2.07 3.04 3.42
Relative residual 2.23E − 4 4.30E − 4 3.95E − 4 2.88E − 4 2.93E − 4

Number of processes

16 32 64 128 256

F
a

c
to

ri
z
a

ti
o

n
 t

im
e

 (
s
)

10
1

10
2

n = 49,980,002

n = 31,984,002

Number of processes

16 32 64 128 256

S
o

lu
ti
o

n
 t

im
e

 (
s
)

2

3

4

5

6

n = 49,980,002

n = 31,984,002

(i) Strong scaling of factorization time (ii) Strong scaling of solution time

Fig. 9. Strong scaling tests with PRSMF for two discretized matrices from the 2D linear elas-
ticity equation.

parallel factorization time of PRSMF is less than 2/3 of the time of PMF, and the flop
count is less than 1/2.

For two matrices of size 31,984,002 and 49,980,002, we display the strong scaling
results of the PRSMF by changing the number of processes. Strong scaling patterns
can be observed in both the factorization stage and the solution stage. See Figure 9.
When the number of processes P doubles, the parallel factorization time reduces by
factors close to 1.7. We also display the parallel efficiency of PRSMF in Figure 10 for
matrices of sizes 7,992,002 and 17,988,002. With 16 processes, the parallel efficiency
is slightly over 70%.

6.2. 3D Helmholtz equation. Next, consider the numerical solution of the 3D
Helmholtz equation (

−∆− ω2

v2

)
u = f,

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C313

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Number of processes

P
a
ra

lle
l
e
ff
ic

ie
n
c
y
 (

%
)

n = 7,992,002

n = 17,988,002

Fig. 10. Parallel efficiency of PRSMF for two discretized matrices from the 2D linear elasticity
equation.

where ω is the angular frequency, v is the seismic velocity field, and f is the forcing
term. The equation is discretized on 3D tetrahedron meshes with the continuous
Galerkin method. The number of sample points per wavelength is fixed to be 5.
The perfectly matched layer boundary condition is used. The P wave speed is 3.4
km/s, and ω slowly increases from about 6 Hz to 10 Hz. The meshes have 20, 40,
60, and 100 million elements, respectively. The sizes of the corresponding discretized
matrices range from 3,233,795 to 15,794,036. The numbers of nonzero entries in the
matrices are also reported. In seismic imaging, the Helmholtz equation is often solved
with relatively low accuracies. Here, we conduct the tests in single precision. The
compression tolerance in PRSMF is τ = 10−3. The sampling size r̃ is set to be 1200,
1500, 1800, and 2100 for these four matrices, respectively. The number (lmax − ls) of
levels below the switching level is 9 or 10. Table 3 shows the results.

PRSMF has a significant advantage in the flop count and storage. This can also be
observed from Figure 11, and the results are consistent with the theoretical estimates
in [31]. For the third matrix, PRSMF needs about 1/4 of the flops and about 1/2
of the storage for the factors. The factorization time of the new solver is always
shorter. The great memory advantage of the new solver is very attractive since the
memory issue plays a critical role in the design of 3D direct PDE solvers. For the
largest size, PMF runs out of memory. The flop rate of PRSMF is lower due to the
large number of small dense matrices (HSS generators and skinny matrices). The
communication pattern of the new solver is also more complicated. On the other
hand, PMF works mainly on larger dense matrices and exploits the BLAS3 operations
intensively. Iterative refinements can be used to improve the accuracy of the solver.
For the largest matrix, 10 steps of iterative refinements reduce the relative residual
to around 10−6.

For two of the matrices, we also display the strong scaling results of PRSMF in
Figure 12. For each matrix, when the number of processes P doubles, the parallel
factorization time reduces by factors about 1.7 ∼ 1.8.

6.3. 3D elastic wave equation. Then consider the solution of the 3D elastic
wave equation

−ρω2u−∇ · (c : ∇u) = f,

ν · (c : ∇u) = g,

C314 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

Table 3
Parallel weak scaling tests for discretized matrices from the 3D Helmholtz equation.

Matrix size n 3,233,795 6,387,657 9,754,486 15,794,036
Number of nonzeros 50,233,223 99,696,607 152,290,784 247,634,526

lmax 14 15 16 17
Number of processes P 64 128 256 512

PMF

Factorization time (s) 430.46 871.28 1078.77
Factorization flops 1.79E14 5.32E14 1.35E15
Flop rate (Gflops) 415.81 610.69 1251.48
Factor size (GB) 103.74 256.34 420.78
Peak memory

6.05 7.14 7.24per process (GB)
Solution time(s) 8.67 17.93 24.82
Relative residual 4.50E − 6 4.97E − 5 4.98E − 5

PRSMF

Factorization time (s) 376.53 655.93 817.22 981.67
Factorization flops 9.96E13 1.84E14 2.83E14 5.13E14
Flop rate (Gflops) 264.52 280.58 346.78 522.88
Factor size (GB) 62.39 138.85 212.96 350.32
Peak memory

5.58 5.70 5.66 6.09per process (GB)
Maximum HSS rank 1077 1342 1653 2021
Solution time (s) 7.82 15.58 25.32 33.04
Relative residual 2.48E − 3 9.46E − 3 1.76E − 2 1.38E − 2
Number of iterative

3 7 9 10refinement steps
Relative residual

1.50E − 6 2.86E − 6 1.76E − 6 1.20E − 6after refinements

n ×107

0.4 0.6 0.8 1 1.2 1.4 1.6

F
lo

ps

1014

1015

PMF
PRSMF

O(n4/3) reference line

n ×107

0.4 0.6 0.8 1 1.2 1.4 1.6

F
ac

to
r

si
ze

 (
G

B
)

102

103

PMF
PRSMF
O(n) reference line

(i) Factorization flops (ii) Factor sizes

Fig. 11. Factorization flops and factor sizes in Table 3 for discretized matrices from the 3D
Helmholtz equation.

where ρ is the density, ω is the frequency, c is the elastic stiffness tensor, u is the
displacement, ν is the outward normal to the boundary of the domain, and the colon
represents tensor contraction. The equation is discretized on meshes with 2, 5, 10, and
20 million elements in the finite element method. The sample points per wavelength
are fixed to be 5 for all these meshes. Single precision is used. PRSMF uses a compres-
sion tolerance τ = 10−3 and a uniform sampling size r̃ = 1000. Also, lmax − ls = 9.
The results are given in Table 4, where we can observe clear advantages of the new
solver in terms of the speed and memory. For the matrix with n = 9,701,385, PRSMF
takes less than 1/3 of the flops of PMF, less than 3/5 of the parallel factorization

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C315

32 64 128 256

250

500

1000

2000

4000

Number of processes

F
a
c
to

ri
z
a
ti
o
n
 t
im

e
 (

s
)

n = 9,754,486

n = 6,387,657

Number of processes

32 64 128 256

S
o

lu
ti
o

n
 t

im
e

 (
s
)

10

20

40

n = 9,754,486

n = 6,387,657

(i) Strong scaling of factorization time (ii) Strong scaling of solution time

Fig. 12. Strong scaling tests with PRSMF for two discretized matrices from the 3D Helmholtz
equation.

Table 4
Parallel weak scaling tests for discretized matrices from the 3D elastic wave equation.

Matrix size 919,683 2,496,888 4,907,088 9,701,385
Number of nonzeros 41,798,079 114,950,592 227,587,086 452,099,007

lmax 12 13 14 15
Number of processes P 64 128 256 512

PMF

Factorization time (s) 144.80 509.05 1045.07 1853.94
Factorization flops 3.34E13 2.45E14 8.80E14 2.59E15
Flop rate (Gflops) 230.68 481.34 842.08 1397.02
Factor size (GB) 33.93 130.48 288.27 583.44
Peak memory

2.11 4.37 5.24 5.47per process (GB)
Solution time (s) 3.85 9.61 21.50 30.38
Relative residual 3.46E − 7 4.84E − 7 1.59E − 7 1.87E − 7

PRSMF

Factorization time(s) 109.76 304.15 457.04 680.51
Factorization flops 2.42E13 1.19E14 2.12E14 4.68E14
Flop rate (Gflops) 220.45 391.26 463.85 687.72
Factor size (GB) 24.34 87.64 183.38 382.23
Peak memory

1.61 3.29 3.65 3.94per process (GB)
Maximum HSS rank 477 813 901 976
Solution time (s) 3.79 9.43 18.61 28.40
Relative residual 2.81E − 6 4.33E − 6 8.05E − 6 1.35E − 6

time, and about 2/3 of the storage. Let the upper bound of the total memory at
peak be the product of the peak memory per process and the number of processes P .
Then PMF may need nearly 780 GB more memory than PRSMF when both are at
peak. Also, when n increases from 2,496,888 to 9,701,385, the flop count of PRSMF
increases by a factor around 2, while the count of PMF increases by a factor around 3.

6.4. Varying the switching level and sampling size. As mentioned in sec-
tion 6.1, the switching level ls is a user specified level beyond which HSS methods are
applied. As shown in [31], ls is chosen so that lmax− ls is nearly constant. This means
that we can use a small size n to roughly determine the optimal switching level ls.

For example, for the 3D Helmholtz equation in section 6.2, consider the matrix
of size n =3,233,795. With 64 processes, τ = 10−3, r̃ = 1200, and lmax = 14, we vary

C316 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

10
6

10
7

10
14

10
15

n

F
lo

p
s

PMF

PRSMF

O(n
4/3

) reference line

10
6

10
7

10
2

10
3

n

F
a
c
to

r
s
iz

e
 (

G
B

)

PMF

PRSMF

O(n) reference line

(i) Factorization flops (ii) Factor sizes

Fig. 13. Factorization flops and factor sizes in Table 4 for discretized matrices from the 3D
elastic wave equation.

Table 5
Performance of PRSMF for the discretized 3D Helmholtz equation in section 6.2 with different

switching levels ls for n = 3,233,795.

ls 3 4 5 6 7

Factorization flops 1.25E14 1.06E14 9.96E13 1.03E14 1.09E14
Factor size (GB) 81.31 71.45 62.39 63.01 69.28
Relative residual 1.60E − 3 3.64E − 3 2.48E − 3 1.46E − 2 4.81E − 2

Table 6
Performance of PRSMF for the discretized 3D Helmholtz equation in section 6.2 with different

r̃ and τ for n= 3,233,795.

Sampling size r̃ 1000 1200 1400 1600
Compression tolerance τ 1E − 2 1E − 3 1E − 4 1E − 5

Factorization flops 8.66E13 9.96E13 1.08E14 1.13E14
Factor size (GB) 53.87 62.39 72.51 81.62

Maximum HSS rank 658 1077 1317 1544
Relative residual 5.08E − 2 2.48E − 3 9.62E − 4 1.82E − 5

ls and compare the cost of the factorization and the storage. See Table 5. Clearly,
ls = 5 or lmax − ls = 9 gives the optimal complexity and storage.

The sampling size r̃ is usually set to accommodate the desired accuracy of the
randomized HSS approximation. An increase in r̃ will lead to the increase of the cost
for matrix-vector multiplications and RRQR factorizations. When the compression
tolerance τ reduces accordingly, higher accuracies can be achieved. To see this, we
test the same matrix as in Table 5, but with varying r̃ and τ and with fixed ls = 5.
The number of processes is 64. The results are given in Table 6. Hence, r̃ and τ can
be used to control the accuracy of the solution. If we use lower accuracies for faster
factorization and solution, we may use iterative refinement to improve the accuracy,
or use the solver as a preconditioner.

7. Conclusions. In this paper, we have presented a distributed-memory alge-
braic randomized structured multifrontal solver with two levels of tree parallelism.
Hierarchical structured methods are shown to be naturally scalable. Unlike previous
efforts in [28], the new solver enhances both the computation and the communication

DISTRIBUTED-MEMORY RANDOMIZED MULTIFRONTAL SOLVER C317

by using randomization to avoid dense intermediate matrices. It can also handle more
general matrices. Several parallel HSS algorithms have been developed for the solver.
The solver achieves the desired complexity and shows nice scalability in testing some
discretized PDEs.

The implementation of this solver is relatively complex. It is built upon multiple
components such as multifrontal methods, HSS algorithms, and randomized methods.
The efficient implementations of some components are extensively studied by the
scientific computing community. Here, we build a systematic fast parallel structured
sparse solver, and also provide some new parallel implementations of several useful
strategies in sparse and structured solutions. In the near future, we hope to make
the individual components and even the entire solver work as black-box codes so that
other researchers can conveniently use them for different tasks without knowing the
technical details. Such codes will be made publicly available. It is also possible to
simplify the implementation using simpler structures such as the HODLR form [1].

Due to the complex scale of the project, no pivoting is integrated yet. Another
reason for this is that it is not clear how pivoting affects the structures since the
structures depend on proper ordering. This will be thoroughly studied in future
work. Out future work will also include an adaptive scheme for choosing sampling
sizes at different levels of the assembly tree, the replacement of intermediate HSS
forms by multilayer structures [32], the use of batched BLAS for multiple small BLAS
operations, as well as more extensive direct solution and preconditioning tests.

Acknowledgments. We thank Xiao Liu, Fabien Peyruss, and Jia Shi for helping
with the numerical tests and thank TOTAL E&P Research & Technology USA for
providing the computing resource. We are also grateful to the three anonymous
referees for the valuable suggestions.

REFERENCES

[1] S. Ambikasaran and E. F. Darve, An O(N logN) fast direct solver for partial hierarchically
semi-separable matrices, J. Sci. Comput., 57 (2013), pp. 477–501.

[2] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weis-
becker, Improving multifrontal methods by means of block low-rank representations, SIAM
J. Sci. Comput., 37 (2015), pp. A1451–A1474.

[3] P. Amestoy, I. S. Duff, and J. Y. L’Excellent, Multifrontal parallel distributed symmetric
and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184 (2000), pp. 501–520.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, et al.,
ScaLAPACK User’s Guide, SIAM, Philadelphia, PA, 1997.

[5] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[6] S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast ULV decomposition solver
for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006),
pp. 603–622.

[7] S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, On the numerical rank of
the off-diagonal blocks of Schur complements of discretized elliptic PDEs, SIAM J. Matrix
Anal. Appl. 31 (2010), pp. 2261–2290.

[8] R. Clint Whaley, Basic Linear Algebra Communication Subprograms: Analysis and Imple-
mentation Across Multiple Parallel Architectures, LAPACK Working Note 73, University
of Tennessee, 1994.

[9] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear,
ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[10] J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[11] J. A. George, J. W. H. Liu, and E. Ng, Communication results for parallel sparse Cholesky
factorization on a hypercube, Parallel Comput., 10 (1989), pp. 287–298.

[12] N. Gibbs, W. Poole, and P. Stockmeyer, An algorithm for reducing the bandwidth and
profile of a sparse matrix, SIAM J. Sci. Comput., 13 (1976), pp. 236–250.

C318 XIN, XIA, DE HOOP, CAULEY, AND BALAKRISHNAN

[13] J. R. Gilbert and S.-H. Teng, MESHPART, A MATLAB Mesh Partitioning and Graph
Separator Toolbox, http://aton.cerfacs.fr/algor/Softs/MESHPART.

[14] A. Gillman and P. G. Martinsson, A direct solver with O(N) complexity for variable co-
efficient elliptic PDEs discretized via a high-order composite spectral collocation method,
SIAM J. Sci. Comput., 36 (2014), pp. A2023–A2046.

[15] L. Grasedyck, R. Kriemann, and S. Le Borne, Domain-decomposition based H-LU pre-
conditioners, in Domain Decomposition Methods in Science and Engineering XVI, O. B.
Widlund and D. E. Keyes, eds., Lect. Notes. Comput. Sci. Eng. 55, Springer, New York,
2006, pp. 661–668.

[16] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong-rank revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[17] W. Hackbusch, B. N. Khoromskij, and R. Kriemann, Hierarchical matrices based on a weak
admissibility criterion, Computing, 73 (2004), pp. 207-243.

[18] N. Halko, P.G. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011),
pp. 217–288.

[19] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[20] X. S. Li and J. W. Demmel, SuperLU DIST A scalable distributed-memory sparse direct solver
for unsymmetric linear systems, ACM Trans. Math. Software, 29, (2002), pp. 110–140.

[21] E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert, Randomized
algorithms for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA, 104
(2007), pp. 20167–20172.

[22] J. W. H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM
Rev., 34 (1992), pp. 82–109.

[23] X. Liu, J. Xia, and M. V. de Hoop, Parallel randomized and matrix-free direct solvers for
large structured dense linear systems, SIAM J. Sci. Comput., 38, (2016), pp. S508–S538.

[24] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix, SIAM. J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274.

[25] F. Pellegrini and J. Roman, Sparse matrix ordering with SCOTCH, in Proceedings of
HPCN’97, Vienna, Austria, Lecture Notes in Comput. Sci. 1225, Springer, New York,
1997, pp. 370–378.

[26] A. Pothen and C. Sun, A mapping algorithm for parallel sparse Cholesky factorization, SIAM
J. Sci. Comput., 14 (1993), pp. 1253–1257.

[27] P. Schmitz and L. Ying, A fast direct solver for elliptic problems on general meshes in 2D,
J. Comput. Phys., 231 (2012), pp. 1314–1338.

[28] S. Wang. X. S. Li, F. H. Rouet, J. Xia, and M. V. de Hoop, A parallel geometric multifrontal
solver using hierarchically semiseparable structure, ACM Trans. Math. Software, 42 (2016).

[29] S. Wang, X. S. Li, J. Xia, Y. Situ, and M. V. de Hoop, Efficient scalable algorithms for
solving dense linear systems with hierarchically semiseparable structures, SIAM J. Sci.
Comput., 35 (2013), pp. C519–C544.

[30] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM
J. Sci. Comput., 35 (2013), pp. A832–A860.

[31] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.
[32] J. Xia, Multilayer Hierarchically Semiseparable Structures, GMIG Report 15–16, Purdue Uni-

versity, 2015.
[33] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for

large structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009),
pp. 1382–1411.

[34] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[35] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via ran-
domized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.

[36] Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan, Parallel Randomized
Structured Multifrontal Method for General Sparse Matrices, GMIG Report 14–17, Purdue
University, 2014.

[37] Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan, Scalable Randomized
Structured Multifrontal Method for Large-Scale Sparse Direct Solutions, GMIG Report
15–14, Purdue University, 2015.

[38] Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan, A Distributed-Memory
Randomized Structured Multifrontal Method for Sparse Direct Solutions, GMIG Report 9,
Rice University, 2016, pp. 169–189.

	Introduction
	Nested dissection for general graphs, parallel symbolic factorization, and connectivity preservation
	Review of the randomized structured multifrontal method
	Distributed-memory parallel randomized multifrontal method
	Overview of the parallel model and data distribution
	Parallel randomized HSS construction, factorization, and Schur complement computation
	Parallel skinny extend-add operation
	Extracting selected entries from HSS update matrices

	Analysis of the communication cost
	Numerical experiments
	Poisson's equation and linear elasticity equation in two dimensions
	3D Helmholtz equation
	3D elastic wave equation
	Varying the switching level and sampling size

	Conclusions
	References

