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Abstract. We present an approximate structured factorization method which is efficient, ro-
bust, and also relatively insensitive to ill conditioning, high frequencies, or wavenumbers for some
discretized PDEs. Given a sparse symmetric positive definite discretized matrix A, we compute a
structured approximate factorization A ≈ LLT with a desired accuracy, where L is lower triangular
and data sparse. This can be used in direct solution or preconditioning for linear systems. The
method uses the idea that during the direct factorization of some discretized matrices, certain dense
intermediate matrices have a low-rank property, or, their off-diagonal blocks can be approximated
by compact low-rank matrices. In this paper, we organize the factorization with a supernodal ver-
sion multifrontal method using nested dissection ordering of the matrix. Each dense intermediate
matrix is formed explicitly and then partially factorized so that the leading factor is a hierarchically
semiseparable matrix and the Schur complement remains dense. The use of explicit dense matrices
makes the method much simpler than existing structured factorization methods. The overall factor
remains structured and can be used to solve systems in nearly linear complexity. The factorization
algorithm costs O(rn log2 n), where n is the matrix size, and r is a parameter related to the tolerance
and the problem. Schur complements are automatically compensated during the factorization so that
LLT always exists for any accuracy and has enhanced positive definiteness. No extra stablization is
needed. The method also works well as a preconditioner even if the low-rank property is not highly
significant. We demonstrate the reliability and effectiveness of the method with various applications,
including elliptic problems, linear elasticity equations, Helmholtz equations, Maxwell equations, etc.
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1. Introduction. Large sparse linear systems arise from numerical discretiza-
tions of PDEs in practical problems. Typically, there are two types of linear system
solvers, direct methods and iterative methods. Direct methods are reliable and are
efficient for multiple right-hand sides, but are often expensive due to the generation
of fill-in or loss of sparsity. Iterative methods take good advantage of sparsity and
require less storage, but may diverge or converge slowly without effective precondition-
ers. Classical preconditioners such as incomplete factorization or orthogonalization
methods can break down due to numerical instability.

In this paper, we are interested in reliable and fast approximate factorizations
of large discretized matrices. These factorizations can be used as direct solvers with
specified accuracy, or as preconditioners. Assume we have a system

(1.1) Ax = b

arising from the discretization of certain PDEs, where A is a symmetric positive
definite (SPD) matrix. In direct solutions of the system, we compute the Cholesky
factorization A = LLT . The matrix A is usually sparse. However, the factorization
may create nonzeros in L which are called fill-in. One way to reduce fill-in is to reorder
the rows and columns of A, or to reorder the mesh points used in the discretization.
For example, for an N × N regular mesh, the factorization with a natural rowwise
or columnwise ordering needs O(n2) flops and O(n3/2) storage space, where n =
N2 is the order of A. On the other hand, the nested dissection ordering [23] and
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its generalizations lead to O(n3/2) complexity factorizations with O(n log n) storage.
For two-dimensional (2D) problems, these are shown to be lower bounds for exact
factorizations with any ordering [30] (ignoring special techniques such as Strassen’s
algorithm [41]). Nested dissection uses separators to recursively divide the mesh into
subregions. Mesh points are put into separators at different levels of the elimination.

On the other hand, some iterative methods such as multigrid converges with O(n)
complexity for some problems. In this work, we compute structured approximate
factorizations of A based on a rank property of the problems. It has been indicated
in [3, 4, 7, 25, 26, 44, etc.] that for some PDEs such as elliptic equations, during the
direct factorization of A, the fill-in has a low-rank property, or, the off-diagonal blocks
have small numerical ranks. This property can be used to improve the efficiency of
the factorization. Rank structured matrices such as quasiseparable or semiseparable
matrices [22, 43] can be used to approximate the dense intermediate matrices.

In fact, we can also simply form the dense intermediate matrices first and then
approximately factorize them into rank structured matrices. In this paper, we orga-
nize the factorization with a supernodal multifrontal method together with the nest
dissection ordering of mesh points. The multifrontal method is a very important di-
rect methods for sparse matrix solutions [21, 33]. The multifrontal method keeps the
propagation of information locally between nodes and their parents, even if nearby
mesh points may locate at different levels of the elimination process after reordering.
The supernodal version multifrontal method we use has nice data locality and takes
good advantage of dense matrix operations. The factorization follows an elimination
tree of the separators. The intermediate matrices are called frontal matrices and up-
date matrices. A frontal matrix is formed before the elimination of each separator
and carries the information of the separator and its upper level neighbors. An update
matrix is the Schur complement after the elimination of a separator from the frontal
matrix. If the problem has the low-rank property, the frontal matrices can be approx-
imated with rank structured matrices such as semiseparable matrices. This is what
[44] does. [44] uses semiseparable matrices in all stages of the structured factorization.
However, this makes the assembly of structured matrices extremely complicated. The
algorithm is not straightforward to understand and careful implementation is needed
to ensure high efficiency.

Here, a dense frontal matrix corresponding to each separator is formed first and
then approximately factorized into structured form. After the factorization, the Schur
complement matrix (update matrix) is still a regular dense matrix. Thus, standard
extend-add is used. That is, all frontal and update matrices are in dense forms, but
the factors are structured. This makes the algorithm much simpler than the one in
[44].

Furthermore, the algorithm in [44] may suffer from the problem of breakdown, or
the lose of positive definiteness, especially when a large tolerance is used. Here, when
directly factorizing dense frontal matrices, we use a robustness technique where Schur
complements are automatically compensated. This compensation is done implicitly
during the approximation of off-diagonal blocks. Thus, the low-rank approximation
improves not only the efficiency but also the reliability. The total factorization cost of
the new algorithm is only O(rn log n), where r is the maximum off-diagonal numerical
rank. This has an extra log n factor compared to the complexity of the algorithm in
[44]. However, the computation time is still very competitive due to the dense block
operations.

In addition, even for problems where the low-rank property is not very signifi-



ROBUST STRUCTURED MULTIFRONTAL FACTORIZATION 3

cant, our approximate factorization with a relatively large tolerance can still be used
as a preconditioner whose effectiveness can be illustrated by numerical tests and pre-
liminary analysis. That is, the factorization does not need strict low-rank structural
requirement to be effective.

The semiseparable structure we use for the factors is a tree structured hierarchi-
cally semiseparable (HSS) matrix [8, 9, 14]. Thus, the overall Cholesky factor is given
by two layers of tree structures, an outer elimination tree of separators, and an inner
HSS tree corresponding to each separator. The complexity for solving a linear system
with such a structured factor is nearly linear.

The rest of this paper is organized as follows. Section 2 reviews the nested dissec-
tion ordering and the multifrontal method. Section 4 presents the main factorization
algorithm and its analysis. Numerical tests are given in Section 5. Problems such
as elliptic problems, linear elasticity near incompressible limit, Helmholtz equations,
Maxwell equations are considered.

2. Review of nested dissection ordering and multifrontal method.

2.1. Nested dissection ordering. Consider the mesh used in the discretization
as an undirected graph G = (V, E). Each vertex i ∈ V corresponds to a row and a
column of A, and each edge (i, j) ∈ E corresponds to entries aij = aji 6= 0. Nested
dissection recursively divides the mesh into subregions with separators [23]. At the
first level, a separator divides the entire grid into two subregions (plus the separator
itself). The two subregions are further divided recursively. See Figure 2.1.

Two levels of partition in 2D. Image based on MESHPART [24]

Three levels of partition in 3D. Image based on DISTMESH [?]

Fig. 2.1. Nested dissection ordering for irregular meshes.

Lower level separators are ordered before upper level ones. During the factoriza-
tion of A, the elimination of a mesh point mutually connects points which are previ-
ously connected to it [39, 42]. This creates fill-in. For simplicity of presentations, we
look at an N ×N regular mesh such as the one in Figure 2.2. After reordering, the
matrix A has nonzero pattern as shown in Figure 2.3. Then clearly, the nodes in the
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top level separator are mutually connected and form a dimension O(N) dense matrix
whose exact factorization costs at least O(N3) flops.
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Fig. 2.2. Separators in nested dissection.
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Fig. 2.3. Nonzero pattern of A after the nested dissection ordering of the rows and columns.

2.2. Multifrontal method. The multifrontal method reorganizes the factor-
ization A = LLT into partial factorizations of intermediate dense matrices [21, 33].
The factorization is conducted following a tree called elimination tree. In general, an
elimination tree T has n nodes and a node p is the parent of j if and only if

p = min{i > j|lij 6= 0}.

Use T [j] to denote the subtree of T with root j. In the elimination, the contributions
from child nodes are passed to parents in terms of outer products. Define the subtree
update matrix corresponding to j as

Ūj = −
∑

k∈T [j]−j

L{i0,i1,...,ir},kLT
{i0,i1,...,ir},k,

where L{i0,i1,...,ir},k is a column vector of all the nonzero entries in L:,k, the kth
column of L and {i0, i1, . . . , ir} is the set of row indices of the nonzero entries. The
jth frontal matrix is defined to be

Fj =
(

aj,j AT
{i1,i2,...,ir},j

A{i1,i2,...,ir},j 0

)
+ Ūj .
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One step of elimination applied to Fj provides the column L{i0,i1,...,ir},j

Fj =
(

lj,j 0
L{i1,i2,...,ir},j I

)(
lj,j LT

{i1,i2,...,ir},j
0 Uj

)
,

where Uj is the contribution from the T [j] to the parent of j and is called the jth
update matrix. Uj has the form

Uj = −
∑

k∈T [j]

L{i1,i2,...,ir},kLT
{i1,i2,...,ir},k.

In the multifrontal method, lower level frontal matrices are formed and partially
eliminated to provide some columns of L and the update matrices. The update
matrices are then used to form upper level partial update matrices and thus upper
level frontal matrices. This process is called extend-add, denoted

Fj =
(

aj,j AT
{i1,i2,...,ir},j

A{i1,i2,...,ir},j 0

)
↔l Uc1↔l Uc2↔l · · ·↔l Ucq ,

where nodes c1, c2, . . . , cq are the children of j in the elimination tree. The process
then repeats along the elimination tree.

3. Dense structured preconditioning. We introduce the preconditioner us-
ing block 2 × 2 cases. Generalizations to more blocks are shown in the remaining
sections. Assume an n× n matrix A has the following partition:

A =
(

A11 A12

A21 A22

)
m

n−m
.

Without loss of generality, we assume m ≤ n/2, and any appropriate inverse in the
following exists. First, compute an LU factorization A11 = L11R11, where L11 and
R11 and lower and upper triangular matrices, respectively. The traditional block
Cholesky factorization of A proceeds as

(3.1) A =
(

L11 0
L21 L22

)(
R11 R12

0 R22

)
≡ LR,

where R12 = L−1
11 A12, L21 = A21R−1

11 , and L22R22 is the LU factorization of the
Schur complement

(3.2) A(1) = A22 − L21R12.

In our approximate factorization, before R22 is computed, we first compute the (τ -
accurate) SVD of the matrix Ω ≡ (

R12 LT
21

)

(3.3) Ω =
(

U Û
) (

Σ
Σ̂

)(
V T

V̂ T

)
= UΣV T + Û Σ̂V̂ T = UΣV T + O(τ),

where τ is a tolerance, and Σ = diag(σ1, . . . , σr), Σ̂ = diag(σr+1, . . . , σm) with

(3.4) σ1 ≥ · · · ≥ σr ≥ τ ≥ σr+1 ≥ · · · ≥ σm.
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Partition V T =
(

V T
1 V T

2

)
and V̂ T =

(
V̂ T

1 V̂ T
2

)
following the column partition

of
(

R12 LT
21

)
. The Schur complement (4.4) is now

A(1) = A22 − (UΣV T
2 + Û Σ̂V̂ T

2 )T (UΣV T
1 + Û Σ̂V̂ T

1 )

= A22 − V2Σ2V T
1 − V̂2Σ̂2V̂ T

1 .

With the approximation Ω ≈ UΣV T , the Schur complement A(1) is approximated by

(3.5) Ã(1) = A22 − V2Σ2V T
1

Next, compute the LU factorization Ã(1) = L̃22R̃22 and obtain an approximate
factorization of A

(3.6) A ≈ L̃R̃, L̃ =
(

L11

V2ΣUT L̃22

)
, R̃ =

(
R11 UΣV T

1

0 R̃22

)
.

We then study the effectiveness of using L̃R̃ as a preconditioner for A by consid-
ering the condition number of the preconditioned matrix L̃−1AR̃−1 = L̃−1LRR̃

−1
.

Lemma 3.1. Let L̃R̃ in (3.6) be a preconditioner for A in (3.1). Then precondi-
tioned matrix is

L̃−1AR̃−1 =
(

I C1

C2 I

)
,

where C1 = Û Σ̂V̂ T
1 R̃−1

22 and C2 = L̃−1
22 V̂2Σ̂ÛT .

Proof. Clearly,

RR̃
−1

=
(

R11 UΣV T
1 + Û Σ̂V̂ T

1

0 R22

)(
R11 UΣV T

1

0 R̃22

)−1

=
(

I Û Σ̂V̂ T
1 R̃−1

22

0 R22R̃−1
22

)
,

and L̃−1L =
(

I 0
L̃−1

22 V̂2Σ̂ÛT L̃−1
22 L22

)
. Thus,

L̃−1AR̃−1 =
(

I 0
L̃−1

22 V̂2Σ̂ÛT L̃−1
22 L22

)(
I Û Σ̂V̂ T

1 R̃−1
22

0 R22R̃−1
22

)

=
(

I Û Σ̂V̂ T
1 R̃−1

22

L̃−1
22 V̂2Σ̂ÛT L̃−1

22 (V̂2Σ̂2V̂ T
1 + L22R22)R̃−1

22

)
.

Noticing (3.5), we have

L̃−1
22 (V̂2Σ̂2V̂ T

1 + L22R22)R̃−1
22 = L̃−1

22 Ã(1)R̃−1
22 = I.

Theorem 3.2. The 2-norm condition number κ(L̃−1AR̃−1) of the preconditioned
matrix satisfies

κ(L̃−1AR̃−1)

Since

(3.7) R̃T R̃ = A +
(

0 0
0 V̂ Σ̂2V̂ T

)
= A +

(
0 0
0 O(τ2)

)
,

the approximate matrix R̃T R̃ is guaranteed to be positive definite. The matrix R̃
can be used as a preconditioner and the preconditioned matrix Ã = R̃−T AR̃−1 has a
form in the following result.
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4. Structured supernodal multifrontal factorization.

4.1. Supernodal multifrontal method with nested dissection. We first
generalize a supernodal version multifrontal method used in [44] for sparse problems.

In the classical multifrontal method, each node of the elimination tree represents
one row or column of the matrix. On the other hand, supernodal factorization allows
dense vector operations and reduces symbolic overhead. Here we use nested dissection
to order the mesh points. See Figure 2.2. The separators are then treated as nodes
in the elimination tree. Figure 4.1 shows the elimination tree for the mesh in Figure
2.2.
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Fig. 4.1. Supernodal version elimination tree for the mesh in Figure 2.2

Typically, when the bottom level separator sizes are specified, we can decide a
binary tree as the elimination tree of separators. Without loss of generality, we can
use a full binary tree, that is, each node other than the leaves has exactly two children.
In fact, we have

Theorem 4.1. For any odd number 2k− 1 with k ∈ N, there always exists a full
binary tree with totally 2k − 1 nodes, and k of them are leaf nodes.

Proof. Induction or construction.
Let {i1, i2, . . . , ir} be the set of neighbor separators of separator j at the same or

upper levels of j. The frontal matrix Fj has the following form:

Fj =
(

Fj,j FT
{i1,i2,...,ir},j

F{i1,i2,...,ir},j F{i1,i2,...,ir},{i1,i2,...,ir}

)
≡




Fj,j FT
i1,j · · · FT

ir,j

Fi1,j Fi1,i1 · · · FT
ir,i1

...
...

. . .
...

Fir,j Fir,i1 · · · Fir,ir


 .

Let c1 and c2 be the children of j. Fj is formed by the block form extend-add

(4.1) Fj =
(

Aj,j AT
{i1,i2,...,ir},j

A{i1,i2,...,ir},j 0

)
↔l Uc1↔l Uc2 ,

where we call the first matrix on the righthand side the jth initial frontal matrix. The
major operations include, forming the frontal matrix Fj by extend-add (when j is a
leaf node, no extend-add is necessary), eliminating separator j or factorizing Fj,j , and
forming Uj or computing the Schur complement of Fj,j . All these are done in block
form.

4.2. Semiseparable structures. It has been shown that during the factoriza-
tion of the discretized matrices arising from some problems such as elliptic PDEs, the
off-diagonal of the Schur complements have bounded numerical ranks independent of
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mesh sizes [3, 4, 7]. The Green’s functions for these problems are smooth away from
the diagonal singularity. As discussed in [44], when the factorization is conducted with
the supernodal multifrontal method, the frontal and update matrices then have this
low-rank property also, that is, the off-diagonal blocks of the frontal and update ma-
trices have small numerical ranks, with approximate definitions of off-diagonal blocks.
Therefore, in [44], all the frontal and update matrices are approximated by semisep-
arable matrices and the extend-add operation (4.1) is replaced by a structured one.
The semiseparable structure used in [44] is called hierarchically semiseparable (HSS)
structure [8, 9, 14]. A block 4× 4 HSS matrix looks like

(4.2)




D1 U1B1V
T
2 U1R1B3W

T
4 V T

4 U1R1B3W
T
5 V T

5

U2B2V
T
1 D2 U2R2B3W

T
4 V T

4 U2R2B3W
T
5 V T

5

U4R4B6W
T
1 V T

1 U4R4B6W
T
2 V T

2 D4 U4B4V
T
5

U5R5B6W
T
1 V T

1 U5R5B6W
T
2 V T

2 U5B5V
T
4 D5


 ,

where the matrices Di, Ui, Bi, . . . are called generators. (4.2) is a simplified HSS form
in [14] based on the original form. An HSS matrix has a natural multi-level tree
structure called HSS tree. Figure 4.2 shows the HSS tree for (4.2) and the generators
in (4.2) are indexed according to the postordering of the tree nodes. Upper level

generators are defined in terms of lower level ones. For example, U3 =
(

U1R1

U2R2

)
.

B3

B6

W2

R2R1

W1

B1

B21

U2, V2U1, V1

W5

R5R4

W4

B4

B5

U5, V5U4, V4

D1 D2 D4 D5

2

3

4 5

6

7

level

0

1

2

V6

T
U3B3

V2

T
U1B1

V5

T
U4B4

D1

D2

D4

D5

Fig. 4.2. HSS tree for (??) and the multi-level representation.

Correspondly, the matrix (4.2) can be partitioned into multiple levels and the off-
diagonal blocks at different levels are show in Figure 4.3. These off-diagonal blocks
are called HSS (off-diagonal) blocks. The bottom level diagonal blocks correspond to
the leaf nodes of the HSS tree.
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(i) One level of HSS blocks (ii) Two levels of HSS blocks

Fig. 4.3. Two levels of HSS (off-diagonal) blocks.
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4.3. Robust structured factorization. The structured factorization in [44]
leads to a nearly linear complexity solver for the problem. However, the structured
extend-add process is extremely complicated due to HSS operations such as permuta-
tion, splitting, merging, and compression. In this paper, we use the robust structured
factorization method in [45] which is for general dense matrices. It highly simplifies
the overall solver.

The factorization method in [45] computes an approximate Cholesky factorization
for a dense SPD matrix F ≈ LLT where L is a lower triangular HSS matrix. The
approximation LLT can be accurate to any specified accuracy, and it has better
positive definiteness than F due to the automatic Schur complement compensation.
(It is not hard to show that in the HSS Cholesky factor, the U, V generators satisfy
Ui ≡ Vi.) The fundamental idea can be illustrated by a block 2×2 example. Partition
F as

F ≡
(

F11 FT
21

F21 F22

)

and compute a Cholesky factorization F11 = D1D
T
1 . We have

(4.3) F =
(

D1

F21D
−T
1 I

)(
DT

1 D−1
1 FT

21

S

)
,

where S = F22 − (F21D
−T
1 )(D−1

1 FT
21) is the Schur complement. Compute an SVD of

the off-diagonal block

D−1
1 FT

21 =
(

U1 Û1

) (
B1

B̂1

)(
V T

2

V̂ T
2

)
= U1B1V

T
2 + Û1B̂1V̂

T
2 ,

where the partition of the SVD factors is decided by a tolerance τ so that ||B̂1||2 =
O(τ). If D−1

1 FT
21 is approximated by U1B1V

T
2 , then S = F22 − V T

2 BT
1 V2 − V̂ T

2 B̂T
1 V̂2

can be approximated by

(4.4) S̃ = F22 − V T
2 BT

1 V2.

Clearly, S̃ has enhanced positive definiteness. On the other hand, dropping Û1B̂1V̂
T
2

also saves the cost. Then compute a Cholesky factorization S̃ = D2D
T
2 and we have

F ≈ LLT =
(

D1

U2B2U
T
1 D2

)(
DT

1 U1B1U
T
2

DT
2

)
.

In general, the factorization is conducted along the postordering traversal of a given
full binary tree which becomes the HSS tree. See [45] for the details. The algorithm
gives an HSS form L where the U generators all have orthonormal columns.

In this paper, we use this method to partially factorize the frontal matrices. That
is, for a node j of the elimination tree, its frontal matrix Fj in (4.1) is (approximately)
factorized as

(4.5) Fj ≈
(

Lj,j 0
L{i1,i2,...,ir},j I

)(
LT

j,j LT
{i1,i2,...,ir},j

0 Uj

)
,

where Lj,j is an HSS matrix,
(

LT
i1,j · · · LT

ir,j

)
is in structured form given in the

factorization of Fj,j , and Uj is dense. This partial factorization can be done as follows.
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F{s1,...,sd},{s1,...,sd}

Fi,i

F{s1,...,sd},i

Uk+1

k-2
k-1

k

c1
c2

c11
c12

c21 c22

Fig. 4.4. Partial factorization of a frontal matrix Fj and the HSS tree used. Fj is shown with
its leading block Fj,j represented by structured factors. The subtree T [k − 2] is for Fj,j .

Set a full HSS tree T with k nodes where the left and right children of the root are
k − 2 and k − 1 respectively. The entire subtree T [k − 2] is used as the HSS tree
for completely factorizing Fj,j , and the single node k − 1 is for the unfactorized part
F{i1,i2,...,ir},{i1,i2,...,ir} of Fj .

The algorithm in [45] is applied to Fj with following the postordering traversal
of the nodes of the tree T . But the factorization stops when the entire T [k − 2] is
visited. At the point, Fj,j ≈ Lj,jL

T
j,j where Lj,j is an HSS matrix. Assume Lj,j has

generators Di, Ui, Ri. Let nodes c1 < c2 be the children of k− 2, and ci1 < ci2 be the
children of ci, i = 1, 2. Then use the multi-level HSS representation as in Figure 4.2
we have a structured form of (4.5)

(4.6) Lj,j =







. . . 0

Uc12Bc12U
T
c11

. . .


 0

Uc2Bc1U
T
c1




. . . 0

Uc22Bc22U
T
c21

. . .







,

(4.7) L{i1,i2,...,ir},j = HjU
T
k−2,

(4.8) Uj ≈ F{i1,i2,...,ir},{i1,i2,...,ir} −HjH
T
k−1,

where Hj is a factor obtained in the compression of F{i1,i2,...,ir},j , and more specifi-
cally, Uk−2H

T
k−1 is a rank-revealing QR factorization of L−1

j,j FT
{i1,i2,...,ir},j . Since Uk−2

has orthonormal columns, the approximation (4.8) to Uj is obtained by a low-rank
update only. Furthermore, the approximation has better positive-definiteness than
the exact Uj , similar to the situation that S̃ in (4.4) approximates S in (4.3). The
approximate Uj then participate in the construction of the frontal matrix of the par-
ent frontal matrix just like in the standard multifrontal method. Each node j of the
elimination tree is associated with an HSS form Lj,j and a full rank matrix Hj . These
are used in the structured multifrontal solution.

This process then proceeds along the elimination tree. After the elimination, we
have an approximate factor L of A in structured form. See Figure 4.5 for an example.
L is associated with two layers of postordering trees, the outer layer elimination
tree, and an inner layer HSS tree for each node of the elimination tree. For better



ROBUST STRUCTURED MULTIFRONTAL FACTORIZATION 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

7

15

4

5

6

8

9

10

14

11

12

13

Fig. 4.5. A sparse matrix in nested dissection ordering, and its structured factor.

performance, at some bottom levels of the elimination, we can use the traditional
multifrontal method. After a switching level ls, structured factorizations are used.

Algorithm 1. (Robust structured multifrontal factorization)
1. Mesh ordering: Use nested dissection to order the mesh points. Build a

postordering elimination tree with m nodes.
2. Symbolic factorization: Decide the switching level ls (see Theorem 4.2 below).

Based on the connections of separators and off-diagonal numerical ranks (or
storage restriction), predict the structure of the factor. Allocate storage for
update matrix stacks and the structured factor.

3. Numerical factorization: For separators j = 1, . . . , m
(a) If j is a leaf node, set j to be the jth initial frontal matrix.
(b) If j is at level lj > ls

i. Apply the traditional Cholesky factorization to partially factorize
Fj,j until separator j is eliminated.

ii. Compute Uj , the Schur complement.
(c) If j is at level lj ≤ ls

i. Apply the structured Cholesky factorization above to partially fac-
torize Fj,j until separator j is eliminated. Store Lj,j in (4.6) and
Hj in (4.7).

ii. Compute Uj with a low-rank update as in (4.8).
(d) If j is a left node, push Uj onto the update matrix stack.
(e) If j is a right node, pop an update matrix Ui from the update matrix

stack (i is the sibling of j). Use the traditional extend-add procedure to
obtain the frontal matrix of the parent node of j.

About the complexity of the algorithm, we have the following theorem.
Theorem 4.2. Assume Algorithm 1 is used to factorize a discretized matrix A

on an N ×N regular mesh, and the elimination tree is a complete binary tree. Also
assume the numerical ranks of all HSS off-diagonal blocks of the frontal matrices in the
factorization are bounded by r. Then the complexity of Algorithm 1 is O(rN2 log2 N),
if the elimination tree has l = 2 blog2 Nc levels with the switch level ls chosen such
that the cost for the bottom level standard factorizations is the same as the cost for
upper level structured factorizations. In such a situation, the storage for the structured
factor is O(N2 log2(r log2 N)).

Proof. Among the total l levels of the elimination tree, the l − ls bottom levels
are standard factorizations, and the upper ls levels are structured. Level i has 2i

separators each with size N/2bi/2c. Since the mesh is regular, any separator at level
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i has at most four upper level neighbors. The dimension of Fj is O(N/2bi/2c).
The major steps are the partial factorization step 3b or 3c, and the extend-add

step 3e. Clearly, the extend-add step 3e costs O((N/2bi/2c)2) flops for each right node
j at level i.

If separator j is at level i > ls, the partial factorization of Fj costs O((N/2bi/2c)3)
flops. This includes the factorization of Fj,j , the update of the block lower triangular
part, and the computation of the Schur complement Uj . If separator j is at level
i ≤ ls, the partial factorization of Fj is structured. The factorizatin of Fj,j costs
O(r(N/2bi/2c)2) flops, according to the HSS factorization algorithm in [45]. The
update of the block lower triangular part (4.7) and the computation of Uj in (4.8) are
are done by low-rank updates and their costs are bounded by O(r(N/2bi/2c)2).

Traditional factorizations Structured factorizations
l = O(log2 N) levels l − ls bottom levels ls upper levels

Each level (i = 0, 1, . . . , l) 2i separators, each of size O(N/2bi/2c)
Cost for each separator O((N/2bi/2c)3) O(r(N/2bi/2c)2)

Total cost
∑l

i=ls+1 2iO((N/2bi/2c)3)
∑ls

i=0 2iO(r(N/2bi/2c)2)
Table 4.1

Flop count for Algorithm 1.

Table 4.1 shows the count of the complexity. Therefore, we have the total cost
for the algorithm by adding the costs in the last row of Table 4.1

ξ(ls) =
l∑

i=ls+1

2iO((N/2bi/2c)3) +
ls∑

i=0

2iO(r(N/2bi/2c)2)

l/2∑

i=ls/2+1

22i(2l/2−i)3 +
l/2∑

i=ls/2+1

22i+1(2l/2−i)3 +
ls/2∑

i=0

(l/2− i)r22i(2l/2−i)2 +
ls/2∑

i=0

(l/2− i)r22i+1(2l/2−i)2

= O(2l2
1
2 (l−ls)) + O(2lrls)

: − 3
82lr (ls + 2) (ls − 2l)

l/2∑

i=0

(l/2− i)22i(2l/2−i)2 +
l/2∑

i=0

(l/2− i)22i+1(2l/2−i)2

: 3
82ll (l + 2)

This cost is optimized if we choose ls so that

(4.9) 2
1
2 (l−ls) ≈ rls.

Since rls ≤ rl = O(r log2 N),

ξ(ls) ≤ O(2lrl) = O(rN2 log2 N).

This means, the optimal complexity is achieved if the cost before the switch level is
equal to that after.
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With the optimality condition (4.9), the storage requirement is

σ(ls) =
l∑

i=ls+1

2iO((N/2bi/2c)2) +
ls∑

i=0

2iO(r(N/2bi/2c))

= O(2l(l − ls)) + O(r2
1
2 (l+ls))

= O(N2 log2(rls)) + O(
N2

ls
)

/ O(N2 log2(r log2 N)).

If we have knowledge about the maximum numerical rank r in advance, we can
use the optimality condition (4.9) to find ls in the symbolic factorization step. In
fact, we can use (4.9) to verify that ls satisfies α(l−2 log2 r) / ls / l−2 log2 r, where
α = e ln 2

2+e ln 2 ≈ 0.49 with e the natural exponential. The larger l is, the closer ls is to
l − 2 log2 r. In such a situation, we can verify that the storage requirement σ(ls) is
nearly O(N2 log2 r), or linear in the matrix size N2.

As compared with other structured algorithms such as the one in [44], Algorithm
1 has some advantages. One is that this new algorithm is much simpler because the
extend-add operation only uses the regular dense matrix addition. Another advantage
is that it is more robust. For a symmetric matrix A, the structured factor is always
guaranteed to exist and has enhanced positive definiteness. The tradeoff is that
there is an extra log2 N factor in the flop count, and an extra O(N2 log2 log2 N)
memory requirement. However, since the implementation is significantly simpler, the
actual running time is still competive when taking advantage of BLAS3 dense matrix
operations. The storage count is nearly linear in N2 in practice. For example, for N
as large as 10300, we still have log2 log2 N < 10.

4.4. Structured multifrontal solution. After the factorization, we have A ≈
LLT where the diagonal blocks of L are in HSS forms and the lower off-diagonal
blocks are in compressed forms. We then solve two structured triangular systems

Ly = b,(4.10)

LT x = y.(4.11)

For convenience, assume b, x, y are partitioned comfomally according to the sizes of
the separators so that, say, b =

(
bT
1 , bT

2 , . . . , bT
m

)T with the length of bj equal to the
number of nodes in separator j. Since the situation when Lj,j is nonstructured (node
j is before the switching level) is trivial, when describing the algorithm we assume
the factorization for each node is structured.

The solution of (4.10) with forward substitution involves forward (or postordering)
traversal of the elimination tree. Initially, for node j = 1 of the elimination tree, we
solve a lower triangular HSS system L1,1y1 = b1. A triangular HSS solver similar to
the one in [34] is used. This is done by a forward (or postordering) traversal of the
HSS tree for L1,1. In such a solver, b1 is partitioned again according to the according
to the leaf nodes of the HSS tree. Assume {i1, i2, . . . , ir} be the set of upper level
neighbor separators of separator 1. Then bi1 , bi2 , . . . , bir should be updated. Let

t1 = H1(UT
k−2y1),
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where k − 2 is the total number of nodes in the HSS tree for L1,1. Partition t1

as
(
tT1,i1

, tT1,i2
, . . . , tT1,ir

)T according to the sizes of separators i1, i2, . . . , ir. Then the
righthand side vector b is updated via

bi ← bi − t1,i, i = i1, i2, . . . , ir.

Since Uk−2 may only be available implicitly in terms of lower level HSS generators,
an HSS matrix vector product may be needed [17]. The process then applies similarly
to j = 2, 3, . . . , m.

In the backward substitution stage for solving (4.11), we traverse the elimination
tree top-down. Initially, for node j = m of the elimination tree, solve an upper
triangular HSS system Lm,mxm = ym. Then assume {i1, i2, . . . , is} be the set of
lower level neighbor separators of separator n. We should update yi1 , yi2 , . . . , yis

. Let

tm = Uk−2(HT
mxm),

where k − 2 is the total number of nodes in the HSS tree for Lm,m. Partition tm

as
(
tTm,i1

, tT1,i2
, . . . , tTm,is

)T according to the sizes of separators i1, i2, . . . , is. Then the
righthand side vector y is updated via

yi ← yi − t1,i, i = i1, i2, . . . , is.

Again, an HSS matrix vector product may be needed to compute tm. The process
applies similarly to j = m− 1,m− 2, . . . , 1.

The complexity of the solution process is also almost linear in N2 in practice.
Theorem 4.3. Under the same conditions as in Theorem 4.2, the cost to solve

(4.10) or (4.11) is O(N2 log2(r log2 N)).

5. Numerical experiments.

5.1. Implementation issues. The new algorithm applies to general irregular
meshes. In fact, it can even factorize arbitrary SPD sparse matrices, since the ordering
of the rows and columns can be done on the connectivity graph of the matrix. Various
ordering packages can be used. We build a nested dissection code based on the toolbox
MESHPART [24] which uses METIS [38].

5.2. Elliptic problems. (Show complexity and storage)

5.3. Spectral method for elliptic equations and Helmholtz equations.
Nelx = Nely = 20

5.4. Linear elasticity near incompressible limit. Consider a linear elasticity
equation

−(µ
−→
∆u + (λ + µ)∇−−−→∇ · u) =

−→
f in Ω = [0, 1]× [0, 1],(5.1)

−→u =
−→
0 on ∂Ω,

where −→u is the displacement vector field, and λ and µ are the Lamé constants. This
PDE is very ill conditioned when λ/µ is large. This limit is known as the incom-
pressible limit which, and for example, is associated with the mechanical behavior
of elastomeric materials and plastic flow in metals. It is an important situation in
practice.
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To demonstrate the existence of the low-rank property in this problem, we con-
sider a frontal matrix F corresponding to the top level separator in nested dissection.
For different λ/µ and different tolerances in the approximation, the maximum off-
diagonal numerical ranks for F are given in Table 5.1. The numerical ranks are
relatively small as compared with the matrix size. This indicates that the dense fill-
in can be compressed. More significant is that, the numerical ranks are relatively
insensitive to λ/µ, even if it is very large. This means, low-rank structured approxi-
mate factorizations of the problems are suitable for ill-conditioned situations. Or, our
method is a good choice near the incompressible limit.

τ 10−2 10−4 10−6 10−8

λ
µ

1 8 22 34 43
102 4 17 31 40

τ 10−2 10−4 10−6 10−8

λ
µ

104 3 11 22 33
106 3 10 16 27

Table 5.1
Maximum off-diagonal numerical ranks of an order 201 frontal matrix in the supernodal mul-

tifrontal method for (5.1) with different compression tolerances τ .

5.5. Time harmonic Maxwell equations. The problems of electromagnetic
fields are governed by Maxwell equations. The numerical solution of time harmonic
Maxwell equations (and also Helmholtz equations, etc.) has a lot of challenges. One
is that, the solution is smooth and oscillatory away from boundaries and interfaces.
The approximation of oscillations generally requires sufficiently small mesh element
sizes compared to the wavelengh of the solution. This leads to a large number of mesh
points, especially for high wave numbers [?, ?, ?, ?, ?, ?]. In addition, the resulting
discretized linear systems are often severely ill conditioned. Iterative methods with
many existing preconditioners including multigrid may fail to converge quickly for
these problems. It is well-known that for high wave numbers, standard multigrid often
encounters difficulty in approximating the problem on coarse grids, and generally,
complicated implementations of multigrid are needed [?, ?, ?].

On the other hand, our preconditioners are based on structured approximate
factorizations and approximate information at all grid points are used to predict the
solutions. Our preliminary tests indicate that our algorithms are relatively insensitive
to wave numbers, when a discretized matrix is obtained for a wave number with
appropriate mesh sizes. For example, consider the following time harmonic Maxwell
equations

(5.2)
∇×∇×E− k2E = J in Ω,

E× n = g on ∂Ω,

where n is the unit outer normal of ∂Ω, and appropriate parameters are defined similar
to those in [18]. To be done......

5.6. Helmholtz equations in seismic-imaging problems. Seismic-imaging
problems often requires to solve large discretized Helmholtz equations for different
frequencies. Each frequency leads to one coefficient matrix. The problem is then
solved against many sources and receivers which correspond to multiple right-hand
side vectors for each same coefficient matrix. The discretized matrices are usually
indefinite and the solutions are highly damped for high frequencies. Multigrid methods
or similar are generally used to solve these problems [?, ?, ?]. However, standard
multigrid may not work well for all frequencies or multiple sources and receivers.



16 J. XIA

On the other hand, a preliminary implementation of our algorithm as an approx-
imate factorization algorithm gives superior test results. Our algorithm is attractive
in various aspects:

1. Our structured factorization is highly efficient for multiple right-hand sides
with the same coefficient matrix (i.e., multiple sources and receivers corre-
sponding to each frequency), since only one factorization is needed for each
frequency.

2. All the matrices have the same nonzero pattern, so our symbolic factorization
and graph partitioning need only to be done once for all frequencies, sources,
and receivers.

3. The dense fill-in in the factorization turns out to be reasonably compressible,
and our structured factorizations give very satisfactory approximate solutions
without high compression rate (or, related off-diagonal numerical ranks need
not to be very small).

4. The structured factorization is robust and relatively insensitive to frequencies.
To be done......
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